51
|
Abstract
All living organisms must repair DNA double-stranded breaks (DSBs) in order to survive. Many bacteria rely on nonhomologous end joining (NHEJ) when only a single copy of the genome is available and maintain NHEJ pathways with a minimum of two proteins. In this issue, Bhattarai and colleagues identify additional factors that can work together to aid in survival of stationary-phase cells with chromosomal breaks.
Collapse
|
52
|
Choi S, Kim H, Kim Y, Kim BS, Beuchat LR, Ryu JH. Fate of Bacillus cereus and naturally occurring microbiota on milled rice as affected by temperature and relative humidity. Food Microbiol 2014; 38:122-7. [DOI: 10.1016/j.fm.2013.08.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 08/15/2013] [Accepted: 08/29/2013] [Indexed: 11/17/2022]
|
53
|
Abstract
Ku is central to the non-homologous end-joining pathway of double-strand-break repair in all three major domains of life, with eukaryotic homologues being associated with more diversified roles compared with prokaryotic and archaeal homologues. Ku has a conserved central 'ring-shaped' core domain. While prokaryotic homologues lack the N- and C-terminal domains that impart functional diversity to eukaryotic Ku, analyses of Ku from certain prokaryotes such as Pseudomonas aeruginosa and Mycobacterium smegmatis have revealed the presence of distinct C-terminal extensions that modulate DNA-binding properties. We report in the present paper that the lysine-rich C-terminal extension of M. smegmatis Ku contacts the core protein domain as evidenced by an increase in DNA-binding affinity and a decrease in thermal stability and intrinsic tryptophan fluorescence upon its deletion. Ku deleted for this C-terminus requires free DNA ends for binding, but translocates to internal DNA sites. In contrast, full-length Ku can directly bind DNA without free ends, suggesting that this property is conferred by its C-terminus. Such binding to internal DNA sites may facilitate recruitment to sites of DNA damage. The results of the present study also suggest that extensions beyond the shared core domain may have independently evolved to expand Ku function.
Collapse
|
54
|
Vlašić I, Mertens R, Seco EM, Carrasco B, Ayora S, Reitz G, Commichau FM, Alonso JC, Moeller R. Bacillus subtilis RecA and its accessory factors, RecF, RecO, RecR and RecX, are required for spore resistance to DNA double-strand break. Nucleic Acids Res 2013; 42:2295-307. [PMID: 24285298 PMCID: PMC3936729 DOI: 10.1093/nar/gkt1194] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bacillus subtilis RecA is important for spore resistance to DNA damage, even though spores contain a single non-replicating genome. We report that inactivation of RecA or its accessory factors, RecF, RecO, RecR and RecX, drastically reduce survival of mature dormant spores to ultrahigh vacuum desiccation and ionizing radiation that induce single strand (ss) DNA nicks and double-strand breaks (DSBs). The presence of non-cleavable LexA renders spores less sensitive to DSBs, and spores impaired in DSB recognition or end-processing show sensitivities to X-rays similar to wild-type. In vitro RecA cannot compete with SsbA for nucleation onto ssDNA in the presence of ATP. RecO is sufficient, at least in vitro, to overcome SsbA inhibition and stimulate RecA polymerization on SsbA-coated ssDNA. In the presence of SsbA, RecA slightly affects DNA replication in vitro, but addition of RecO facilitates RecA-mediated inhibition of DNA synthesis. We propose that repairing of the DNA lesions generates a replication stress to germinating spores, and the RecA·ssDNA filament might act by preventing potentially dangerous forms of DNA repair occurring during replication. RecA might stabilize a stalled fork or prevent or promote dissolution of reversed forks rather than its cleavage that should require end-processing.
Collapse
Affiliation(s)
- Ignacija Vlašić
- Radiation Biology Department, German Aerospace Center, Institute of Aerospace Medicine, Linder Höhe, D-51147 Cologne (Köln), Germany, Division of Molecular Biology, Laboratory of Evolutionary Genetics, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia, Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Darwin 3, 28049 Madrid, Spain and Department of General Microbiology, University of Göttingen, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Brissett N, Martin M, Bartlett E, Bianchi J, Blanco L, Doherty A. Molecular basis for DNA double-strand break annealing and primer extension by an NHEJ DNA polymerase. Cell Rep 2013; 5:1108-20. [PMID: 24239356 PMCID: PMC3898472 DOI: 10.1016/j.celrep.2013.10.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/24/2013] [Accepted: 10/08/2013] [Indexed: 01/08/2023] Open
Abstract
Nonhomologous end-joining (NHEJ) is one of the major DNA double-strand break (DSB) repair pathways. The mechanisms by which breaks are competently brought together and extended during NHEJ is poorly understood. As polymerases extend DNA in a 5′-3′ direction by nucleotide addition to a primer, it is unclear how NHEJ polymerases fill in break termini containing 3′ overhangs that lack a primer strand. Here, we describe, at the molecular level, how prokaryotic NHEJ polymerases configure a primer-template substrate by annealing the 3′ overhanging strands from opposing breaks, forming a gapped intermediate that can be extended in trans. We identify structural elements that facilitate docking of the 3′ ends in the active sites of adjacent polymerases and reveal how the termini act as primers for extension of the annealed break, thus explaining how such DSBs are extended in trans. This study clarifies how polymerases couple break-synapsis to catalysis, providing a molecular mechanism to explain how primer extension is achieved on DNA breaks. Structure of a NHEJ polymerase bound to an annealed DNA double-strand break Break synapsis is stabilized by microhomology and polymerase surface loops 3′ hydroxyl of the primer strand is positioned into active-site pocket in trans Templating base selection relies on loop 1 and conserved phenylalanine residues
Collapse
Affiliation(s)
- Nigel C. Brissett
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Maria J. Martin
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Edward J. Bartlett
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Julie Bianchi
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Luis Blanco
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Aidan J. Doherty
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
- Corresponding author
| |
Collapse
|
56
|
Resistance of Bacillus subtilis spore DNA to lethal ionizing radiation damage relies primarily on spore core components and DNA repair, with minor effects of oxygen radical detoxification. Appl Environ Microbiol 2013; 80:104-9. [PMID: 24123749 DOI: 10.1128/aem.03136-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The roles of various core components, including α/β/γ-type small acid-soluble spore proteins (SASP), dipicolinic acid (DPA), core water content, and DNA repair by apurinic/apyrimidinic (AP) endonucleases or nonhomologous end joining (NHEJ), in Bacillus subtilis spore resistance to different types of ionizing radiation including X rays, protons, and high-energy charged iron ions have been studied. Spores deficient in DNA repair by NHEJ or AP endonucleases, the oxidative stress response, or protection by major α/β-type SASP, DPA, and decreased core water content were significantly more sensitive to ionizing radiation than wild-type spores, with highest sensitivity to high-energy-charged iron ions. DNA repair via NHEJ and AP endonucleases appears to be the most important mechanism for spore resistance to ionizing radiation, whereas oxygen radical detoxification via the MrgA-mediated oxidative stress response or KatX catalase activity plays only a very minor role. Synergistic radioprotective effects of α/β-type but not γ-type SASP were also identified, indicating that α/β-type SASP's binding to spore DNA is important in preventing DNA damage due to reactive oxygen species generated by ionizing radiation.
Collapse
|
57
|
Selvam K, Duncan JR, Tanaka M, Battista JR. DdrA, DdrD, and PprA: components of UV and mitomycin C resistance in Deinococcus radiodurans R1. PLoS One 2013; 8:e69007. [PMID: 23840905 PMCID: PMC3698191 DOI: 10.1371/journal.pone.0069007] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 06/11/2013] [Indexed: 11/19/2022] Open
Abstract
Mutants created by deleting the ddrA, ddrB, ddrC, ddrD, and pprA loci of Deinococcus radiodurans R1alone and in all possible combinations of pairs revealed that the encoded gene products contribute to this species’ resistance to UV light and/or mitomycin C. Deleting pprA from an otherwise wild type cell sensitizes the resulting strain to UV irradiation, reducing viability by as much as eight fold relative to R1. If this deletion is introduced into a ΔddrA or ΔddrD background, the resulting strains become profoundly sensitive to the lethal effects of UV light. At a fluence of 1000 Jm-2, the ΔddrA ΔpprA and ΔddrD ΔpprA strains are 100- and 1000-fold more sensitive to UV relative to the strain that has only lost pprA. Deletion of ddrA results in a 100 fold increase in strain sensitivity to mitomycin C, but in backgrounds that combine a deletion of ddrA with deletions of either ddrC or ddrD, mitomycin resistance is restored to wild type levels. Inactivation of ddrB also increases D. radiodurans sensitivity to mitomycin, but unlike the ddrA mutant deleting ddrC or ddrD from a ΔddrB background further increases that sensitivity. Despite the effect that loss of these gene products has on DNA damage resistance, none appear to directly affect either excision repair or homologous recombination suggesting that they participate in novel processes that facilitate tolerance to UV light and interstrand crosslinks in this species.
Collapse
Affiliation(s)
- Kathiresan Selvam
- Department of Biological Sciences, Louisiana State University and A & M College, Baton Rouge, Louisiana, United States of America
| | - Jana R. Duncan
- Department of Biological Sciences, Louisiana State University and A & M College, Baton Rouge, Louisiana, United States of America
| | - Masashi Tanaka
- Department of Molecular Immunology and Inflammation, National Center for Global Health and Medicine, Tokyo, Japan
| | - John R. Battista
- Department of Biological Sciences, Louisiana State University and A & M College, Baton Rouge, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
58
|
Stapelmann K, Fiebrandt M, Raguse M, Awakowicz P, Reitz G, Moeller R. Utilization of low-pressure plasma to inactivate bacterial spores on stainless steel screws. ASTROBIOLOGY 2013; 13:597-606. [PMID: 23768085 PMCID: PMC3713438 DOI: 10.1089/ast.2012.0949] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 04/12/2013] [Indexed: 05/22/2023]
Abstract
A special focus area of planetary protection is the monitoring, control, and reduction of microbial contaminations that are detected on spacecraft components and hardware during and after assembly. In this study, wild-type spores of Bacillus pumilus SAFR-032 (a persistent spacecraft assembly facility isolate) and the laboratory model organism B. subtilis 168 were used to study the effects of low-pressure plasma, with hydrogen alone and in combination with oxygen and evaporated hydrogen peroxide as a process gas, on spore survival, which was determined by a colony formation assay. Spores of B. pumilus SAFR-032 and B. subtilis 168 were deposited with an aseptic technique onto the surface of stainless steel screws to simulate a spore-contaminated spacecraft hardware component, and were subsequently exposed to different plasmas and hydrogen peroxide conditions in a very high frequency capacitively coupled plasma reactor (VHF-CCP) to reduce the spore burden. Spores of the spacecraft isolate B. pumilus SAFR-032 were significantly more resistant to plasma treatment than spores of B. subtilis 168. The use of low-pressure plasma with an additional treatment of evaporated hydrogen peroxide also led to an enhanced spore inactivation that surpassed either single treatment when applied alone, which indicates the potential application of this method as a fast and suitable way to reduce spore-contaminated spacecraft hardware components for planetary protection purposes.
Collapse
Affiliation(s)
- Katharina Stapelmann
- Ruhr University Bochum (RUB), Institute for Electrical Engineering and Plasma Technology (AEPT), Bochum, Germany
| | - Marcel Fiebrandt
- Ruhr University Bochum (RUB), Institute for Electrical Engineering and Plasma Technology (AEPT), Bochum, Germany
| | - Marina Raguse
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Cologne (Köln), Germany
| | - Peter Awakowicz
- Ruhr University Bochum (RUB), Institute for Electrical Engineering and Plasma Technology (AEPT), Bochum, Germany
| | - Günther Reitz
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Cologne (Köln), Germany
| | - Ralf Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Cologne (Köln), Germany
| |
Collapse
|
59
|
Tirumalai MR, Rastogi R, Zamani N, O’Bryant Williams E, Allen S, Diouf F, Kwende S, Weinstock GM, Venkateswaran KJ, Fox GE. Candidate genes that may be responsible for the unusual resistances exhibited by Bacillus pumilus SAFR-032 spores. PLoS One 2013; 8:e66012. [PMID: 23799069 PMCID: PMC3682946 DOI: 10.1371/journal.pone.0066012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 04/30/2013] [Indexed: 11/18/2022] Open
Abstract
The spores of several Bacillus species, including Bacillus pumilus SAFR-032 and B. safensis FO-36b, which were isolated from the spacecraft assembly facility at NASA's Jet Propulsion Laboratory, are unusually resistant to UV radiation and hydrogen peroxide. In order to identify candidate genes that might be associated with these resistances, the whole genome of B. pumilus SAFR-032, and the draft genome of B. safensis FO-36b were compared in detail with the very closely related type strain B. pumilus ATCC7061(T). 170 genes are considered characteristic of SAFR-032, because they are absent from both FO-36b and ATCC7061(T). Forty of these SAFR-032 characteristic genes are entirely unique open reading frames. In addition, four genes are unique to the genomes of the resistant SAFR-032 and FO-36b. Fifty three genes involved in spore coat formation, regulation and germination, DNA repair, and peroxide resistance, are missing from all three genomes. The vast majority of these are cleanly deleted from their usual genomic context without any obvious replacement. Several DNA repair and peroxide resistance genes earlier reported to be unique to SAFR-032 are in fact shared with ATCC7061(T) and no longer considered to be promising candidates for association with the elevated resistances. Instead, several SAFR-032 characteristic genes were identified, which along with one or more of the unique SAFR-032 genes may be responsible for the elevated resistances. These new candidates include five genes associated with DNA repair, namely, BPUM_0608 a helicase, BPUM_0652 an ATP binding protein, BPUM_0653 an endonuclease, BPUM_0656 a DNA cytosine-5- methyltransferase, and BPUM_3674 a DNA helicase. Three of these candidate genes are in immediate proximity of two conserved hypothetical proteins, BPUM_0654 and BPUM_0655 that are also absent from both FO-36b and ATCC7061(T). This cluster of five genes is considered to be an especially promising target for future experimental work.
Collapse
Affiliation(s)
- Madhan R. Tirumalai
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Rajat Rastogi
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Nader Zamani
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Elisha O’Bryant Williams
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| | - Shamail Allen
- Department of Biology, Texas Southern University, Houston, Texas, United States of America
| | - Fatma Diouf
- Department of Biology, Texas Southern University, Houston, Texas, United States of America
| | - Sharon Kwende
- Department of Biology, Texas Southern University, Houston, Texas, United States of America
| | - George M. Weinstock
- The Genome Institute, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kasthuri J. Venkateswaran
- Biotechnology & Planetary Protection Group, NASA Jet Propulsion Laboratories, California Institute of Technology, Pasadena, California, United States of America
| | - George E. Fox
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| |
Collapse
|
60
|
de Vega M. The minimal Bacillus subtilis nonhomologous end joining repair machinery. PLoS One 2013; 8:e64232. [PMID: 23691176 PMCID: PMC3656841 DOI: 10.1371/journal.pone.0064232] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/10/2013] [Indexed: 11/19/2022] Open
Abstract
It is widely accepted that repair of double-strand breaks in bacteria that either sporulate or that undergo extended periods of stationary phase relies not only on homologous recombination but also on a minimal nonhomologous end joining (NHEJ) system consisting of a dedicated multifunctional ATP-dependent DNA Ligase D (LigD) and the DNA-end-binding protein Ku. Bacillus subtilis is one of the bacterial members with a NHEJ system that contributes to genome stability during the stationary phase and germination of spores, having been characterized exclusively in vivo. Here, the in vitro analysis of the functional properties of the purified B. subtilis LigD (BsuLigD) and Ku (BsuKu) proteins is presented. The results show that the essential biochemical signatures exhibited by BsuLigD agree with its proposed function in NHEJ: i) inherent polymerization activity showing preferential insertion of NMPs, ii) specific recognition of the phosphate group at the downstream 5′ end, iii) intrinsic ligase activity, iv) ability to promote realignments of the template and primer strands during elongation of mispaired 3′ ends, and v) it is recruited to DNA by BsuKu that stimulates the inherent polymerization and ligase activities of the enzyme allowing it to deal with and to hold different and unstable DNA realignments.
Collapse
Affiliation(s)
- Miguel de Vega
- Instituto de Biología Molecular Eladio Viñuela, CSIC, Centro de Biología Molecular Severo Ochoa, CSIC-UAM, Cantoblanco, Madrid, Spain.
| |
Collapse
|
61
|
Moeller R, Reitz G, Li Z, Klein S, Nicholson WL. Multifactorial resistance of Bacillus subtilis spores to high-energy proton radiation: role of spore structural components and the homologous recombination and non-homologous end joining DNA repair pathways. ASTROBIOLOGY 2012; 12:1069-77. [PMID: 23088412 PMCID: PMC3491616 DOI: 10.1089/ast.2012.0890] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The space environment contains high-energy charged particles (e.g., protons, neutrons, electrons, α-particles, heavy ions) emitted by the Sun and galactic sources or trapped in the radiation belts. Protons constitute the majority (87%) of high-energy charged particles. Spores of Bacillus species are one of the model systems used for astro- and radiobiological studies. In this study, spores of different Bacillus subtilis strains were used to study the effects of high energetic proton irradiation on spore survival. Spores of the wild-type B. subtilis strain [mutants deficient in the homologous recombination (HR) and non-homologous end joining (NHEJ) DNA repair pathways and mutants deficient in various spore structural components such as dipicolinic acid (DPA), α/β-type small, acid-soluble spore protein (SASP) formation, spore coats, pigmentation, or spore core water content] were irradiated as air-dried multilayers on spacecraft-qualified aluminum coupons with 218 MeV protons [with a linear energy transfer (LET) of 0.4 keV/μm] to various final doses up to 2500 Gy. Spores deficient in NHEJ- and HR-mediated DNA repair were significantly more sensitive to proton radiation than wild-type spores, indicating that both HR and NHEJ DNA repair pathways are needed for spore survival. Spores lacking DPA, α/β-type SASP, or with increased core water content were also significantly more sensitive to proton radiation, whereas the resistance of spores lacking pigmentation or spore coats was essentially identical to that of the wild-type spores. Our results indicate that α/β-type SASP, core water content, and DPA play an important role in spore resistance to high-energy proton irradiation, suggesting their essential function as radioprotectants of the spore interior.
Collapse
Affiliation(s)
- Ralf Moeller
- German Aerospace Center (DLR e.V.), Institute of Aerospace Medicine, Radiation Biology Department, Cologne, Germany.
| | | | | | | | | |
Collapse
|
62
|
Protective role of spore structural components in determining Bacillus subtilis spore resistance to simulated mars surface conditions. Appl Environ Microbiol 2012; 78:8849-53. [PMID: 23064347 DOI: 10.1128/aem.02527-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spores of wild-type and mutant Bacillus subtilis strains lacking various structural components were exposed to simulated Martian atmospheric and UV irradiation conditions. Spore survival and mutagenesis were strongly dependent on the functionality of all of the structural components, with small acid-soluble spore proteins, coat layers, and dipicolinic acid as key protectants.
Collapse
|
63
|
|
64
|
Wassmann M, Moeller R, Rabbow E, Panitz C, Horneck G, Reitz G, Douki T, Cadet J, Stan-Lotter H, Cockell CS, Rettberg P. Survival of spores of the UV-resistant Bacillus subtilis strain MW01 after exposure to low-earth orbit and simulated martian conditions: data from the space experiment ADAPT on EXPOSE-E. ASTROBIOLOGY 2012; 12:498-507. [PMID: 22680695 DOI: 10.1089/ast.2011.0772] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
In the space experiment "Molecular adaptation strategies of microorganisms to different space and planetary UV climate conditions" (ADAPT), bacterial endospores of the highly UV-resistant Bacillus subtilis strain MW01 were exposed to low-Earth orbit (LEO) and simulated martian surface conditions for 559 days on board the European Space Agency's exposure facility EXPOSE-E, mounted outside the International Space Station. The survival of B. subtilis MW01 spores from both assays (LEO and simulated martian conditions) was determined by a colony-formation assay after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110 nm) as well as the martian UV spectrum (λ≥200 nm) was the most deleterious factor applied; in some samples only a few spore survivors were recovered from B. subtilis MW01 spores exposed in monolayers. However, if shielded from solar irradiation, about 8% of MW01 spores survived in LEO conditions, and 100% survived in simulated martian conditions, compared to the laboratory controls. The results demonstrate the effect of shielding against the high inactivation potential of extraterrestrial solar UV radiation, which limits the chances of survival of even the highly UV-resistant strain of B. subtilis MW01 in the harsh environments of outer space and the martian surface.
Collapse
Affiliation(s)
- Marko Wassmann
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Moeller R, Reitz G, Nicholson The Protect Team WL, Horneck G. Mutagenesis in bacterial spores exposed to space and simulated martian conditions: data from the EXPOSE-E spaceflight experiment PROTECT. ASTROBIOLOGY 2012; 12:457-468. [PMID: 22680692 DOI: 10.1089/ast.2011.0739] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
As part of the PROTECT experiment of the EXPOSE-E mission on board the International Space Station (ISS), the mutagenic efficiency of space was studied in spores of Bacillus subtilis 168. After 1.5 years' exposure to selected parameters of outer space or simulated martian conditions, the rates of induced mutations to rifampicin resistance (Rif(R)) and sporulation deficiency (Spo(-)) were quantified. In all flight samples, both mutations, Rif(R) and Spo(-), were induced and their rates increased by several orders of magnitude. Extraterrestrial solar UV radiation (>110 nm) as well as simulated martian UV radiation (>200 nm) led to the most pronounced increase (up to nearly 4 orders of magnitude); however, mutations were also induced in flight samples shielded from insolation, which were exposed to the same conditions except solar irradiation. Nucleotide sequencing located the Rif(R) mutations in the rpoB gene encoding the β-subunit of RNA polymerase. Mutations isolated from flight and parallel mission ground reference (MGR) samples were exclusively localized to Cluster I. The 21 Rif(R) mutations isolated from the flight experiment showed all a C to T transition and were all localized to one hotspot: H482Y. In mutants isolated from the MGR, the spectrum was wider with predicted amino acid changes at residues Q469K/L/R, H482D/P/R/Y, and S487L. The data show the unique mutagenic power of space and martian surface conditions as a consequence of DNA injuries induced by solar UV radiation and space vacuum or the low pressure of Mars.
Collapse
Affiliation(s)
- Ralf Moeller
- Radiation Biology Department, Institute of Aerospace Medicine, German Aerospace Center (DLR) , Cologne, Germany.
| | | | | | | |
Collapse
|
66
|
Nicholson WL, Moeller R, Horneck G. Transcriptomic responses of germinating Bacillus subtilis spores exposed to 1.5 years of space and simulated martian conditions on the EXPOSE-E experiment PROTECT. ASTROBIOLOGY 2012; 12:469-86. [PMID: 22680693 DOI: 10.1089/ast.2011.0748] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Because of their ubiquity and resistance to spacecraft decontamination, bacterial spores are considered likely potential forward contaminants on robotic missions to Mars. Thus, it is important to understand their global responses to long-term exposure to space or martian environments. As part of the PROTECT experiment, spores of B. subtilis 168 were exposed to real space conditions and to simulated martian conditions for 559 days in low-Earth orbit mounted on the EXPOSE-E exposure platform outside the European Columbus module on the International Space Station. Upon return, spores were germinated, total RNA extracted, fluorescently labeled, and used to probe a custom Bacillus subtilis microarray to identify genes preferentially activated or repressed relative to ground control spores. Increased transcript levels were detected for a number of stress-related regulons responding to DNA damage (SOS response, SPβ prophage induction), protein damage (CtsR/Clp system), oxidative stress (PerR regulon), and cell envelope stress (SigV regulon). Spores exposed to space demonstrated a much broader and more severe stress response than spores exposed to simulated martian conditions. The results are discussed in the context of planetary protection for a hypothetical journey of potential forward contaminant spores from Earth to Mars and their subsequent residence on Mars.
Collapse
Affiliation(s)
- Wayne L Nicholson
- Department of Microbiology and Cell Science, University of Florida, Space Life Sciences Laboratory, Kennedy Space Center, FL 32899, USA.
| | | | | |
Collapse
|
67
|
Moeller R, Vlašić I, Reitz G, Nicholson WL. Role of altered rpoB alleles in Bacillus subtilis sporulation and spore resistance to heat, hydrogen peroxide, formaldehyde, and glutaraldehyde. Arch Microbiol 2012; 194:759-67. [PMID: 22484477 DOI: 10.1007/s00203-012-0811-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 11/29/2022]
Abstract
Mutations in the RNA polymerase β-subunit gene rpoB causing resistance to rifampicin (Rif(R)) in Bacillus subtilis were previously shown to lead to alterations in the expression of a number of global phenotypes known to be under transcriptional control. To better understand the influence of rpoB mutations on sporulation and spore resistance to heat and chemicals, cells and spores of the wild-type and twelve distinct congenic Rif(R) mutant strains of B. subtilis were tested. Different levels of glucose catabolite repression during sporulation and spore resistance to heat and chemicals were observed in the Rif(R) mutants, indicating the important role played by the RNA polymerase β-subunit, not only in the catalytic aspect of transcription, but also in the initiation of sporulation and in the spore resistance properties of B. subtilis.
Collapse
Affiliation(s)
- Ralf Moeller
- Institute of Aerospace Medicine, German Aerospace Center, Linder Hoehe, 51147 Cologne, Germany.
| | | | | | | |
Collapse
|
68
|
Deletion of ku homologs increases gene targeting frequency in Streptomyces avermitilis. J Ind Microbiol Biotechnol 2012; 39:917-25. [PMID: 22350115 DOI: 10.1007/s10295-012-1097-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/23/2012] [Indexed: 10/28/2022]
Abstract
Streptomyces avermitilis is an industrially important soil bacterium known for production of avermectins, which are antiparasitic agents useful in animal health care, agriculture, and treatment of human infections. ku genes play a key role in the non-homologous end-joining pathway for repair of DNA double strand breaks. We identified homologs of eukaryotic ku70 and ku80 genes, termed ku1 and ku2, in S. avermitilis. Mutants with deletion of ku1, ku2, and both genes were constructed and their phenotypic changes were characterized. Deletion of ku genes had no apparent adverse effects on growth, spore formation, or avermectin production. The ku mutants, in comparison to wild-type strain, were slightly more sensitive to the DNA-damaging agent ethyl methanesulfonate, but not to UV exposure or to bleomycin. Gene targeting frequencies by homologous recombination were higher in the ku mutants than in wild-type strain. We conclude that ku-deleted strains will be useful hosts for efficient gene targeting and will facilitate functional analysis of genes in S. avermitilis and other industrially important bacterial strains.
Collapse
|
69
|
Nicholson WL, Ricco AJ, Agasid E, Beasley C, Diaz-Aguado M, Ehrenfreund P, Friedericks C, Ghassemieh S, Henschke M, Hines JW, Kitts C, Luzzi E, Ly D, Mai N, Mancinelli R, McIntyre M, Minelli G, Neumann M, Parra M, Piccini M, Rasay RM, Ricks R, Santos O, Schooley A, Squires D, Timucin L, Yost B, Young A. The O/OREOS mission: first science data from the Space Environment Survivability of Living Organisms (SESLO) payload. ASTROBIOLOGY 2011; 11:951-8. [PMID: 22091486 DOI: 10.1089/ast.2011.0714] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We report the first telemetered spaceflight science results from the orbiting Space Environment Survivability of Living Organisms (SESLO) experiment, executed by one of the two 10 cm cube-format payloads aboard the 5.5 kg Organism/Organic Exposure to Orbital Stresses (O/OREOS) free-flying nanosatellite. The O/OREOS spacecraft was launched successfully to a 72° inclination, 650 km Earth orbit on 19 November 2010. This satellite provides access to the radiation environment of space in relatively weak regions of Earth's protective magnetosphere as it passes close to the north and south magnetic poles; the total dose rate is about 15 times that in the orbit of the International Space Station. The SESLO experiment measures the long-term survival, germination, and growth responses, including metabolic activity, of Bacillus subtilis spores exposed to the microgravity, ionizing radiation, and heavy-ion bombardment of its high-inclination orbit. Six microwells containing wild-type (168) and six more containing radiation-sensitive mutant (WN1087) strains of dried B. subtilis spores were rehydrated with nutrient medium after 14 days in space to allow the spores to germinate and grow. Similarly, the same distribution of organisms in a different set of microwells was rehydrated with nutrient medium after 97 days in space. The nutrient medium included the redox dye Alamar blue, which changes color in response to cellular metabolic activity. Three-color transmitted intensity measurements of all microwells were telemetered to Earth within days of each of the 48 h growth experiments. We report here on the evaluation and interpretation of these spaceflight data in comparison to delayed-synchronous laboratory ground control experiments.
Collapse
|
70
|
Melnikov O, Baranes N, Einav M, Ben-Dov E, Manasherob R, Itsko M, Zaritsky A. Tandem repeats in a new toxin gene from Bacillus thuringiensis and in other cry11-like genes. J Mol Microbiol Biotechnol 2011; 20:204-10. [PMID: 21778765 DOI: 10.1159/000329824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A new gene, cry11Bb2 from a field isolate of Bacillus thuringiensis, was cloned for expression in Escherichia coli. The encoded protein, with a deduced molecular mass of 89.5 kDa, exhibits 97 and 79% identities with the overlap regions of Cry11Bb1 from B. thuringiensis ssp. medellin and Cry11Ba1 from ssp. jegathesan, respectively. It is however longer than Cry11Bb1 by 42 amino acids in its carboxy-terminus, of which 32 comprise 2 tandem repeats additional to the 5 existing in the latter polypeptide. Possible roles for this recurrent motif among Cry toxins and their accessory proteins, and for their encoding genes are proposed.
Collapse
Affiliation(s)
- Olga Melnikov
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er-Sheva, Israel
| | | | | | | | | | | | | |
Collapse
|
71
|
Ghosh S, Ramirez-Peralta A, Gaidamakova E, Zhang P, Li YQ, Daly M, Setlow P. Effects of Mn levels on resistance of Bacillus megaterium spores to heat, radiation and hydrogen peroxide. J Appl Microbiol 2011; 111:663-70. [DOI: 10.1111/j.1365-2672.2011.05095.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
72
|
Survival of thermophilic and hyperthermophilic microorganisms after exposure to UV-C, ionizing radiation and desiccation. Arch Microbiol 2011; 193:797-809. [DOI: 10.1007/s00203-011-0718-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/13/2011] [Accepted: 05/18/2011] [Indexed: 12/11/2022]
|
73
|
Ayora S, Carrasco B, Cárdenas PP, César CE, Cañas C, Yadav T, Marchisone C, Alonso JC. Double-strand break repair in bacteria: a view from Bacillus subtilis. FEMS Microbiol Rev 2011; 35:1055-81. [PMID: 21517913 DOI: 10.1111/j.1574-6976.2011.00272.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In all living organisms, the response to double-strand breaks (DSBs) is critical for the maintenance of chromosome integrity. Homologous recombination (HR), which utilizes a homologous template to prime DNA synthesis and to restore genetic information lost at the DNA break site, is a complex multistep response. In Bacillus subtilis, this response can be subdivided into five general acts: (1) recognition of the break site(s) and formation of a repair center (RC), which enables cells to commit to HR; (2) end-processing of the broken end(s) by different avenues to generate a 3'-tailed duplex and RecN-mediated DSB 'coordination'; (3) loading of RecA onto single-strand DNA at the RecN-induced RC and concomitant DNA strand exchange; (4) branch migration and resolution, or dissolution, of the recombination intermediates, and replication restart, followed by (5) disassembly of the recombination apparatus formed at the dynamic RC and segregation of sister chromosomes. When HR is impaired or an intact homologous template is not available, error-prone nonhomologous end-joining directly rejoins the two broken ends by ligation. In this review, we examine the functions that are known to contribute to DNA DSB repair in B. subtilis, and compare their properties with those of other bacterial phyla.
Collapse
Affiliation(s)
- Silvia Ayora
- Departmento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Bauermeister A, Moeller R, Reitz G, Sommer S, Rettberg P. Effect of relative humidity on Deinococcus radiodurans' resistance to prolonged desiccation, heat, ionizing, germicidal, and environmentally relevant UV radiation. MICROBIAL ECOLOGY 2011; 61:715-722. [PMID: 21161207 DOI: 10.1007/s00248-010-9785-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Accepted: 11/25/2010] [Indexed: 05/30/2023]
Abstract
To test the effect of humidity on the radiation resistance of Deinococcus radiodurans, air-dried cells were irradiated with germicidal 254 nm UV, and simulated environmental UV or γ-radiation and survival was compared to cells in suspension. It was observed that desiccated cells exhibited higher levels of resistance than cells in suspension toward UV or γ-radiation as well as after 85°C heat shock. It was also shown that low relative humidity improves survival during long-term storage of desiccated D. radiodurans cells. It can be concluded that periods or environments in which cells exist in a dehydrated state are beneficial for D. radiodurans' survival exposed to various other stresses.
Collapse
Affiliation(s)
- Anja Bauermeister
- Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center (DLR), Cologne (Koeln), Germany
| | | | | | | | | |
Collapse
|
75
|
Moeller R, Wassmann M, Reitz G, Setlow P. Effect of radioprotective agents in sporulation medium on Bacillus subtilis spore resistance to hydrogen peroxide, wet heat and germicidal and environmentally relevant UV radiation. J Appl Microbiol 2011; 110:1485-94. [PMID: 21410852 DOI: 10.1111/j.1365-2672.2011.05004.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To determine the effects of cysteine, cystine, proline and thioproline as sporulation medium supplements on Bacillus subtilis spore resistance to hydrogen peroxide (H(2)O(2)), wet heat, and germicidal 254 nm and simulated environmental UV radiation. METHODS AND RESULTS Bacillus subtilis spores were prepared in a chemically defined liquid medium, with and without supplementation of cysteine, cystine, proline or thioproline. Spores produced with thioproline, cysteine or cystine were more resistant to environmentally relevant UV radiation at 280-400 and 320-400 nm, while proline supplementation had no effect. Spores prepared with cysteine, cystine or thioproline were also more resistant to H(2)O(2) but not to wet heat or 254-nm UV radiation. The increases in spore resistance attributed to the sporulation supplements were eliminated if spores were chemically decoated. CONCLUSIONS Supplementation of sporulation medium with cysteine, cystine or thioproline increases spore resistance to solar UV radiation reaching the Earth's surface and to H(2)O(2). These effects were eliminated if the spores were decoated, indicating that alterations in coat proteins by different sporulation conditions can affect spore resistance to some agents. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides further evidence that the composition of the sporulation medium can have significant effects on B. subtilis spore resistance to UV radiation and H(2)O(2). This knowledge provides further insight into factors influencing spore resistance and inactivation.
Collapse
Affiliation(s)
- R Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Cologne, Germany.
| | | | | | | |
Collapse
|
76
|
Role of the Nfo and ExoA apurinic/apyrimidinic endonucleases in radiation resistance and radiation-induced mutagenesis of Bacillus subtilis spores. J Bacteriol 2011; 193:2875-9. [PMID: 21441501 DOI: 10.1128/jb.00134-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The roles of DNA repair by apurinic/apyrimidinic (AP) endonucleases alone, and together with DNA protection by α/β-type small acid-soluble spore proteins (SASP), in Bacillus subtilis spore resistance to different types of radiation have been studied. Spores lacking both AP endonucleases (Nfo and ExoA) and major SASP were significantly more sensitive to 254-nm UV-C, environmental UV (>280 nm), X-ray exposure, and high-energy charged (HZE)-particle bombardment and had elevated mutation frequencies compared to those of wild-type spores and spores lacking only one or both AP endonucleases or major SASP. These findings further implicate AP endonucleases and α/β-type SASP in repair and protection, respectively, of spore DNA against effects of UV and ionizing radiation.
Collapse
|
77
|
Brissett NC, Martin MJ, Pitcher RS, Bianchi J, Juarez R, Green AJ, Fox GC, Blanco L, Doherty AJ. Structure of a preternary complex involving a prokaryotic NHEJ DNA polymerase. Mol Cell 2011; 41:221-31. [PMID: 21255731 DOI: 10.1016/j.molcel.2010.12.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 07/09/2010] [Accepted: 12/10/2010] [Indexed: 01/02/2023]
Abstract
In many prokaryotes, a specific DNA primase/polymerase (PolDom) is required for nonhomologous end joining (NHEJ) repair of DNA double-strand breaks (DSBs). Here, we report the crystal structure of a catalytically active conformation of Mycobacterium tuberculosis PolDom, consisting of a polymerase bound to a DNA end with a 3' overhang, two metal ions, and an incoming nucleotide but, significantly, lacking a primer strand. This structure represents a polymerase:DNA complex in a preternary intermediate state. This polymerase complex occurs in solution, stabilizing the enzyme on DNA ends and promoting nucleotide extension of short incoming termini. We also demonstrate that the invariant Arg(220), contained in a conserved loop (loop 2), plays an essential role in catalysis by regulating binding of a second metal ion in the active site. We propose that this NHEJ intermediate facilitates extension reactions involving critically short or noncomplementary DNA ends, thus promoting break repair and minimizing sequence loss during DSB repair.
Collapse
Affiliation(s)
- Nigel C Brissett
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Wright D, DeBeaux A, Shi R, Doherty AJ, Harrison L. Characterization of the roles of the catalytic domains of Mycobacterium tuberculosis ligase D in Ku-dependent error-prone DNA end joining. Mutagenesis 2010; 25:473-81. [PMID: 20530153 PMCID: PMC2925156 DOI: 10.1093/mutage/geq029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 04/13/2010] [Accepted: 05/10/2010] [Indexed: 11/13/2022] Open
Abstract
We previously established an Escherichia coli strain capable of re-circularizing linear plasmid DNA by expressing the Mycobacterium tuberculosis Ku (Mt-Ku) and Mycobacterium tuberculosis ligase D (Mt-LigD) proteins from the E.coli chromosome. Repair was predominately mutagenic due to deletions at the termini. We hypothesized that these deletions could be due to a nuclease activity of Mt-LigD that was previously detected in vitro. Mt-LigD has three domains: an N-terminal polymerase domain (PolDom), a central domain with 3'-phosphoesterase and nuclease activity and a C-terminal ligase domain (LigDom). We generated bacterial strains expressing Mt-Ku and mutant versions of Mt-LigD. Plasmid re-circularization experiments in bacteria showed that the PolDom alone had no re-circularization activity. However, an increase in the total and accurate repair was found when the central domain was deleted. This provides further evidence that this central domain does have nuclease activity that can generate deletions during repair. Deletion of only the PolDom of Mt-LigD resulted in a complete loss of accurate repair and a significant reduction in total repair. This is in agreement with published in vitro work indicating that the PolDom is the major Mt-Ku-binding site. Interestingly, the LigDom alone was able to re-circularize plasmid DNA but only in an Mt-Ku-dependent manner, suggesting a potential second site for Ku-LigD interaction. This work has increased our understanding of the mutagenic repair by Mt-Ku and Mt-LigD and has extended the in vitro biochemical experiments by examining the importance of the Mt-LigD domains during repair in bacteria.
Collapse
Affiliation(s)
| | | | - Runhua Shi
- Department of Medicine and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center at Shreveport, 1501 Kings Highway, Shreveport, LA 71130, USA
| | - Aidan J. Doherty
- Genome Damage and Stability Center, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Lynn Harrison
- To whom correspondence should be addressed. Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71130, USA. Tel: +1 318 675 4213; Fax: +1 318 675 6005;
| |
Collapse
|
79
|
Wassmann M, Moeller R, Reitz G, Rettberg P. Adaptation of Bacillus subtilis cells to Archean-like UV climate: relevant hints of microbial evolution to remarkably increased radiation resistance. ASTROBIOLOGY 2010; 10:605-615. [PMID: 20735251 DOI: 10.1089/ast.2009.0455] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
In a precursory study for the space experiment ADAPT ("Molecular adaptation strategies of microorganisms to different space and planetary UV climate conditions"), cells of Bacillus subtilis 168 were continuously cultured for 700 generations under periodic polychromatic UV irradiation (200-400 nm) to model the suggested UV radiation environment on early Earth at the origin of the first microbial ecosystem during the Archean eon when Earth lacked a significant ozone layer. Populations that evolved under UV stress were about 3-fold more resistant than the ancestral and non-UV-evolved populations. UV-evolved cells were 7-fold more resistant to ionizing radiation than their non-UV-exposed evolved relatives and ancestor. In addition to the acquired increased UV resistance, further changes in microbial stress response to hydrogen peroxide, increased salinity, and desiccation were observed in UV-evolved cells. This indicates that UV-sensitive ancestral cells are capable of adapting to periodically applied UV stress via the evolution of cells with an increased UV resistance level and further enhanced responses to other environmental stressors, which thereby allows them to survive and reproduce under extreme UV radiation as a selection pressure.
Collapse
Affiliation(s)
- Marko Wassmann
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Research Group Astrobiology, Cologne, Germany
| | | | | | | |
Collapse
|
80
|
Kivisaar M. Mechanisms of stationary-phase mutagenesis in bacteria: mutational processes in pseudomonads. FEMS Microbiol Lett 2010; 312:1-14. [DOI: 10.1111/j.1574-6968.2010.02027.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
81
|
Moeller R, Reitz G, Berger T, Okayasu R, Nicholson WL, Horneck G. Astrobiological aspects of the mutagenesis of cosmic radiation on bacterial spores. ASTROBIOLOGY 2010; 10:509-521. [PMID: 20624059 DOI: 10.1089/ast.2009.0429] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Based on their unique resistance to various space parameters, Bacillus endospores are one of the model systems used for astrobiological studies. In this study, spores of B. subtilis were used to study the effects of galactic cosmic radiation (GCR) on spore survival and induced mutagenesis. In interplanetary space, outside Earth's protective magnetic field, spore-containing rocks would be exposed to bombardment by high-energy charged particle radiation from galactic sources and from the Sun, which consists of photons (X-rays, gamma rays), protons, electrons, and heavy, high-energy charged (HZE) particles. B. subtilis spores were irradiated with X-rays and accelerated heavy ions (helium, carbon, silicon and iron) in the linear energy transfer (LET) range of 2-200 keV/mum. Spore survival and the rate of the induced mutations to rifampicin resistance (Rif(R)) depended on the LET of the applied species of ions and radiation, whereas the exposure to high-energy charged particles, for example, iron ions, led to a low level of spore survival and increased frequency of mutation to Rif(R) compared to low-energy charged particles and X-rays. Twenty-one Rif(R) mutant spores were isolated from X-ray and heavy ion-irradiated samples. Nucleotide sequencing located the Rif(R) mutations in the rpoB gene encoding the beta-subunit of RNA polymerase. Most mutations were primarily found in Cluster I and were predicted to result in amino acid changes at residues Q469L, A478V, and H482P/Y. Four previously undescribed alleles in B. subtilis rpoB were isolated: L467P, R484P, and A488P in Cluster I and H507R in the spacer between Clusters I and II. The spectrum of Rif(R) mutations arising from spores exposed to components of GCR is distinctly different from those of spores exposed to simulated space vacuum and martian conditions.
Collapse
Affiliation(s)
- Ralf Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
82
|
Abstract
The responses of microorganisms (viruses, bacterial cells, bacterial and fungal spores, and lichens) to selected factors of space (microgravity, galactic cosmic radiation, solar UV radiation, and space vacuum) were determined in space and laboratory simulation experiments. In general, microorganisms tend to thrive in the space flight environment in terms of enhanced growth parameters and a demonstrated ability to proliferate in the presence of normally inhibitory levels of antibiotics. The mechanisms responsible for the observed biological responses, however, are not yet fully understood. A hypothesized interaction of microgravity with radiation-induced DNA repair processes was experimentally refuted. The survival of microorganisms in outer space was investigated to tackle questions on the upper boundary of the biosphere and on the likelihood of interplanetary transport of microorganisms. It was found that extraterrestrial solar UV radiation was the most deleterious factor of space. Among all organisms tested, only lichens (Rhizocarpon geographicum and Xanthoria elegans) maintained full viability after 2 weeks in outer space, whereas all other test systems were inactivated by orders of magnitude. Using optical filters and spores of Bacillus subtilis as a biological UV dosimeter, it was found that the current ozone layer reduces the biological effectiveness of solar UV by 3 orders of magnitude. If shielded against solar UV, spores of B. subtilis were capable of surviving in space for up to 6 years, especially if embedded in clay or meteorite powder (artificial meteorites). The data support the likelihood of interplanetary transfer of microorganisms within meteorites, the so-called lithopanspermia hypothesis.
Collapse
|
83
|
I-SceI endonuclease: a new tool for DNA repair studies and genetic manipulations in streptomycetes. Appl Microbiol Biotechnol 2010; 87:1525-32. [DOI: 10.1007/s00253-010-2643-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 04/21/2010] [Accepted: 04/21/2010] [Indexed: 11/28/2022]
|
84
|
Moeller R, Douki T, Rettberg P, Reitz G, Cadet J, Nicholson WL, Horneck G. Genomic bipyrimidine nucleotide frequency and microbial reactions to germicidal UV radiation. Arch Microbiol 2010; 192:521-9. [PMID: 20454780 DOI: 10.1007/s00203-010-0579-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/13/2010] [Accepted: 04/17/2010] [Indexed: 11/29/2022]
Abstract
The role of the genomic bipyrimidine nucleotide frequency in pyrimidine dimer formation caused by germicidal UV radiation was studied in three microbial reference organisms (Escherichia coli K12, Deinococcus radiodurans R1, spores and cells of Bacillus subtilis 168). The sensitive HPLC tandem mass spectrometry assay was used to identify and quantify the different bipyrimidine photoproducts induced in the DNA of microorganisms by germicidal UV radiation. The yields of photoproducts per applied fluence were very similar among vegetative cells but twofold reduced in spores. This similarity in DNA photoreactivity greatly contrasted with the 11-fold range determined in the fluence causing a decimal reduction of survival. It was also found that the spectrum of UV-induced bipyrimidine lesions was species-specific and the formation rates of bi-thymine and bi-cytosine photoproducts correlated with the genomic frequencies of thymine and cytosine dinucleotides in the bacterial model systems.
Collapse
Affiliation(s)
- Ralf Moeller
- German Aerospace Center, Institute of Aerospace Medicine, Radiation Biology Department, Research Group 'Astrobiology', Linder Hoehe, 51147 Cologne, Germany.
| | | | | | | | | | | | | |
Collapse
|
85
|
Touzain F, Denamur E, Médigue C, Barbe V, El Karoui M, Petit MA. Small variable segments constitute a major type of diversity of bacterial genomes at the species level. Genome Biol 2010; 11:R45. [PMID: 20433696 PMCID: PMC2884548 DOI: 10.1186/gb-2010-11-4-r45] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 03/15/2010] [Accepted: 04/30/2010] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Analysis of large scale diversity in bacterial genomes has mainly focused on elements such as pathogenicity islands, or more generally, genomic islands. These comprise numerous genes and confer important phenotypes, which are present or absent depending on strains. We report that despite this widely accepted notion, most diversity at the species level is composed of much smaller DNA segments, 20 to 500 bp in size, which we call microdiversity. RESULTS We performed a systematic analysis of the variable segments detected by multiple whole genome alignments at the DNA level on three species for which the greatest number of genomes have been sequenced: Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes. Among the numerous sites of variability, 62 to 73% were loci of microdiversity, many of which were located within genes. They contribute to phenotypic variations, as 3 to 6% of all genes harbor microdiversity, and 1 to 9% of total genes are located downstream from a microdiversity locus. Microdiversity loci are particularly abundant in genes encoding membrane proteins. In-depth analysis of the E. coli alignments shows that most of the diversity does not correspond to known mobile or repeated elements, and it is likely that they were generated by illegitimate recombination. An intriguing class of microdiversity includes small blocks of highly diverged sequences, whose origin is discussed. CONCLUSIONS This analysis uncovers the importance of this small-sized genome diversity, which we expect to be present in a wide range of bacteria, and possibly also in many eukaryotic genomes.
Collapse
Affiliation(s)
- Fabrice Touzain
- INRA, UMR1319, Micalis, Bat 222, Jouy en Josas, 78350, France
| | | | | | | | | | | |
Collapse
|
86
|
Moeller R, Reitz G, Douki T, Cadet J, Horneck G, Stan-Lotter H. UV photoreactions of the extremely haloalkaliphilic euryarchaeon Natronomonas pharaonis. FEMS Microbiol Ecol 2010; 73:271-7. [PMID: 20491923 DOI: 10.1111/j.1574-6941.2010.00893.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The objective of this study was to investigate the photobiological responses of the haloalkaliphilic euryarchaeon Natronomonas pharaonis to environmentally relevant polychromatic UV radiation, simulating either the present UV radiation climate (lambda>290 nm) or that of the early Earth (lambda>220 nm), and to monochromatic UVC radiation (lambda=254 nm) for comparison with the literature data. UV-induced bipyrimidine DNA photoproducts were determined using a sensitive and accurate HPLC tandem mass spectrometry assay, allowing to identify and quantify each type of photoproducts formed in the DNA of a UV-irradiated halophilic archaeon. The thymine cytosine (TC) pyrimidine (6-4) pyrimidone photoproduct and the TC cyclobutane pyrimidine dimer accounted for almost 80% of the total induced DNA photolesions, regardless of the wavelength range tested. These prominent formation rates of TC photoproducts correlated with the genomic frequencies of TC dinucleotides in N. pharaonis.
Collapse
Affiliation(s)
- Ralf Moeller
- Radiation Biology Department, German Aerospace Center (DLR), Institute of Aerospace Medicine, Köln, Germany.
| | | | | | | | | | | |
Collapse
|
87
|
Abstract
Bridging broken DNA ends via nonhomologous end-joining (NHEJ) contributes to the evolution and stability of eukaryote genomes. Although some bacteria possess a simplified NHEJ mechanism, the human commensal Escherichia coli is thought to rely exclusively on homology-directed mechanisms to repair DNA double-strand breaks (DSBs). We show here that laboratory and pathogenic E. coli strains possess a distinct end-joining activity that repairs DSBs and generates genome rearrangements. This mechanism, named alternative end-joining (A-EJ), does not rely on the key NHEJ proteins Ku and Ligase-D which are absent in E. coli. Differently from classical NHEJ, A-EJ is characterized by extensive end-resection largely due to RecBCD, by overwhelming usage of microhomology and extremely rare DNA synthesis. We also show that A-EJ is dependent on the essential Ligase-A and independent on Ligase-B. Importantly, mutagenic repair requires a functional Ligase-A. Although generally mutagenic, accurate A-EJ also occurs and is frequent in some pathogenic bacteria. Furthermore, we show the acquisition of an antibiotic-resistance gene via A-EJ, refuting the notion that bacteria gain exogenous sequences only by recombination-dependent mechanisms. This finding demonstrates that E. coli can integrate unrelated, nonhomologous exogenous sequences by end-joining and it provides an alternative strategy for horizontal gene transfer in the bacterial genome. Thus, A-EJ contributes to bacterial genome evolution and adaptation to environmental challenges. Interestingly, the key features of A-EJ also appear in A-NHEJ, an alternative end-joining mechanism implicated in chromosomal translocations associated with human malignancies, and we propose that this mutagenic repair might have originated in bacteria.
Collapse
|
88
|
Barraza-Salas M, Ibarra-RodrÃguez JR, Mellado SJ, Salas-Pacheco JM, Setlow P, Pedraza-Reyes M. Effects of forespore-specific overexpression of apurinic/apyrimidinic endonuclease Nfo on the DNA-damage resistance properties of Bacillus subtilis spores. FEMS Microbiol Lett 2010; 302:159-65. [DOI: 10.1111/j.1574-6968.2009.01845.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
89
|
Rabbow E, Horneck G, Rettberg P, Schott JU, Panitz C, L'Afflitto A, von Heise-Rotenburg R, Willnecker R, Baglioni P, Hatton J, Dettmann J, Demets R, Reitz G. EXPOSE, an astrobiological exposure facility on the international space station - from proposal to flight. ORIGINS LIFE EVOL B 2009; 39:581-98. [PMID: 19629743 DOI: 10.1007/s11084-009-9173-6] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Accepted: 07/09/2009] [Indexed: 11/24/2022]
Abstract
Following an European Space Agency announcement of opportunity in 1996 for "Externally mounted payloads for 1st utilization phase" on the International Space Station (ISS), scientists working in the fields of astrobiology proposed experiments aiming at longterm exposure of a variety of chemical compounds and extremely resistant microorganisms to the hostile space environment. The ESA exposure facility EXPOSE was built and an operations' concept was prepared. The EXPOSE experiments were developed through an intensive pre-flight experiment verification test program. 12 years later, two sets of astrobiological experiments in two EXPOSE facilities have been successfully launched to the ISS for external exposure for up to 1.5 years. EXPOSE-E, now installed at the balcony of the European Columbus module, was launched in February 2008, while EXPOSE-R took off to the ISS in November 2008 and was installed on the external URM-D platform of the Russian Zvezda module in March 2009.
Collapse
Affiliation(s)
- Elke Rabbow
- German Aerospace Center DLR, Institute of Aerospace Medicine, Linder Hoehe, Koeln, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Unciuleac MC, Shuman S. Characterization of the mycobacterial AdnAB DNA motor provides insights into the evolution of bacterial motor-nuclease machines. J Biol Chem 2009; 285:2632-41. [PMID: 19920138 DOI: 10.1074/jbc.m109.076133] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mycobacterial AdnAB exemplifies a family of heterodimeric motor-nucleases involved in processing DNA double strand breaks (DSBs). The AdnA and AdnB subunits are each composed of an N-terminal UvrD-like motor domain and a C-terminal RecB-like nuclease module. Here we conducted a biochemical characterization of the AdnAB motor, using a nuclease-inactivated heterodimer. AdnAB is a vigorous single strand DNA (ssDNA)-dependent ATPase (k(cat) 415 s(-1)), and the affinity of the motor for the ssDNA cofactor increases 140-fold as DNA length is extended from 12 to 44 nucleotides. Using a streptavidin displacement assay, we demonstrate that AdnAB is a 3' --> 5' translocase on ssDNA. AdnAB binds stably to DSB ends. In the presence of ATP, the motor unwinds the DNA duplex without requiring an ssDNA loading strand. We integrate these findings into a model of DSB unwinding in which the "leading" AdnB and "lagging" AdnA motor domains track in tandem, 3' to 5', along the same DNA single strand. This contrasts with RecBCD, in which the RecB and RecD motors track in parallel along the two separated DNA single strands. The effects of 5' and 3' terminal obstacles on ssDNA cleavage by wild-type AdnAB suggest that the AdnA nuclease receives and processes the displaced 5' strand, while the AdnB nuclease cleaves the displaced 3' strand. We present evidence that the distinctive "molecular ruler" function of the ATP-dependent single strand DNase, whereby AdnAB measures the distance from the 5'-end to the sites of incision, reflects directional pumping of the ssDNA through the AdnAB motor into the AdnB nuclease. These and other findings suggest a scenario for the descent of the RecBCD- and AddAB-type DSB-processing machines from an ancestral AdnAB-like enzyme.
Collapse
|
91
|
Desnous C, Guillaume D, Clivio P. Spore Photoproduct: A Key to Bacterial Eternal Life. Chem Rev 2009; 110:1213-32. [DOI: 10.1021/cr0781972] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Céline Desnous
- ICSN, UPR CNRS 2301, 1 Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France and UMR CNRS 6229, 51 Rue Cognacq Jay, 51096 Reims Cedex, France
| | - Dominique Guillaume
- ICSN, UPR CNRS 2301, 1 Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France and UMR CNRS 6229, 51 Rue Cognacq Jay, 51096 Reims Cedex, France
| | - Pascale Clivio
- ICSN, UPR CNRS 2301, 1 Avenue de la Terrasse, 91198 Gif sur Yvette Cedex, France and UMR CNRS 6229, 51 Rue Cognacq Jay, 51096 Reims Cedex, France
| |
Collapse
|
92
|
Bauermeister A, Bentchikou E, Moeller R, Rettberg P. Roles of PprA, IrrE, and RecA in the resistance of Deinococcus radiodurans to germicidal and environmentally relevant UV radiation. Arch Microbiol 2009; 191:913-8. [DOI: 10.1007/s00203-009-0522-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/06/2009] [Accepted: 10/12/2009] [Indexed: 02/01/2023]
|
93
|
Repairing DNA double-strand breaks by the prokaryotic non-homologous end-joining pathway. Biochem Soc Trans 2009; 37:539-45. [PMID: 19442248 DOI: 10.1042/bst0370539] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The NHEJ (non-homologous end-joining) pathway is one of the major mechanisms for repairing DSBs (double-strand breaks) that occur in genomic DNA. In common with eukaryotic organisms, many prokaryotes possess a conserved NHEJ apparatus that is essential for the repair of DSBs arising in the stationary phase of the cell cycle. Although the bacterial NHEJ complex is much more minimal than its eukaryotic counterpart, both pathways share a number of common mechanistic features. The relative simplicity of the prokaryotic NHEJ complex makes it a tractable model system for investigating the cellular and molecular mechanisms of DSB repair. The present review describes recent advances in our understanding of prokaryotic end-joining, focusing primarily on biochemical, structural and cellular aspects of the mycobacterial NHEJ repair pathway.
Collapse
|
94
|
Weiner A, Zauberman N, Minsky A. Recombinational DNA repair in a cellular context: a search for the homology search. Nat Rev Microbiol 2009; 7:748-55. [PMID: 19756013 DOI: 10.1038/nrmicro2206] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Double-strand DNA breaks (DSBs) are the most detrimental lesion that can be sustained by the genetic complement, and their inaccurate mending can be just as damaging. According to the consensual view, precise DSB repair relies on homologous recombination. Here, we review studies on DNA repair, chromatin diffusion and chromosome confinement, which collectively imply that a genome-wide search for a homologous template, generally thought to be a pivotal stage in all homologous DSB repair pathways, is improbable. The implications of this assertion for the scope and constraints of DSB repair pathways and for the ability of diverse organisms to cope with DNA damage are discussed.
Collapse
Affiliation(s)
- Allon Weiner
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
95
|
Roles of small, acid-soluble spore proteins and core water content in survival of Bacillus subtilis spores exposed to environmental solar UV radiation. Appl Environ Microbiol 2009; 75:5202-8. [PMID: 19542328 DOI: 10.1128/aem.00789-09] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spores of Bacillus subtilis contain a number of small, acid-soluble spore proteins (SASP) which comprise up to 20% of total spore core protein. The multiple alpha/beta-type SASP have been shown to confer resistance to UV radiation, heat, peroxides, and other sporicidal treatments. In this study, SASP-defective mutants of B. subtilis and spores deficient in dacB, a mutation leading to an increased core water content, were used to study the relative contributions of SASP and increased core water content to spore resistance to germicidal 254-nm and simulated environmental UV exposure (280 to 400 nm, 290 to 400 nm, and 320 to 400 nm). Spores of strains carrying mutations in sspA, sspB, and both sspA and sspB (lacking the major SASP-alpha and/or SASP-beta) were significantly more sensitive to 254-nm and all polychromatic UV exposures, whereas the UV resistance of spores of the sspE strain (lacking SASP-gamma) was essentially identical to that of the wild type. Spores of the dacB-defective strain were as resistant to 254-nm UV-C radiation as wild-type spores. However, spores of the dacB strain were significantly more sensitive than wild-type spores to environmental UV treatments of >280 nm. Air-dried spores of the dacB mutant strain had a significantly higher water content than air-dried wild-type spores. Our results indicate that alpha/beta-type SASP and decreased spore core water content play an essential role in spore resistance to environmentally relevant UV wavelengths whereas SASP-gamma does not.
Collapse
|
96
|
Isolation and characterization of a novel lysine racemase from a soil metagenomic library. Appl Environ Microbiol 2009; 75:5161-6. [PMID: 19502445 DOI: 10.1128/aem.00074-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
A lysine racemase (lyr) gene was isolated from a soil metagenome by functional complementation for the first time by using Escherichia coli BCRC 51734 cells as the host and d-lysine as the selection agent. The lyr gene consisted of a 1,182-bp nucleotide sequence encoding a protein of 393 amino acids with a molecular mass of about 42.7 kDa. The enzyme exhibited higher specific activity toward lysine in the l-lysine-to-d-lysine direction than in the reverse reaction.
Collapse
|
97
|
Nicholson WL. Ancient micronauts: interplanetary transport of microbes by cosmic impacts. Trends Microbiol 2009; 17:243-50. [PMID: 19464895 DOI: 10.1016/j.tim.2009.03.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/17/2009] [Accepted: 03/23/2009] [Indexed: 10/20/2022]
Abstract
Recent developments in microbiology, geophysics and planetary sciences raise the possibility that the planets in our solar system might not be biologically isolated. Hence, the possibility of lithopanspermia (the interplanetary transport of microbial passengers inside rocks) is presently being re-evaluated, with implications for the origin and evolution of life on Earth and within our solar system. Here, I summarize our current understanding of the physics of impacts, space transport of meteorites, and the potentiality of microorganisms to undergo and survive interplanetary transfer.
Collapse
Affiliation(s)
- Wayne L Nicholson
- Department of Microbiology and Cell Science, University of Florida, Space Life Sciences Laboratory, Building M6-1025, Room 201-B, Kennedy Space Center, FL 32899, USA.
| |
Collapse
|
98
|
Dos Vultos T, Mestre O, Tonjum T, Gicquel B. DNA repair inMycobacterium tuberculosisrevisited. FEMS Microbiol Rev 2009; 33:471-87. [DOI: 10.1111/j.1574-6976.2009.00170.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
99
|
Comparison of responses to double-strand breaks between Escherichia coli and Bacillus subtilis reveals different requirements for SOS induction. J Bacteriol 2008; 191:1152-61. [PMID: 19060143 DOI: 10.1128/jb.01292-08] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
DNA double-strand breaks are particularly deleterious lesions that can lead to genomic instability and cell death. We investigated the SOS response to double-strand breaks in both Escherichia coli and Bacillus subtilis. In E. coli, double-strand breaks induced by ionizing radiation resulted in SOS induction in virtually every cell. E. coli strains incapable of SOS induction were sensitive to ionizing radiation. In striking contrast, we found that in B. subtilis both ionizing radiation and a site-specific double-strand break causes induction of prophage PBSX and SOS gene expression in only a small subpopulation of cells. These results show that double-strand breaks provoke global SOS induction in E. coli but not in B. subtilis. Remarkably, RecA-GFP focus formation was nearly identical following ionizing radiation challenge in both E. coli and B. subtilis, demonstrating that formation of RecA-GFP foci occurs in response to double-strand breaks but does not require or result in SOS induction in B. subtilis. Furthermore, we found that B. subtilis cells incapable of inducing SOS had near wild-type levels of survival in response to ionizing radiation. Moreover, B. subtilis RecN contributes to maintaining low levels of SOS induction during double-strand break repair. Thus, we found that the contribution of SOS induction to double-strand break repair differs substantially between E. coli and B. subtilis.
Collapse
|
100
|
Role of DNA protection and repair in resistance of Bacillus subtilis spores to ultrahigh shock pressures simulating hypervelocity impacts. Appl Environ Microbiol 2008; 74:6682-9. [PMID: 18791028 DOI: 10.1128/aem.01091-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Impact-induced ejections of rocks from planetary surfaces are frequent events in the early history of the terrestrial planets and have been considered as a possible first step in the potential interplanetary transfer of microorganisms. Spores of Bacillus subtilis were used as a model system to study the effects of a simulated impact-caused ejection on rock-colonizing microorganisms using a high-explosive plane wave setup. Embedded in different types of rock material, spores were subjected to extremely high shock pressures (5 to 50 GPa) lasting for fractions of microseconds to seconds. Nearly exponential pressure response curves were obtained for spore survival and linear dependency for the induction of sporulation-defective mutants. Spores of strains defective in major small, acid-soluble spore proteins (SASP) (alpha/beta-type SASP) that largely protect the spore DNA and spores of strains deficient in nonhomologous-end-joining DNA repair were significantly more sensitive to the applied shock pressure than were wild-type spores. These results indicate that DNA may be the sensitive target of spores exposed to ultrahigh shock pressures. To assess the nature of the critical physical parameter responsible for spore inactivation by ultrahigh shock pressures, the resulting peak temperature was varied by lowering the preshock temperature, changing the rock composition and porosity, or increasing the water content of the samples. Increased peak temperatures led to increased spore inactivation and reduced mutation rates. The data suggested that besides the potential mechanical stress exerted by the shock pressure, the accompanying high peak temperatures were a critical stress parameter that spores had to cope with.
Collapse
|