51
|
Crystallizing the function of the magnetosome membrane mineralization protein Mms6. Biochem Soc Trans 2017; 44:883-90. [PMID: 27284056 PMCID: PMC4900750 DOI: 10.1042/bst20160057] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 12/18/2022]
Abstract
The literature on the magnetosome membrane (MM) protein, magnetosome membrane specific6 (Mms6), is reviewed. Mms6 is native to magnetotactic bacteria (MTB). These bacteria take up iron from solution and biomineralize magnetite nanoparticles within organelles called magnetosomes. Mms6 is a small protein embedded on the interior of the MM and was discovered tightly associated with the formed mineral. It has been the subject of intensive research as it is seen to control the formation of particles both in vivo and in vitro. Here, we compile, review and discuss the research detailing Mms6’s activity within the cell and in a range of chemical in vitro methods where Mms6 has a marked effect on the composition, size and distribution of synthetic particles, with approximately 21 nm in size for solution precipitations and approximately 90 nm for those formed on surfaces. Furthermore, we review and discuss recent work detailing the structure and function of Mms6. From the evidence, we propose a mechanism for its function as a specific magnetite nucleation protein and summaries the key features for this action: namely, self-assembly to display a charged surface for specific iron binding, with the curvature of the surfaces determining the particle size. We suggest these may aid design of biomimetic additives for future green nanoparticle production.
Collapse
|
52
|
Revathy T, Jayasri MA, Suthindhiran K. Toxicity assessment of magnetosomes in different models. 3 Biotech 2017; 7:126. [PMID: 28573396 PMCID: PMC5453912 DOI: 10.1007/s13205-017-0780-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 02/15/2017] [Indexed: 12/15/2022] Open
Abstract
Magnetosomes are nanosized iron oxide particles surrounded by lipid membrane synthesized by magnetotactic bacteria (MTB). Magnetosomes have been exploited for a broad range of biomedical and biotechnological applications. Due to their enormous potential in the biomedical field, its safety assessment is necessary. Detailed research on the toxicity of the magnetosomes was not studied so far. This study focuses on the toxicity assessment of magnetosomes in various models such as Human RBC's, WBC's, mouse macrophage cell line (J774), Onion root tip and fish (Oreochromis mossambicus). The toxicity in RBC models revealed that the RBC's are unaltered up to a concentration of 150 µg/ml, and its morphology was not affected. The genotoxicity studies on WBC's showed that there were no detectable chromosomal aberrations up to a concentration of 100 µg/ml. Similarly, there were no detectable morphological changes observed on the magnetosome-treated J774 cells, and the viability of the cells was above 90% at all the tested concentrations. Furthermore, the magnetosomes are not toxic to the fish (O. mossambicus), as no mortality or behavioural changes were observed in the magnetosome-treated groups. Histopathological analysis of the same reveals no damage in the muscle and gill sections. Overall, the results suggest that the magnetosomes are safe at lower concentration and does not pose any potential risk to the ecosystem.
Collapse
Affiliation(s)
- T. Revathy
- Marine Biotechnology and Bioproducts Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014 Tamilnadu India
| | - M. A. Jayasri
- Marine Biotechnology and Bioproducts Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014 Tamilnadu India
| | - K. Suthindhiran
- Marine Biotechnology and Bioproducts Laboratory, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014 Tamilnadu India
| |
Collapse
|
53
|
Abstract
Magnetotactic bacteria derive their magnetic orientation from magnetosomes, which are unique organelles that contain nanometre-sized crystals of magnetic iron minerals. Although these organelles have evident potential for exciting biotechnological applications, a lack of genetically tractable magnetotactic bacteria had hampered the development of such tools; however, in the past decade, genetic studies using two model Magnetospirillum species have revealed much about the mechanisms of magnetosome biogenesis. In this Review, we highlight these new insights and place the molecular mechanisms of magnetosome biogenesis in the context of the complex cell biology of Magnetospirillum spp. Furthermore, we discuss the diverse properties of magnetosome biogenesis in other species of magnetotactic bacteria and consider the value of genetically 'magnetizing' non-magnetotactic bacteria. Finally, we discuss future prospects for this highly interdisciplinary and rapidly advancing field.
Collapse
|
54
|
Ji B, Zhang SD, Zhang WJ, Rouy Z, Alberto F, Santini CL, Mangenot S, Gagnot S, Philippe N, Pradel N, Zhang L, Tempel S, Li Y, Médigue C, Henrissat B, Coutinho PM, Barbe V, Talla E, Wu LF. The chimeric nature of the genomes of marine magnetotactic coccoid-ovoid bacteria defines a novel group of P
roteobacteria. Environ Microbiol 2017; 19:1103-1119. [DOI: 10.1111/1462-2920.13637] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 11/23/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Boyang Ji
- Aix Marseille Univ, CNRS, LCB; Marseille France
| | - Sheng-Da Zhang
- Aix Marseille Univ, CNRS, LCB; Marseille France
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
| | - Wei-Jia Zhang
- Aix Marseille Univ, CNRS, LCB; Marseille France
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
- State Key Laboratories for Agro-biotechnology and College of Biological Sciences; China Agricultural University; Beijing 100193 China
| | - Zoe Rouy
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope; Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme; 2 rue Gaston Crémieux Evry F-91057 France
- Centre National de la Recherche Scientifique; Unité Mixte de Recherche 8030; 2 rue Gaston Crémieux Evry F-91057 France
- UEVE; Université d'Evry, Boulevard François Mitterrand; Evry F-91025 France
| | - François Alberto
- Aix Marseille Univ, CNRS, LCB; Marseille France
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
| | - Claire-Lise Santini
- Aix Marseille Univ, CNRS, LCB; Marseille France
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
| | - Sophie Mangenot
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope; Laboratoire de Biologie Moléculaire pour l'Etude des Génomes; 2 rue Gaston Crémieux Evry cedex CP 5706 - 91057 France
| | | | | | - Nathalie Pradel
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
- Aix Marseille Univ, Univ Toulon, CNRS, IRD; Marseille France
| | | | | | - Ying Li
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
- State Key Laboratories for Agro-biotechnology and College of Biological Sciences; China Agricultural University; Beijing 100193 China
| | - Claudine Médigue
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope; Laboratoire d'Analyse Bioinformatique en Génomique et Métabolisme; 2 rue Gaston Crémieux Evry F-91057 France
- Centre National de la Recherche Scientifique; Unité Mixte de Recherche 8030; 2 rue Gaston Crémieux Evry F-91057 France
- UEVE; Université d'Evry, Boulevard François Mitterrand; Evry F-91025 France
| | | | | | - Valérie Barbe
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut de Génomique-Génoscope; Laboratoire de Biologie Moléculaire pour l'Etude des Génomes; 2 rue Gaston Crémieux Evry cedex CP 5706 - 91057 France
| | | | - Long-Fei Wu
- Aix Marseille Univ, CNRS, LCB; Marseille France
- Centre National de la Recherche Scientifique; Laboratoire International Associé de la Bio-Minéralisation et Nano-Structures (LIA-BioMNSL); Marseille cedex 20 F-13402 France
| |
Collapse
|
55
|
Barber-Zucker S, Zarivach R. A Look into the Biochemistry of Magnetosome Biosynthesis in Magnetotactic Bacteria. ACS Chem Biol 2017; 12:13-22. [PMID: 27930882 DOI: 10.1021/acschembio.6b01000] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Magnetosomes are protein-rich membrane organelles that encapsulate magnetite or greigite and whose chain alignment enables magnetotactic bacteria (MTB) to sense the geomagnetic field. As these bacteria synthesize uniform magnetic particles, their biomineralization mechanism is of great interest among researchers from different fields, from material engineering to medicine. Both magnetosome formation and magnetic particle synthesis are highly controlled processes that can be divided into several crucial steps: membrane invagination from the inner-cell membrane, protein sorting, the magnetosomes' arrangement into chains, iron transport, chemical environment regulation of the magnetosome lumen, magnetic particle nucleation, and finally crystal growth, size, and morphology control. This complex system involves an ensemble of unique proteins that participate in different stages during magnetosome formation, some of which were extensively studied in recent years. Here, we present the current knowledge on magnetosome biosynthesis with a focus on the different proteins and the main biochemical pathways along this process.
Collapse
Affiliation(s)
- Shiran Barber-Zucker
- Department of Life
Sciences,
the National Institute for Biotechnology in the Negev and Ilse Katz
Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Raz Zarivach
- Department of Life
Sciences,
the National Institute for Biotechnology in the Negev and Ilse Katz
Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| |
Collapse
|
56
|
Draft Genome Sequences of Two Magnetotactic Bacteria, Magnetospirillum moscoviense BB-1 and Magnetospirillum marisnigri SP-1. GENOME ANNOUNCEMENTS 2016; 4:4/4/e00814-16. [PMID: 27516508 PMCID: PMC4982287 DOI: 10.1128/genomea.00814-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the draft genome sequences of two recently isolated magnetotactic species, Magnetospirillum moscoviense BB-1 and Magnetospirillum marisnigri SP-1. The genome of M. moscoviense BB-1 has 4,164,497 bp, 65.2% G+C content, and comprises 207 contigs. The genome of M. marisnigri SP-1 consists of 131 contigs and has a length of 4,619,819 bp and 64.7% G+C content.
Collapse
|
57
|
Mirabello G, Lenders JJM, Sommerdijk NAJM. Bioinspired synthesis of magnetite nanoparticles. Chem Soc Rev 2016; 45:5085-106. [PMID: 27385627 DOI: 10.1039/c6cs00432f] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetite (Fe3O4) is a widespread magnetic iron oxide encountered in many biological and geological systems, and also in many technological applications. The magnetic properties of magnetite crystals depend strongly on the size and shape of its crystals. Hence, engineering magnetite nanoparticles with specific shapes and sizes allows tuning their properties to specific applications in a wide variety of fields, including catalysis, magnetic storage, targeted drug delivery, cancer diagnostics and magnetic resonance imaging (MRI). However, synthesis of magnetite with a specific size, shape and a narrow crystal size distribution is notoriously difficult without using high temperatures and non-aqueous media. Nevertheless, living organisms such as chitons and magnetotactic bacteria are able to form magnetite crystals with well controlled sizes and shapes under ambient conditions and in aqueous media. In these biomineralization processes the organisms use a twofold strategy to control magnetite formation: the mineral is formed from a poorly crystalline precursor phase, and nucleation and growth are controlled through the interaction of the mineral with biomolecular templates and additives. Taking inspiration from this biological strategy is a promising route to achieve control over the kinetics of magnetite crystallization under ambient conditions and in aqueous media. In this review we first summarize the main characteristics of magnetite and what is known about the mechanisms of magnetite biomineralization. We then describe the most common routes to synthesize magnetite and subsequently will introduce recent efforts in bioinspired magnetite synthesis. We describe how the use of poorly ordered, more soluble precursors such as ferrihydrite (FeH) or white rust (Fe(OH)2) can be employed to control the solution supersaturation, setting the conditions for continued growth. Further, we show how the use of various organic additives such as proteins, peptides and polymers allows for either the promotion or inhibition of magnetite nucleation and growth processes. At last we discuss how the formation of magnetite-based organic-inorganic hybrids leads to new functional nanomaterials.
Collapse
Affiliation(s)
- Giulia Mirabello
- Laboratory of Materials and Interface Chemistry & Centre for Multiscale Electron Microscopy, Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, PO box 513, 5600 MB Eindhoven, The Netherlands.
| | | | | |
Collapse
|
58
|
Genetic and Ultrastructural Analysis Reveals the Key Players and Initial Steps of Bacterial Magnetosome Membrane Biogenesis. PLoS Genet 2016; 12:e1006101. [PMID: 27286560 PMCID: PMC4902198 DOI: 10.1371/journal.pgen.1006101] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/12/2016] [Indexed: 11/19/2022] Open
Abstract
Magnetosomes of magnetotactic bacteria contain well-ordered nanocrystals for magnetic navigation and have recently emerged as the most sophisticated model system to study the formation of membrane bounded organelles in prokaryotes. Magnetosome biosynthesis is thought to begin with the formation of a dedicated compartment, the magnetosome membrane (MM), in which the biosynthesis of a magnetic mineral is strictly controlled. While the biomineralization of magnetosomes and their subsequent assembly into linear chains recently have become increasingly well studied, the molecular mechanisms and early stages involved in MM formation remained poorly understood. In the Alphaproteobacterium Magnetospirillum gryphiswaldense, approximately 30 genes were found to control magnetosome biosynthesis. By cryo-electron tomography of several key mutant strains we identified the gene complement controlling MM formation in this model organism. Whereas the putative magnetosomal iron transporter MamB was most crucial for the process and caused the most severe MM phenotype upon elimination, MamM, MamQ and MamL were also required for the formation of wild-type-like MMs. A subset of seven genes (mamLQBIEMO) combined within a synthetic operon was sufficient to restore the formation of intracellular membranes in the absence of other genes from the key mamAB operon. Tracking of de novo magnetosome membrane formation by genetic induction revealed that magnetosomes originate from unspecific cytoplasmic membrane locations before alignment into coherent chains. Our results indicate that no single factor alone is essential for MM formation, which instead is orchestrated by the cumulative action of several magnetosome proteins. One of the most intriguing examples for membrane-bounded prokaryotic organelles are magnetosomes which consist of well-ordered chains of perfectly shaped magnetic nanocrystals that in many aquatic bacteria serve as geomagnetic field sensors to direct their swimming towards microoxic zones at the bottom of natural waters. In the model bacterium Magnetospirillum gryphiswaldense and related magnetotactic microorganisms, magnetosomes are formed by a complex pathway that is orchestrated by more than 30 genes. However, the initial and most crucial step of magnetosome biosynthesis, formation and differentiation of a dedicated intracellular membrane compartment for controlled biomineralization of magnetite crystals, remained only poorly understood. By ultrastructural analysis of several mutants and genetic induction of de novo magnetosome synthesis, we identified the key determinants and early steps of magnetosome membrane biogenesis. Our results suggest that formation of intracellular membranes in bacteria is mediated by a cumulative action of several factors, but apparently is differently controlled than intracellular membrane remodeling in eukaryotic cells.
Collapse
|
59
|
Overproduction of Magnetosomes by Genomic Amplification of Biosynthesis-Related Gene Clusters in a Magnetotactic Bacterium. Appl Environ Microbiol 2016; 82:3032-3041. [PMID: 26969709 DOI: 10.1128/aem.03860-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/07/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Magnetotactic bacteria biosynthesize specific organelles, the magnetosomes, which are membrane-enclosed crystals of a magnetic iron mineral that are aligned in a linear chain. The number and size of magnetosome particles have to be critically controlled to build a sensor sufficiently strong to ensure the efficient alignment of cells within Earth's weak magnetic field while at the same time minimizing the metabolic costs imposed by excessive magnetosome biosynthesis. Apart from their biological function, bacterial magnetosomes have gained considerable interest since they provide a highly useful model for prokaryotic organelle formation and represent biogenic magnetic nanoparticles with exceptional properties. However, potential applications have been hampered by the difficult cultivation of these fastidious bacteria and their poor yields of magnetosomes. In this study, we found that the size and number of magnetosomes within the cell are controlled by many different Mam and Mms proteins. We present a strategy for the overexpression of magnetosome biosynthesis genes in the alphaproteobacterium Magnetospirillum gryphiswaldense by chromosomal multiplication of individual and multiple magnetosome gene clusters via transposition. While stepwise amplification of the mms6 operon resulted in the formation of increasingly larger crystals (increase of ∼35%), the duplication of all major magnetosome operons (mamGFDC, mamAB, mms6, and mamXY, comprising 29 genes in total) yielded an overproducing strain in which magnetosome numbers were 2.2-fold increased. We demonstrate that the tuned expression of the mam and mms clusters provides a powerful strategy for the control of magnetosome size and number, thereby setting the stage for high-yield production of tailored magnetic nanoparticles by synthetic biology approaches. IMPORTANCE Before our study, it had remained unknown how the upper sizes and numbers of magnetosomes are genetically regulated, and overproduction of magnetosome biosynthesis had not been achieved, owing to the difficulties of large-scale genome engineering in the recalcitrant magnetotactic bacteria. In this study, we established and systematically explored a strategy for the overexpression of magnetosome biosynthesis genes by genomic amplification of single and multiple magnetosome gene clusters via sequential chromosomal insertion by transposition. Our findings also indicate that the expression levels of magnetosome proteins together limit the upper size and number of magnetosomes within the cell. We demonstrate that tuned overexpression of magnetosome gene clusters provides a powerful strategy for the precise control of magnetosome size and number.
Collapse
|
60
|
Fadeev E, De Pascale F, Vezzi A, Hübner S, Aharonovich D, Sher D. Why Close a Bacterial Genome? The Plasmid of Alteromonas Macleodii HOT1A3 is a Vector for Inter-Specific Transfer of a Flexible Genomic Island. Front Microbiol 2016; 7:248. [PMID: 27014193 PMCID: PMC4781885 DOI: 10.3389/fmicb.2016.00248] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/15/2016] [Indexed: 12/20/2022] Open
Abstract
Genome sequencing is rapidly becoming a staple technique in environmental and clinical microbiology, yet computational challenges still remain, leading to many draft genomes which are typically fragmented into many contigs. We sequenced and completely assembled the genome of a marine heterotrophic bacterium, Alteromonas macleodii HOT1A3, and compared its full genome to several draft genomes obtained using different reference-based and de novo methods. In general, the de novo assemblies clearly outperformed the reference-based or hybrid ones, covering >99% of the genes and representing essentially all of the gene functions. However, only the fully closed genome (∼4.5 Mbp) allowed us to identify the presence of a large, 148 kbp plasmid, pAM1A3. While HOT1A3 belongs to A. macleodii, typically found in surface waters (“surface ecotype”), this plasmid consists of an almost complete flexible genomic island (fGI), containing many genes involved in metal resistance previously identified in the genomes of Alteromonas mediterranea (“deep ecotype”). Indeed, similar to A. mediterranea, A. macleodii HOT1A3 grows at concentrations of zinc, mercury, and copper that are inhibitory for other A. macleodii strains. The presence of a plasmid encoding almost an entire fGI suggests that wholesale genomic exchange between heterotrophic marine bacteria belonging to related but ecologically different populations is not uncommon.
Collapse
Affiliation(s)
- Eduard Fadeev
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa Haifa, Israel
| | - Fabio De Pascale
- Department of Biology and CRIBI Biotechnology Centre, University of Padua Padova, Italy
| | - Alessandro Vezzi
- Department of Biology and CRIBI Biotechnology Centre, University of Padua Padova, Italy
| | - Sariel Hübner
- Department of Botany and Biodiversity Research Centre, University of British ColumbiaVancouver, Canada; The Department of Evolutionary and Environmental Biology, University of HaifaHaifa, Israel
| | - Dikla Aharonovich
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa Haifa, Israel
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa Haifa, Israel
| |
Collapse
|
61
|
Faivre D, Godec TU. From bacteria to mollusks: the principles underlying the biomineralization of iron oxide materials. Angew Chem Int Ed Engl 2016; 54:4728-47. [PMID: 25851816 DOI: 10.1002/anie.201408900] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Indexed: 01/28/2023]
Abstract
Various organisms possess a genetic program that enables the controlled formation of a mineral, a process termed biomineralization. The variety of biological material architectures is mind-boggling and arises from the ability of organisms to exert control over crystal nucleation and growth. The structure and composition of biominerals equip biomineralizing organisms with properties and functionalities that abiotically formed materials, made of the same mineral, usually lack. Therefore, elucidating the mechanisms underlying biomineralization and morphogenesis is of interdisciplinary interest to extract design principles that will enable the biomimetic formation of functional materials with similar capabilities. Herein, we summarize what is known about iron oxides formed by bacteria and mollusks for their magnetic and mechanical properties. We describe the chemical and biological machineries that are involved in controlling mineral precipitation and organization and show how these organisms are able to form highly complex structures under physiological conditions.
Collapse
Affiliation(s)
- Damien Faivre
- Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Wissenschaftspark Golm, 14424 Potsdam (Germany) http://www.mpikg.mpg.de/135282/MBMB.
| | | |
Collapse
|
62
|
Barber-Zucker S, Keren-Khadmy N, Zarivach R. From invagination to navigation: The story of magnetosome-associated proteins in magnetotactic bacteria. Protein Sci 2015; 25:338-51. [PMID: 26457474 DOI: 10.1002/pro.2827] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/07/2015] [Indexed: 11/11/2022]
Abstract
Magnetotactic bacteria (MTB) are a group of Gram-negative microorganisms that are able to sense and change their orientation in accordance with the geomagnetic field. This unique capability is due to the presence of a special suborganelle called the magnetosome, composed of either a magnetite or gregite crystal surrounded by a lipid membrane. MTB were first detected in 1975 and since then numerous efforts have been made to clarify the special mechanism of magnetosome formation at the molecular level. Magnetosome formation can be divided into several steps, beginning with vesicle invagination from the cell membrane, through protein sorting, followed by the combined steps of iron transportation, biomineralization, and the alignment of magnetosomes into a chain. The magnetosome-chain enables the sensing of the magnetic field, and thus, allows the MTB to navigate. It is known that magnetosome formation is tightly controlled by a distinctive set of magnetosome-associated proteins that are encoded mainly in a genomically conserved region within MTB called the magnetosome island (MAI). Most of these proteins were shown to have an impact on the magnetism of MTB. Here, we describe the process in which the magnetosome is formed with an emphasis on the different proteins that participate in each stage of the magnetosome formation scheme.
Collapse
Affiliation(s)
- Shiran Barber-Zucker
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Noa Keren-Khadmy
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Raz Zarivach
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| |
Collapse
|
63
|
Encapsulation as a Strategy for the Design of Biological Compartmentalization. J Mol Biol 2015; 428:916-27. [PMID: 26403362 DOI: 10.1016/j.jmb.2015.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/16/2015] [Accepted: 09/03/2015] [Indexed: 02/06/2023]
Abstract
Compartmentalization is one of the defining features of life. Through intracellular spatial control, cells are able to organize and regulate their metabolism. One of the most broadly used organizational principles in nature is encapsulation. Cellular processes can be encapsulated within either membrane-bound organelles or proteinaceous compartments that create distinct microenvironments optimized for a given task. Further challenges addressed through intracellular compartmentalization are toxic or volatile pathway intermediates, slow turnover rates and competing side reactions. This review highlights a selection of naturally occurring membrane- and protein-based encapsulation systems in microbes and their recent applications and emerging opportunities in synthetic biology. We focus on examples that use engineered cellular organization to control metabolic pathway flux for the production of useful compounds and materials.
Collapse
|
64
|
Kolinko S, Richter M, Glöckner FO, Brachmann A, Schüler D. Single-cell genomics of uncultivated deep-branching magnetotactic bacteria reveals a conserved set of magnetosome genes. Environ Microbiol 2015; 18:21-37. [PMID: 26060021 DOI: 10.1111/1462-2920.12907] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 05/10/2015] [Accepted: 05/14/2015] [Indexed: 11/26/2022]
Abstract
While magnetosome biosynthesis within the magnetotactic Proteobacteria is increasingly well understood, much less is known about the genetic control within deep-branching phyla, which have a unique ultrastructure and biosynthesize up to several hundreds of bullet-shaped magnetite magnetosomes arranged in multiple bundles of chains, but have no cultured representatives. Recent metagenomic analysis identified magnetosome genes in the genus 'Candidatus Magnetobacterium' homologous to those in Proteobacteria. However, metagenomic analysis has been limited to highly abundant members of the community, and therefore only little is known about the magnetosome biosynthesis, ecophysiology and metabolic capacity in deep-branching MTB. Here we report the analysis of single-cell derived draft genomes of three deep-branching uncultivated MTB. Single-cell sorting followed by whole genome amplification generated draft genomes of Candidatus Magnetobacterium bavaricum and Candidatus Magnetoovum chiemensis CS-04 of the Nitrospirae phylum. Furthermore, we present the first, nearly complete draft genome of a magnetotactic representative from the candidate phylum Omnitrophica, tentatively named Candidatus Omnitrophus magneticus SKK-01. Besides key metabolic features consistent with a common chemolithoautotrophic lifestyle, we identified numerous, partly novel genes most likely involved in magnetosome biosynthesis of bullet-shaped magnetosomes and their arrangement in multiple bundles of chains.
Collapse
Affiliation(s)
- Sebastian Kolinko
- Department of Biology I, LMU Biozentrum, Ludwig-Maximilians University Munich, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany
| | - Michael Richter
- Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, 28359, Germany
| | - Frank-Oliver Glöckner
- Microbial Genomics and Bioinformatics Research Group, Max Planck Institute for Marine Microbiology, Celsiusstr. 1, Bremen, 28359, Germany.,Department of Life Sciences & Chemistry, Jacobs University Bremen, Campus Ring 1, Bremen, 28759, Germany
| | - Andreas Brachmann
- Department of Biology I, LMU Biozentrum, Ludwig-Maximilians University Munich, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany
| | - Dirk Schüler
- Department of Biology I, LMU Biozentrum, Ludwig-Maximilians University Munich, Großhaderner Str. 2-4, Planegg-Martinsried, 82152, Germany.,Department of Microbiology, University Bayreuth, Bayreuth, Germany
| |
Collapse
|
65
|
Faivre D, Godec TU. Bakterien und Weichtiere: Prinzipien der Biomineralisation von Eisenoxid-Materialien. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201408900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
66
|
Lin W, Pan Y. A putative greigite-type magnetosome gene cluster from the candidate phylum Latescibacteria. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:237-242. [PMID: 25382584 DOI: 10.1111/1758-2229.12234] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/28/2014] [Indexed: 06/04/2023]
Abstract
The intracellular biomineralization of magnetite and/or greigite magnetosomes in magnetotactic bacteria (MTB) is strictly controlled by a group of conserved genes, termed magnetosome genes, which are organized as clusters (or islands) in MTB genomes. So far, all reported MTB are affiliated within the Proteobacteria phylum, the Nitrospirae phylum and the candidate division OP3. Here, we report the discovery of a putative magnetosome gene cluster structure from the draft genome of an uncultivated bacterium belonging to the candidate phylum Latescibacteria (formerly candidate division WS3) recently recovered by Rinke and colleagues, which contains 10 genes with homology to magnetosome mam genes of magnetotactic Proteobacteria and Nitrospirae. Moreover, these genes are phylogenetically closely related to greigite-type magnetosome genes that were only found from the Deltaproteobacteria MTB before, suggesting that the greigite genes may originate earlier than previously imagined. These findings indicate that some members of Latescibacteria may be capable of forming greigite magnetosomes, and thus may play previously unrecognized roles in environmental iron and sulfur cycles. The conserved genomic structure of magnetosome gene cluster in Latescibacteria phylum supports the hypothesis of horizontal transfer of these genes among distantly related bacterial groups in nature.
Collapse
Affiliation(s)
- Wei Lin
- Biogeomagnetism Group, Paleomagnetism and Geochronology Laboratory, Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029, China; France-China Bio-Mineralization and Nano-Structures Laboratory, Chinese Academy of Sciences, Beijing, 100029, China
| | | |
Collapse
|
67
|
Faivre D, Baumgartner J. The combination of random mutagenesis and sequencing highlight the role of unexpected genes in an intractable organism. PLoS Genet 2015; 11:e1004895. [PMID: 25569789 PMCID: PMC4287431 DOI: 10.1371/journal.pgen.1004895] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Damien Faivre
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany
- * E-mail:
| | - Jens Baumgartner
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany
| |
Collapse
|
68
|
Rahn-Lee L, Byrne ME, Zhang M, Le Sage D, Glenn DR, Milbourne T, Walsworth RL, Vali H, Komeili A. A genetic strategy for probing the functional diversity of magnetosome formation. PLoS Genet 2015; 11:e1004811. [PMID: 25569806 PMCID: PMC4287615 DOI: 10.1371/journal.pgen.1004811] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 10/07/2014] [Indexed: 11/18/2022] Open
Abstract
Model genetic systems are invaluable, but limit us to understanding only a few organisms in detail, missing the variations in biological processes that are performed by related organisms. One such diverse process is the formation of magnetosome organelles by magnetotactic bacteria. Studies of model magnetotactic α-proteobacteria have demonstrated that magnetosomes are cubo-octahedral magnetite crystals that are synthesized within pre-existing membrane compartments derived from the inner membrane and orchestrated by a specific set of genes encoded within a genomic island. However, this model cannot explain all magnetosome formation, which is phenotypically and genetically diverse. For example, Desulfovibrio magneticus RS-1, a δ-proteobacterium for which we lack genetic tools, produces tooth-shaped magnetite crystals that may or may not be encased by a membrane with a magnetosome gene island that diverges significantly from those of the α-proteobacteria. To probe the functional diversity of magnetosome formation, we used modern sequencing technology to identify hits in RS-1 mutated with UV or chemical mutagens. We isolated and characterized mutant alleles of 10 magnetosome genes in RS-1, 7 of which are not found in the α-proteobacterial models. These findings have implications for our understanding of magnetosome formation in general and demonstrate the feasibility of applying a modern genetic approach to an organism for which classic genetic tools are not available.
Collapse
Affiliation(s)
- Lilah Rahn-Lee
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Meghan E. Byrne
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Manjing Zhang
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
| | - David Le Sage
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, United States of America
| | - David R. Glenn
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, United States of America
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Timothy Milbourne
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
| | - Ronald L. Walsworth
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, United States of America
- Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States of America
| | - Hojatollah Vali
- Facility for Electron Microscopy Research, McGill University, Montreal, Quebec, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Department of Earth and Planetary Sciences, McGill University, Montreal, Quebec, Canada
| | - Arash Komeili
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
69
|
Kolinko S, Richter M, Glöckner FO, Brachmann A, Schüler D. Single-cell genomics reveals potential for magnetite and greigite biomineralization in an uncultivated multicellular magnetotactic prokaryote. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:524-531. [PMID: 25079475 DOI: 10.1111/1758-2229.12198] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
For magnetic orientation, magnetotactic bacteria biosynthesize magnetosomes, which consist of membrane-enveloped magnetic nanocrystals of either magnetite (Fe3 O4 ) or greigite (Fe3 S4 ). While magnetite formation is increasingly well understood, much less is known about the genetic control of greigite biomineralization. Recently, two related yet distinct sets of magnetosome genes were discovered in a cultivated magnetotactic deltaproteobacterium capable of synthesizing either magnetite or greigite, or both minerals. This led to the conclusion that greigite and magnetite magnetosomes are synthesized by separate biomineralization pathways. Although magnetosomes of both mineral types co-occurred in uncultured multicellular magnetotactic prokaryotes (MMPs), so far only one type of magnetosome genes could be identified in the available genome data. The MMP Candidatus Magnetomorum strain HK-1 from coastal tidal sand flats of the North Sea (Germany) was analysed by a targeted single-cell approach. The draft genome assembly resulted in a size of 14.3 Mb and an estimated completeness of 95%. In addition to genomic features consistent with a sulfate-reducing lifestyle, we identified numerous genes putatively involved in magnetosome biosynthesis. Remarkably, most mam orthologues were present in two paralogous copies with highest similarity to either magnetite or greigite type magnetosome genes, supporting the ability to synthesize magnetite and greigite magnetosomes.
Collapse
Affiliation(s)
- Sebastian Kolinko
- Ludwig-Maximilians-Universität Munich, Microbiology, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
70
|
Taoka A, Eguchi Y, Mise S, Oestreicher Z, Uno F, Fukumori Y. A magnetosome-associated cytochrome MamP is critical for magnetite crystal growth during the exponential growth phase. FEMS Microbiol Lett 2014; 358:21-9. [PMID: 25048532 DOI: 10.1111/1574-6968.12541] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Revised: 07/04/2014] [Accepted: 07/11/2014] [Indexed: 01/20/2023] Open
Abstract
Magnetotactic bacteria use a specific set of conserved proteins to biomineralize crystals of magnetite or greigite within their cells in organelles called magnetosomes. Using Magnetospirillum magneticum AMB-1, we examined one of the magnetotactic bacteria-specific conserved proteins named MamP that was recently reported as a new type of cytochrome c that has iron oxidase activity. We found that MamP is a membrane-bound cytochrome, and the MamP content increases during the exponential growth phase compared to two other magnetosome-associated proteins on the same operon, MamA and MamK. To assess the function of MamP, we overproduced MamP from plasmids in wild-type (WT) AMB-1 and found that during the exponential phase of growth, these cells contained more magnetite crystals that were the same size as crystals in WT cells. Conversely, when the heme c-binding motifs within the mamP on the plasmid was mutated, the cells produced the same number of crystals, but smaller crystals than in WT cells during exponential growth. These results strongly suggest that during the exponential phase of growth, MamP is crucial to the normal growth of magnetite crystals during biomineralization.
Collapse
Affiliation(s)
- Azuma Taoka
- School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Japan; Bio-AFM Frontier Research Center, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | | | | | | | | | | |
Collapse
|
71
|
Arakaki A, Yamagishi A, Fukuyo A, Tanaka M, Matsunaga T. Co-ordinated functions of Mms proteins define the surface structure of cubo-octahedral magnetite crystals in magnetotactic bacteria. Mol Microbiol 2014; 93:554-67. [DOI: 10.1111/mmi.12683] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Atsushi Arakaki
- Division of Biotechnology and Life Science; Institute of Engineering; Tokyo University of Agriculture and Technology; Koganei Tokyo Japan
| | - Ayana Yamagishi
- Division of Biotechnology and Life Science; Institute of Engineering; Tokyo University of Agriculture and Technology; Koganei Tokyo Japan
| | - Ayumi Fukuyo
- Division of Biotechnology and Life Science; Institute of Engineering; Tokyo University of Agriculture and Technology; Koganei Tokyo Japan
| | - Masayoshi Tanaka
- Division of Biotechnology and Life Science; Institute of Engineering; Tokyo University of Agriculture and Technology; Koganei Tokyo Japan
| | - Tadashi Matsunaga
- Division of Biotechnology and Life Science; Institute of Engineering; Tokyo University of Agriculture and Technology; Koganei Tokyo Japan
| |
Collapse
|
72
|
Dufour SC, Laurich JR, Batstone RT, McCuaig B, Elliott A, Poduska KM. Magnetosome-containing bacteria living as symbionts of bivalves. ISME JOURNAL 2014; 8:2453-62. [PMID: 24914799 DOI: 10.1038/ismej.2014.93] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/06/2014] [Accepted: 05/08/2014] [Indexed: 11/10/2022]
Abstract
Bacteria containing magnetosomes (protein-bound nanoparticles of magnetite or greigite) are common to many sedimentary habitats, but have never been found before to live within another organism. Here, we show that octahedral inclusions in the extracellular symbionts of the marine bivalve Thyasira cf. gouldi contain iron, can exhibit magnetic contrast and are most likely magnetosomes. Based on 16S rRNA sequence analysis, T. cf. gouldi symbionts group with symbiotic and free-living sulfur-oxidizing, chemolithoautotrophic gammaproteobacteria, including the symbionts of other thyasirids. T. cf. gouldi symbionts occur both among the microvilli of gill epithelial cells and in sediments surrounding the bivalves, and are therefore facultative. We propose that free-living T. cf. gouldi symbionts use magnetotaxis as a means of locating the oxic-anoxic interface, an optimal microhabitat for chemolithoautotrophy. T. cf. gouldi could acquire their symbionts from near-burrow sediments (where oxic-anoxic interfaces likely develop due to the host's bioirrigating behavior) using their superextensile feet, which could transfer symbionts to gill surfaces upon retraction into the mantle cavity. Once associated with their host, however, symbionts need not maintain structures for magnetotaxis as the host makes oxygen and reduced sulfur available via bioirrigation and sulfur-mining behaviors. Indeed, we show that within the host, symbionts lose the integrity of their magnetosome chain (and possibly their flagellum). Symbionts are eventually endocytosed and digested in host epithelial cells, and magnetosomes accumulate in host cytoplasm. Both host and symbiont behaviors appear important to symbiosis establishment in thyasirids.
Collapse
Affiliation(s)
- Suzanne C Dufour
- Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland A1B 3X9, Canada
| | - Jason R Laurich
- Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland A1B 3X9, Canada
| | - Rebecca T Batstone
- Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland A1B 3X9, Canada
| | - Bonita McCuaig
- Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland A1B 3X9, Canada
| | - Alexander Elliott
- Department of Biology, Memorial University of Newfoundland, St John's, Newfoundland A1B 3X9, Canada
| | - Kristin M Poduska
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St John's, Newfoundland A1B 3X7, Canada
| |
Collapse
|
73
|
Li Y, Sabaty M, Borg S, Silva KT, Pignol D, Schüler D. The oxygen sensor MgFnr controls magnetite biomineralization by regulation of denitrification in Magnetospirillum gryphiswaldense. BMC Microbiol 2014; 14:153. [PMID: 24915802 PMCID: PMC4065386 DOI: 10.1186/1471-2180-14-153] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 05/28/2014] [Indexed: 11/10/2022] Open
Abstract
Background Magnetotactic bacteria are capable of synthesizing magnetosomes only under oxygen-limited conditions. However, the mechanism of the aerobic repression on magnetite biomineralization has remained unknown. In Escherichia coli and other bacteria, Fnr (fumarate and nitrate reduction regulator) proteins are known to be involved in controlling the switch between microaerobic and aerobic metabolism. Here, we report on an Fnr-like protein (MgFnr) and its role in growth metabolism and magnetite biomineralization in the alphaproteobacterium Magnetospirillum gryphiswaldense. Results Deletion of Mgfnr not only resulted in decreased N2 production due to reduced N2O reductase activity, but also impaired magnetite biomineralization under microaerobic conditions in the presence of nitrate. Overexpression of MgFnr in the WT also caused the synthesis of smaller magnetite particles under anaerobic and microaerobic conditions in the presence of nitrate. These data suggest that proper expression of MgFnr is required for WT-like magnetosome synthesis, which is regulated by oxygen. Analyses of transcriptional gusA reporter fusions revealed that besides showing similar properties to Fnr proteins reported in other bacteria, MgFnr is involved in the repression of the expression of denitrification genes nor and nosZ under aerobic conditions, possibly owing to several unique amino acid residues specific to MTB-Fnr. Conclusions We have identified and thoroughly characterized the first regulatory protein mediating denitrification growth and magnetite biomineralization in response to different oxygen conditions in a magnetotactic bacterium. Our findings reveal that the global oxygen regulator MgFnr is a genuine O2 sensor. It is involved in controlling expression of denitrification genes and thereby plays an indirect role in maintaining proper redox conditions required for magnetite biomineralization.
Collapse
Affiliation(s)
| | | | | | | | | | - Dirk Schüler
- Lehrstuhl f, Mikrobiologie, Universität Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
74
|
Genetic dissection of the mamAB and mms6 operons reveals a gene set essential for magnetosome biogenesis in Magnetospirillum gryphiswaldense. J Bacteriol 2014; 196:2658-69. [PMID: 24816605 DOI: 10.1128/jb.01716-14] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biosynthesis of bacterial magnetosomes, which are intracellular membrane-enclosed, nanosized magnetic crystals, is controlled by a set of >30 specific genes. In Magnetospirillum gryphiswaldense, these are clustered mostly within a large conserved genomic magnetosome island (MAI) comprising the mms6, mamGFDC, mamAB, and mamXY operons. Here, we demonstrate that the five previously uncharacterized genes of the mms6 operon have crucial functions in the regulation of magnetosome biomineralization that partially overlap MamF and other proteins encoded by the adjacent mamGFDC operon. While all other deletions resulted in size reduction, elimination of either mms36 or mms48 caused the synthesis of magnetite crystals larger than those in the wild type (WT). Whereas the mms6 operon encodes accessory factors for crystal maturation, the large mamAB operon contains several essential and nonessential genes involved in various other steps of magnetosome biosynthesis, as shown by single deletions of all mamAB genes. While single deletions of mamL, -P, -Q, -R, -B, -S, -T, and -U showed phenotypes similar to those of their orthologs in a previous study in the related M. magneticum, we found mamI and mamN to be not required for at least rudimentary iron biomineralization in M. gryphiswaldense. Thus, only mamE, -L, -M, -O, -Q, and -B were essential for formation of magnetite, whereas a mamI mutant still biomineralized tiny particles which, however, consisted of the nonmagnetic iron oxide hematite, as shown by high-resolution transmission electron microscopy (HRTEM) and the X-ray absorption near-edge structure (XANES). Based on this and previous studies, we propose an extended model for magnetosome biosynthesis in M. gryphiswaldense.
Collapse
|
75
|
The terminal oxidase cbb3 functions in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. J Bacteriol 2014; 196:2552-62. [PMID: 24794567 DOI: 10.1128/jb.01652-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The biomineralization of magnetosomes in Magnetospirillum gryphiswaldense and other magnetotactic bacteria occurs only under suboxic conditions. However, the mechanism of oxygen regulation and redox control of biosynthesis of the mixed-valence iron oxide magnetite [FeII(FeIII)2O4] is still unclear. Here, we set out to investigate the role of aerobic respiration in both energy metabolism and magnetite biomineralization of M. gryphiswaldense. Although three operons encoding putative terminal cbb3-type, aa3-type, and bd-type oxidases were identified in the genome assembly of M. gryphiswaldense, genetic and biochemical analyses revealed that only cbb3 and bd are required for oxygen respiration, whereas aa3 had no physiological significance under the tested conditions. While the loss of bd had no effects on growth and magnetosome synthesis, inactivation of cbb3 caused pleiotropic effects under microaerobic conditions in the presence of nitrate. In addition to their incapability of simultaneous nitrate and oxygen reduction, cbb3-deficient cells had complex magnetosome phenotypes and aberrant morphologies, probably by disturbing the redox balance required for proper growth and magnetite biomineralization. Altogether, besides being the primary terminal oxidase for aerobic respiration, cbb3 oxidase may serve as an oxygen sensor and have a further role in poising proper redox conditions required for magnetite biomineralization.
Collapse
|
76
|
Abstract
Magnetotactic bacteria (MTB) are widespread, motile, diverse prokaryotes that biomineralize a unique organelle called the magnetosome. Magnetosomes consist of a nano-sized crystal of a magnetic iron mineral that is enveloped by a lipid bilayer membrane. In cells of almost all MTB, magnetosomes are organized as a well-ordered chain. The magnetosome chain causes the cell to behave like a motile, miniature compass needle where the cell aligns and swims parallel to magnetic field lines. MTB are found in almost all types of aquatic environments, where they can account for an important part of the bacterial biomass. The genes responsible for magnetosome biomineralization are organized as clusters in the genomes of MTB, in some as a magnetosome genomic island. The functions of a number of magnetosome genes and their associated proteins in magnetosome synthesis and construction of the magnetosome chain have now been elucidated. The origin of magnetotaxis appears to be monophyletic; that is, it developed in a common ancestor to all MTB, although horizontal gene transfer of magnetosome genes also appears to play a role in their distribution. The purpose of this review, based on recent progress in this field, is focused on the diversity and the ecology of the MTB and also the evolution and transfer of the molecular determinants involved in magnetosome formation.
Collapse
|
77
|
Staniland S. Nanoparticle biosynthesis: An accommodating host. NATURE NANOTECHNOLOGY 2014; 9:163-164. [PMID: 24561357 DOI: 10.1038/nnano.2014.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Affiliation(s)
- Sarah Staniland
- Department of Chemistry at the University of Sheffield, Dainton Building, Brook Hill, Sheffield S3 7HF, UK
| |
Collapse
|
78
|
Kolinko I, Lohße A, Borg S, Raschdorf O, Jogler C, Tu Q, Pósfai M, Tompa E, Plitzko JM, Brachmann A, Wanner G, Müller R, Zhang Y, Schüler D. Biosynthesis of magnetic nanostructures in a foreign organism by transfer of bacterial magnetosome gene clusters. NATURE NANOTECHNOLOGY 2014; 9:193-197. [PMID: 24561353 DOI: 10.1038/nnano.2014.13] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
The synthetic production of monodisperse single magnetic domain nanoparticles at ambient temperature is challenging. In nature, magnetosomes--membrane-bound magnetic nanocrystals with unprecedented magnetic properties--can be biomineralized by magnetotactic bacteria. However, these microbes are difficult to handle. Expression of the underlying biosynthetic pathway from these fastidious microorganisms within other organisms could therefore greatly expand their nanotechnological and biomedical applications. So far, this has been hindered by the structural and genetic complexity of the magnetosome organelle and insufficient knowledge of the biosynthetic functions involved. Here, we show that the ability to biomineralize highly ordered magnetic nanostructures can be transferred to a foreign recipient. Expression of a minimal set of genes from the magnetotactic bacterium Magnetospirillum gryphiswaldense resulted in magnetosome biosynthesis within the photosynthetic model organism Rhodospirillum rubrum. Our findings will enable the sustainable production of tailored magnetic nanostructures in biotechnologically relevant hosts and represent a step towards the endogenous magnetization of various organisms by synthetic biology.
Collapse
Affiliation(s)
- Isabel Kolinko
- Ludwig-Maximilians-Universität München, Department of Biology I, Großhaderner Straße 2-4, 82152 Martinsried, Germany
| | - Anna Lohße
- Ludwig-Maximilians-Universität München, Department of Biology I, Großhaderner Straße 2-4, 82152 Martinsried, Germany
| | - Sarah Borg
- Ludwig-Maximilians-Universität München, Department of Biology I, Großhaderner Straße 2-4, 82152 Martinsried, Germany
| | - Oliver Raschdorf
- 1] Ludwig-Maximilians-Universität München, Department of Biology I, Großhaderner Straße 2-4, 82152 Martinsried, Germany [2] Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Christian Jogler
- 1] Ludwig-Maximilians-Universität München, Department of Biology I, Großhaderner Straße 2-4, 82152 Martinsried, Germany [2]
| | - Qiang Tu
- 1] Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, PO Box 151150, 66041 Saarbrücken, Germany [2] Shandong University - Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, Life Science College, Shandong University, Jinan 250100, China
| | - Mihály Pósfai
- University of Pannonia, Department of Earth and Environmental Sciences, Veszprém, H-8200 Hungary
| | - Eva Tompa
- University of Pannonia, Department of Earth and Environmental Sciences, Veszprém, H-8200 Hungary
| | - Jürgen M Plitzko
- 1] Max Planck Institute of Biochemistry, Department of Molecular Structural Biology, Am Klopferspitz 18, 82152 Martinsried, Germany [2] Bijvoet Center for Biomolecular Research, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Andreas Brachmann
- Ludwig-Maximilians-Universität München, Department of Biology I, Großhaderner Straße 2-4, 82152 Martinsried, Germany
| | - Gerhard Wanner
- Ludwig-Maximilians-Universität München, Department of Biology I, Großhaderner Straße 2-4, 82152 Martinsried, Germany
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, PO Box 151150, 66041 Saarbrücken, Germany
| | - Youming Zhang
- Shandong University - Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, Life Science College, Shandong University, Jinan 250100, China
| | - Dirk Schüler
- Ludwig-Maximilians-Universität München, Department of Biology I, Großhaderner Straße 2-4, 82152 Martinsried, Germany
| |
Collapse
|
79
|
Pósfai M, Lefèvre CT, Trubitsyn D, Bazylinski DA, Frankel RB. Phylogenetic significance of composition and crystal morphology of magnetosome minerals. Front Microbiol 2013; 4:344. [PMID: 24324461 PMCID: PMC3840360 DOI: 10.3389/fmicb.2013.00344] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/30/2013] [Indexed: 11/17/2022] Open
Abstract
Magnetotactic bacteria (MTB) biomineralize magnetosomes, nano-scale crystals of magnetite or greigite in membrane enclosures that comprise a permanent magnetic dipole in each cell. MTB control the mineral composition, habit, size, and crystallographic orientation of the magnetosomes, as well as their arrangement within the cell. Studies involving magnetosomes that contain mineral and biological phases require multidisciplinary efforts. Here we use crystallographic, genomic and phylogenetic perspectives to review the correlations between magnetosome mineral habits and the phylogenetic affiliations of MTB, and show that these correlations have important implications for the evolution of magnetosome synthesis, and thus magnetotaxis.
Collapse
Affiliation(s)
- Mihály Pósfai
- Department of Earth and Environmental Sciences, University of Pannonia Veszprém, Hungary
| | | | | | | | | |
Collapse
|
80
|
Abreu F, Morillo V, Nascimento FF, Werneck C, Cantão ME, Ciapina LP, de Almeida LGP, Lefèvre CT, Bazylinski DA, de Vasconcelos ATR, Lins U. Deciphering unusual uncultured magnetotactic multicellular prokaryotes through genomics. ISME JOURNAL 2013; 8:1055-68. [PMID: 24196322 DOI: 10.1038/ismej.2013.203] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 09/20/2013] [Accepted: 10/09/2013] [Indexed: 11/09/2022]
Abstract
Candidatus Magnetoglobus multicellularis (Ca. M. multicellularis) is a member of a group of uncultured magnetotactic prokaryotes that possesses a unique multicellular morphology. To better understand this organism's physiology, we used a genomic approach through pyrosequencing. Genomic data analysis corroborates previous structural studies and reveals the proteins that are likely involved in multicellular morphogenesis of this microorganism. Interestingly, some detected protein sequences that might be involved in cell adhesion are homologues to phylogenetically unrelated filamentous multicellular bacteria proteins, suggesting their contribution in the early development of multicellular organization in Bacteria. Genes related to the behavior of Ca. M. multicellularis (chemo-, photo- and magnetotaxis) and its metabolic capabilities were analyzed. On the basis of the genomic-physiologic information, enrichment media were tested. One medium supported chemoorganoheterotrophic growth of Ca. M. multicellularis and allowed the microorganisms to maintain their multicellular morphology and cell cycle, confirming for the first time that the entire life cycle of the MMP occurs in a multicellular form. Because Ca. M. multicellularis has a unique multicellular life style, its cultivation is an important achievement for further studies regarding the multicellular evolution in prokaryotes.
Collapse
Affiliation(s)
- Fernanda Abreu
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Viviana Morillo
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabrícia F Nascimento
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Clarissa Werneck
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauricio Egidio Cantão
- 1] Departamento de Matemática Aplicada e Computacional, Laboratório Nacional de Computação Científica, Petrópolis, Brazil [2] Embrapa Suínos e Aves, Santa Catarina, Brazil
| | - Luciane Prioli Ciapina
- Departamento de Matemática Aplicada e Computacional, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Luiz Gonzaga Paula de Almeida
- Departamento de Matemática Aplicada e Computacional, Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Christopher T Lefèvre
- Laboratoire de Bioénergétique Cellulaire, CEA Cadarache/CNRS/Aix-Marseille Université, UMR7265 Biologie Végétale et Microbiologie Environnementales, Saint Paul lez Durance, France
| | - Dennis A Bazylinski
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV, USA
| | | | - Ulysses Lins
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
81
|
Analysis of magnetosome chains in magnetotactic bacteria by magnetic measurements and automated image analysis of electron micrographs. Appl Environ Microbiol 2013; 79:7755-62. [PMID: 24096429 DOI: 10.1128/aem.02143-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Magnetotactic bacteria (MTB) align along the Earth's magnetic field by the activity of intracellular magnetosomes, which are membrane-enveloped magnetite or greigite particles that are assembled into well-ordered chains. Formation of magnetosome chains was found to be controlled by a set of specific proteins in Magnetospirillum gryphiswaldense and other MTB. However, the contribution of abiotic factors on magnetosome chain assembly has not been fully explored. Here, we first analyzed the effect of growth conditions on magnetosome chain formation in M. gryphiswaldense by electron microscopy. Whereas higher temperatures (30 to 35°C) and high oxygen concentrations caused increasingly disordered chains and smaller magnetite crystals, growth at 20°C and anoxic conditions resulted in long chains with mature cuboctahedron-shaped crystals. In order to analyze the magnetosome chain in electron microscopy data sets in a more quantitative and unbiased manner, we developed a computerized image analysis algorithm. The collected data comprised the cell dimensions and particle size and number as well as the intracellular position and extension of the magnetosome chain. The chain analysis program (CHAP) was used to evaluate the effects of the genetic and growth conditions on magnetosome chain formation. This was compared and correlated to data obtained from bulk magnetic measurements of wild-type (WT) and mutant cells displaying different chain configurations. These techniques were used to differentiate mutants due to magnetosome chain defects on a bulk scale.
Collapse
|
82
|
MamX encoded by the mamXY operon is involved in control of magnetosome maturation in Magnetospirillum gryphiswaldense MSR-1. BMC Microbiol 2013; 13:203. [PMID: 24020498 PMCID: PMC3847676 DOI: 10.1186/1471-2180-13-203] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 09/03/2013] [Indexed: 12/15/2022] Open
Abstract
Background Magnetotactic bacteria produce membrane-enveloped magnetite crystals (magnetosomes) whose formation is controlled primarily by a gene island termed the magnetosome island (MAI). Characterization of single gene and operon function in MAI has elucidated in part the genetic basis of magnetosome formation. The mamX gene, located in the mamXY operon, is highly conserved in the MAI of all Magnetospirillum strains studied to date. Little is known regarding the function of mamX in the process of biomineralization. Results A mamX deletion mutant (∆mamX) and its complemented strain (CmamX) by conjugation in M. gryphiswaldense strain MSR-1 were constructed. There were no striking differences in cell growth among ∆mamX, CmamX, and wild-type strain (WT). ∆mamX displayed a much weaker magnetic response than WT. Transmission electron microscopy revealed the presence of irregular, superparamagnetic magnetite particles in ∆mamX, in contrast to regular, single-domain particles in WT and CmamX. The phenotype of ∆mamX was similar to that of an ftsZ-like deleted mutant and mamXY operon deleted mutant reported previously. Quantitative real-time RT-PCR (qPCR) results indicated that the deletion of mamX had differential effects on the transcription levels of the other three genes in the operon. Conclusions The MamX protein plays an important role in controlling magnetosome size, maturation, and crystal form. The four MamXY proteins appear to have redundant functions involved in magnetosome formation. Our findings provide new insights into the coordinated function of MAI genes and operons in magnetosome formation.
Collapse
|
83
|
Lefèvre CT, Wu LF. Evolution of the bacterial organelle responsible for magnetotaxis. Trends Microbiol 2013; 21:534-43. [PMID: 23948365 DOI: 10.1016/j.tim.2013.07.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/13/2013] [Accepted: 07/18/2013] [Indexed: 02/05/2023]
Abstract
There are few examples of protein- and lipid-bounded organelles in bacteria that are encoded by conserved gene clusters and lead to a specific function. The magnetosome chain represents one of these rare examples and is responsible for magnetotaxis in magnetotactic bacteria (MTB), a behavior thought to aid in finding their optimal growth conditions. The origin and evolution of the magnetotaxis is still a matter of debate. Recent breakthroughs in isolation, cultivation, single-cell separation, and whole-genome sequencing have generated abundant data that give new insights into the biodiversity and evolution of MTB.
Collapse
Affiliation(s)
- Christopher T Lefèvre
- Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA)/Centre National de la Recherche Scientifique (CNRS)/Aix-Marseille Université, Unité Mixte de Recherche (UMR) 7265 Biologie Végétale et Microbiologie Environnementales, Laboratoire de Bioénergétique Cellulaire, 13108, Saint-Paul-lès-Durance, France.
| | | |
Collapse
|
84
|
Cytochrome cd1 nitrite reductase NirS is involved in anaerobic magnetite biomineralization in Magnetospirillum gryphiswaldense and requires NirN for proper d1 heme assembly. J Bacteriol 2013; 195:4297-309. [PMID: 23893106 DOI: 10.1128/jb.00686-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The alphaproteobacterium Magnetospirillum gryphiswaldense synthesizes magnetosomes, which are membrane-enveloped crystals of magnetite. Here we show that nitrite reduction is involved in redox control during anaerobic biomineralization of the mixed-valence iron oxide magnetite. The cytochrome cd1-type nitrite reductase NirS shares conspicuous sequence similarity with NirN, which is also encoded within a larger nir cluster. Deletion of any one of these two nir genes resulted in impaired growth and smaller, fewer, and aberrantly shaped magnetite crystals during nitrate reduction. However, whereas nitrite reduction was completely abolished in the ΔnirS mutant, attenuated but significant nitrite reduction occurred in the ΔnirN mutant, indicating that only NirS is a nitrite reductase in M. gryphiswaldense. However, the ΔnirN mutant produced a different form of periplasmic d(1) heme that was not noncovalently bound to NirS, indicating that NirN is required for full reductase activity by maintaining a proper form of d1 heme for holo-cytochrome cd(1) assembly. In conclusion, we assign for the first time a physiological function to NirN and demonstrate that effective nitrite reduction is required for biomineralization of wild-type crystals, probably by contributing to oxidation of ferrous iron under oxygen-limited conditions.
Collapse
|
85
|
Raschdorf O, Müller FD, Pósfai M, Plitzko JM, Schüler D. The magnetosome proteins MamX, MamZ and MamH are involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. Mol Microbiol 2013; 89:872-86. [PMID: 23889511 DOI: 10.1111/mmi.12317] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2013] [Indexed: 11/30/2022]
Abstract
Magnetospirillum gryphiswaldense uses intracellular chains of membrane-enveloped magnetite crystals, the magnetosomes, to navigate within magnetic fields. The biomineralization of magnetite nanocrystals requires several magnetosome-associated proteins, whose precise functions so far have remained mostly unknown. Here, we analysed the functions of MamX and the Major Facilitator Superfamily (MFS) proteins MamZ and MamH. Deletion of either the entire mamX gene or elimination of its putative haem c-binding magnetochrome domains, and deletion of either mamZ or its C-terminal ferric reductase-like component resulted in an identical phenotype. All mutants displayed WT-like magnetite crystals, flanked within the magnetosome chains by poorly crystalline flake-like particles partly consisting of haematite. Double deletions of both mamZ and its homologue mamH further impaired magnetite crystallization in an additive manner, indicating that the two MFS proteins have partially redundant functions. Deprivation of ΔmamX and ΔmamZ cells from nitrate, or additional loss of the respiratory nitrate reductase Nap from ΔmamX severely exacerbated the magnetosome defects and entirely inhibited the formation of regular crystals, suggesting that MamXZ and Nap have similar, but independent roles in redox control of biomineralization. We propose a model in which MamX, MamZ and MamH functionally interact to balance the redox state of iron within the magnetosome compartment.
Collapse
Affiliation(s)
- Oliver Raschdorf
- Ludwig Maximilian University Munich, Dept. Biology I, Microbiology, D-82152, Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
86
|
Ji B, Zhang SD, Arnoux P, Rouy Z, Alberto F, Philippe N, Murat D, Zhang WJ, Rioux JB, Ginet N, Sabaty M, Mangenot S, Pradel N, Tian J, Yang J, Zhang L, Zhang W, Pan H, Henrissat B, Coutinho PM, Li Y, Xiao T, Médigue C, Barbe V, Pignol D, Talla E, Wu LF. Comparative genomic analysis provides insights into the evolution and niche adaptation of marine Magnetospira sp. QH-2 strain. Environ Microbiol 2013; 16:525-44. [PMID: 23841906 DOI: 10.1111/1462-2920.12180] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/17/2013] [Accepted: 06/02/2013] [Indexed: 11/30/2022]
Abstract
Magnetotactic bacteria (MTB) are capable of synthesizing intracellular organelles, the magnetosomes, that are membrane-bounded magnetite or greigite crystals arranged in chains. Although MTB are widely spread in various ecosystems, few axenic cultures are available, and only freshwater Magnetospirillum spp. have been genetically analysed. Here, we present the complete genome sequence of a marine magnetotactic spirillum, Magnetospira sp. QH-2. The high number of repeats and transposable elements account for the differences in QH-2 genome structure compared with other relatives. Gene cluster synteny and gene correlation analyses indicate that the insertion of the magnetosome island in the QH-2 genome occurred after divergence between freshwater and marine magnetospirilla. The presence of a sodium-quinone reductase, sodium transporters and other functional genes are evidence of the adaptive evolution of Magnetospira sp. QH-2 to the marine ecosystem. Genes well conserved among freshwater magnetospirilla for nitrogen fixation and assimilatory nitrate respiration are absent from the QH-2 genome. Unlike freshwater Magnetospirillum spp., marine Magnetospira sp. QH-2 neither has TonB and TonB-dependent receptors nor does it grow on trace amounts of iron. Taken together, our results show a distinct, adaptive evolution of Magnetospira sp. QH-2 to marine sediments in comparison with its closely related freshwater counterparts.
Collapse
Affiliation(s)
- Boyang Ji
- Laboratoire de Chimie Bactérienne, Aix-Marseille Université, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7283, F-13402, Marseille Cedex 20, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Magnetochrome: a c-type cytochrome domain specific to magnetotatic bacteria. Biochem Soc Trans 2013; 40:1319-23. [PMID: 23176475 DOI: 10.1042/bst20120104] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Magnetotactic bacteria consist of a group of taxonomically, physiologically and morphologically diverse prokaryotes, with the singular ability to align with geomagnetic field lines, a phenomenon referred to as magnetotaxis. This magnetotactic property is due to the presence of iron-rich crystals embedded in lipidic vesicles forming an organelle called the magnetosome. Magnetosomes are composed of single-magnetic-domain nanocrystals of magnetite (Fe(3)O(4)) or greigite (Fe(3)S(4)) embedded in biological membranes, thereby forming a prokaryotic organelle. Four specific steps are described in this organelle formation: (i) membrane specialization, (ii) iron acquisition, (iii) magnetite (or greigite) biocrystallization, and (iv) magnetosome alignment. The formation of these magnetic crystals is a genetically controlled process, which is governed by enzyme-catalysed processes. On the basis of protein sequence analysis of genes known to be involved in magnetosome formation in Magnetospirillum magneticum AMB-1, we have identified a subset of three membrane-associated or periplasmic proteins containing a double cytochrome c signature motif CXXCH: MamE, MamP and MamT. The presence of these proteins suggests the existence of an electron-transport chain inside the magnetosome, contributing to the process of biocrystallization. We have performed heterologous expression in E. coli of the cytochrome c motif-containing domains of MamE, MamP and MamT. Initial biophysical characterization has confirmed that MamE, MamP and MamT are indeed c-type cytochromes. Furthermore, determination of redox potentials for this new family of c-type cytochromes reveals midpoint potentials of -76 and -32 mV for MamP and MamE respectively.
Collapse
|
88
|
Abstract
Prokaryotic organelles called magnetosomes allow magnetotactic bacteria to navigate along geomagnetic field lines. In this study, we modified a swimming assay commonly used to assess bacterial motility to develop a new method of assessing magnetotactic motility. By this method, the swimming assay was performed in an artificial magnetic field. Magnetotactic bacteria formed a wedge-shaped swimming halo that elongated parallel to the magnetic field. Magnetotactic motility was qualitatively assessed by comparing halo shapes. We termed this method the magnetic swimming assay. On the magnetic swimming assay, the mamK deletion strain formed a shorter halo than the wild type, indicating that the assay sensitively detects differences in magnetotactic motility. Moreover, we isolated two spontaneous magnetotactic motility mutants using magnetic swimming plates. Our findings indicate that the magnetic swimming assay is a useful method for the sensitive analysis of magnetotaxis phenotypes and mutant screening.
Collapse
|
89
|
Lefèvre CT, Trubitsyn D, Abreu F, Kolinko S, Jogler C, de Almeida LGP, de Vasconcelos ATR, Kube M, Reinhardt R, Lins U, Pignol D, Schüler D, Bazylinski DA, Ginet N. Comparative genomic analysis of magnetotactic bacteria from the Deltaproteobacteria provides new insights into magnetite and greigite magnetosome genes required for magnetotaxis. Environ Microbiol 2013; 15:2712-35. [PMID: 23607663 DOI: 10.1111/1462-2920.12128] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 03/20/2013] [Indexed: 01/20/2023]
Abstract
Magnetotactic bacteria (MTB) represent a group of diverse motile prokaryotes that biomineralize magnetosomes, the organelles responsible for magnetotaxis. Magnetosomes consist of intracellular, membrane-bounded, tens-of-nanometre-sized crystals of the magnetic minerals magnetite (Fe3O4) or greigite (Fe3S4) and are usually organized as a chain within the cell acting like a compass needle. Most information regarding the biomineralization processes involved in magnetosome formation comes from studies involving Alphaproteobacteria species which biomineralize cuboctahedral and elongated prismatic crystals of magnetite. Many magnetosome genes, the mam genes, identified in these organisms are conserved in all known MTB. Here we present a comparative genomic analysis of magnetotactic Deltaproteobacteria that synthesize bullet-shaped crystals of magnetite and/or greigite. We show that in addition to mam genes, there is a conserved set of genes, designated mad genes, specific to the magnetotactic Deltaproteobacteria, some also being present in Candidatus Magnetobacterium bavaricum of the Nitrospirae phylum, but absent in the magnetotactic Alphaproteobacteria. Our results suggest that the number of genes associated with magnetotaxis in magnetotactic Deltaproteobacteria is larger than previously thought. We also demonstrate that the minimum set of mam genes necessary for magnetosome formation in Magnetospirillum is also conserved in magnetite-producing, magnetotactic Deltaproteobacteria. Some putative novel functions of mad genes are discussed.
Collapse
Affiliation(s)
- Christopher T Lefèvre
- CEA Cadarache/CNRS/Aix-Marseille Université, UMR7265 Service de Biologie Végétale et de Microbiologie Environnementale, Laboratoire de Bioénergétique Cellulaire, 13108, Saint Paul lez Durance, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Lefèvre CT, Trubitsyn D, Abreu F, Kolinko S, de Almeida LGP, de Vasconcelos ATR, Lins U, Schüler D, Ginet N, Pignol D, Bazylinski DA. Monophyletic origin of magnetotaxis and the first magnetosomes. Environ Microbiol 2013; 15:2267-74. [PMID: 23438345 DOI: 10.1111/1462-2920.12097] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 01/14/2013] [Indexed: 11/26/2022]
Abstract
Horizontal gene transfer (HGT), the transfer of genetic material other than by descent, is thought to have played significant roles in the evolution and distribution of genes in prokaryotes. These include those responsible for the ability of motile, aquatic magnetotactic bacteria (MTB) to align and swim along magnetic field lines and the biomineralization of magnetosomes that are responsible for this behaviour. There is some genomic evidence that HGT might be responsible for the distribution of magnetosome genes in different phylogenetic groups of bacteria. For example, in the genomes of a number of MTB, magnetosome genes are present as clusters within a larger structure known as the magnetosome genomic island surrounded by mobile elements such as insertion sequences and transposases as well as tRNA genes. Despite this, there is no strong direct proof of HGT between these organisms. Here we show that a phylogenetic tree based on magnetosome protein amino acid sequences from a number of MTB was congruent with the tree based on the organisms' 16S rRNA gene sequences. This shows that evolution and divergence of these proteins and the 16S rRNA gene occurred similarly. This suggests that magnetotaxis originated monophyletically in the Proteobacteria phylum and implies that the common ancestor of all Proteobacteria was magnetotactic.
Collapse
Affiliation(s)
- Christopher T Lefèvre
- CEA Cadarache/CNRS/Aix-Marseille Université, UMR7265 Service de Biologie Végétale et de Microbiologie Environnementale, Laboratoire de Bioénergétique Cellulaire, 13108, Saint Paul lez Durance, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
Cells compartmentalize their biochemical functions in a variety of ways, notably by creating physical barriers that separate a compartment via membranes or proteins. Eukaryotes have a wide diversity of membrane-based compartments, many that are lineage- or tissue-specific. In recent years, it has become increasingly evident that membrane-based compartmentalization of the cytosolic space is observed in multiple prokaryotic lineages, giving rise to several types of distinct prokaryotic organelles. Endosymbionts, previously believed to be a hallmark of eukaryotes, have been described in several bacteria. Protein-based compartments, frequent in bacteria, are also found in eukaryotes. In the present review, we focus on selected intracellular compartments from each of these three categories, membrane-based, endosymbiotic and protein-based, in both prokaryotes and eukaryotes. We review their diversity and the current theories and controversies regarding the evolutionary origins. Furthermore, we discuss the evolutionary processes acting on the genetic basis of intracellular compartments and how those differ across the domains of life. We conclude that the distinction between eukaryotes and prokaryotes no longer lies in the existence of a compartmentalized cell plan, but rather in its complexity.
Collapse
|
92
|
Kolinko S, Wanner G, Katzmann E, Kiemer F, Fuchs BM, Schüler D. Clone libraries and single cell genome amplification reveal extended diversity of uncultivated magnetotactic bacteria from marine and freshwater environments. Environ Microbiol 2012; 15:1290-301. [PMID: 23106823 DOI: 10.1111/1462-2920.12004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 09/07/2012] [Accepted: 09/21/2012] [Indexed: 11/30/2022]
Abstract
Magnetotactic bacteria (MTB), which orient along the earth's magnetic field using magnetosomes, are ubiquitous and abundant in marine and freshwater environments. Previous phylogenetic analysis of diverse MTB has been limited to few cultured species and the most abundant and conspicuous members of natural populations, which were assigned to various lineages of the Proteobacteria, the Nitrospirae phylum as well as the candidate division OP3. However, their known phylogenetic diversity still not matches the large morphological and ultrastructural variability of uncultured MTB found in environmental communities. Here, we used analysis of 16S rRNA gene clone libraries in combination with microsorting and whole-genome amplification to systematically address the entire diversity of uncultured MTB from two different habitats. This approach revealed extensive and novel diversity of MTB within the freshwater and marine sediment samples. In total, single-cell analysis identified eight different phylotypes, which were only partly represented in the clone libraries, and which could be unambiguously assigned to their respective morphotypes. Identified MTB belonged to the Alphaproteobacteria (seven species) and the Nitrospirae phylum (two species). End-sequencing of a small insert library created from WGA-derived DNA of a novel conspicuous magnetotactic vibrio identified genes with highest similarity to two cultivated MTB as well as to other phylogenetic groups. In conclusion, the combination of metagenomic cloning and single cell sorting represents a powerful approach to recover maximum bacterial diversity including low-abundant magnetotactic phylotypes from environmental samples and also provides access to genomic analysis of uncultivated MTB.
Collapse
Affiliation(s)
- Sebastian Kolinko
- Biozentrum der Ludwigs-Maximilians-Universität, Grosshaderner Strasse 2-4, 82 152, Planegg-Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
93
|
Li Y, Katzmann E, Borg S, Schüler D. The periplasmic nitrate reductase nap is required for anaerobic growth and involved in redox control of magnetite biomineralization in Magnetospirillum gryphiswaldense. J Bacteriol 2012; 194:4847-56. [PMID: 22730130 PMCID: PMC3430331 DOI: 10.1128/jb.00903-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 06/18/2012] [Indexed: 11/20/2022] Open
Abstract
The magnetosomes of many magnetotactic bacteria consist of membrane-enveloped magnetite crystals, whose synthesis is favored by a low redox potential. However, the cellular redox processes governing the biomineralization of the mixed-valence iron oxide have remained unknown. Here, we show that in the alphaproteobacterium Magnetospirillum gryphiswaldense, magnetite biomineralization is linked to dissimilatory nitrate reduction. A complete denitrification pathway, including gene functions for nitrate (nap), nitrite (nir), nitric oxide (nor), and nitrous oxide reduction (nos), was identified. Transcriptional gusA fusions as reporters revealed that except for nap, the highest expression of the denitrification genes coincided with conditions permitting maximum magnetite synthesis. Whereas microaerobic denitrification overlapped with oxygen respiration, nitrate was the only electron acceptor supporting growth in the entire absence of oxygen, and only the deletion of nap genes, encoding a periplasmic nitrate reductase, and not deletion of nor or nos genes, abolished anaerobic growth and also delayed aerobic growth in both nitrate and ammonium media. While loss of nosZ or norCB had no or relatively weak effects on magnetosome synthesis, deletion of nap severely impaired magnetite biomineralization and resulted in fewer, smaller, and irregular crystals during denitrification and also microaerobic respiration, probably by disturbing the proper redox balance required for magnetite synthesis. In contrast to the case for the wild type, biomineralization in Δnap cells was independent of the oxidation state of carbon substrates. Altogether, our data demonstrate that in addition to its essential role in anaerobic respiration, the periplasmic nitrate reductase Nap has a further key function by participating in redox reactions required for magnetite biomineralization.
Collapse
Affiliation(s)
- Yingjie Li
- Ludwig-Maximilians-Universität München, Department Biologie I, Mikrobiologie, Planegg-Martinsried, Germany
| | | | | | | |
Collapse
|
94
|
Insight into the evolution of magnetotaxis in Magnetospirillum spp., based on mam gene phylogeny. Appl Environ Microbiol 2012; 78:7238-48. [PMID: 22865076 DOI: 10.1128/aem.01951-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrioid- to helical-shaped magnetotactic bacteria phylogenetically related to the genus Magnetospirillum were isolated in axenic cultures from a number of freshwater and brackish environments located in the southwestern United States. Based on 16S rRNA gene sequences, most of the new isolates represent new Magnetospirillum species or new strains of known Magnetospirillum species, while one isolate appears to represent a new genus basal to Magnetospirillum. Partial sequences of conserved mam genes, genes reported to be involved in the magnetosome and magnetosome chain formation, and form II of the ribulose-1,5-bisphosphate carboxylase/oxygenase gene (cbbM) were determined in the new isolates and compared. The cbbM gene was chosen for comparison because it is not involved in magnetosome synthesis; it is highly conserved and is present in all but possibly one of the genomes of the magnetospirilla and the new isolates. Phylogenies based on 16S rRNA, cbbM, and mam gene sequences were reasonably congruent, indicating that the genes involved in magnetotaxis were acquired by a common ancestor of the Magnetospirillum clade. However, in one case, magnetosome genes might have been acquired through horizontal gene transfer. Our results also extend the known diversity of the Magnetospirillum group and show that they are widespread in freshwater environments.
Collapse
|
95
|
Fernández-Gómez B, Fernàndez-Guerra A, Casamayor EO, González JM, Pedrós-Alió C, Acinas SG. Patterns and architecture of genomic islands in marine bacteria. BMC Genomics 2012; 13:347. [PMID: 22839777 PMCID: PMC3478194 DOI: 10.1186/1471-2164-13-347] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 07/10/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genomic Islands (GIs) have key roles since they modulate the structure and size of bacterial genomes displaying a diverse set of laterally transferred genes. Despite their importance, GIs in marine bacterial genomes have not been explored systematically to uncover possible trends and to analyze their putative ecological significance. RESULTS We carried out a comprehensive analysis of GIs in 70 selected marine bacterial genomes detected with IslandViewer to explore the distribution, patterns and functional gene content in these genomic regions. We detected 438 GIs containing a total of 8152 genes. GI number per genome was strongly and positively correlated with the total GI size. In 50% of the genomes analyzed the GIs accounted for approximately 3% of the genome length, with a maximum of 12%. Interestingly, we found transposases particularly enriched within Alphaproteobacteria GIs, and site-specific recombinases in Gammaproteobacteria GIs. We described specific Homologous Recombination GIs (HR-GIs) in several genera of marine Bacteroidetes and in Shewanella strains among others. In these HR-GIs, we recurrently found conserved genes such as the β-subunit of DNA-directed RNA polymerase, regulatory sigma factors, the elongation factor Tu and ribosomal protein genes typically associated with the core genome. CONCLUSIONS Our results indicate that horizontal gene transfer mediated by phages, plasmids and other mobile genetic elements, and HR by site-specific recombinases play important roles in the mobility of clusters of genes between taxa and within closely related genomes, modulating the flexible pool of the genome. Our findings suggest that GIs may increase bacterial fitness under environmental changing conditions by acquiring novel foreign genes and/or modifying gene transcription and/or transduction.
Collapse
Affiliation(s)
- Beatriz Fernández-Gómez
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas, Pg Marítim de la Barceloneta 37-49, ES-08003 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
96
|
Yan L, Zhang S, Chen P, Liu H, Yin H, Li H. Magnetotactic bacteria, magnetosomes and their application. Microbiol Res 2012; 167:507-19. [PMID: 22579104 DOI: 10.1016/j.micres.2012.04.002] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 04/05/2012] [Accepted: 04/17/2012] [Indexed: 12/15/2022]
Abstract
Magnetotactic bacteria (MTB) are a diverse group of microorganisms with the ability to orient and migrate along geomagnetic field lines. This unique feat is based on specific intracellular organelles, the magnetosomes, which, in most MTB, comprise nanometer-sized, membrane bound crystals of magnetic iron minerals and organized into chains via a dedicated cytoskeleton. Because of the special properties of the magnetosomes, MTB are of great interest for paleomagnetism, environmental magnetism, biomarkers in rocks, magnetic materials and biomineralization in organisms, and bacterial magnetites have been exploited for a variety of applications in modern biological and medical sciences. In this paper, we describe general characteristics of MTB and their magnetic mineral inclusions, but focus mainly on the magnetosome formation and the magnetisms of MTB and bacterial magnetosomes, as well as on the significances and applications of MTB and their intracellular magnetic mineral crystals.
Collapse
Affiliation(s)
- Lei Yan
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University-HLBU, Daqing 163319, PR China.
| | | | | | | | | | | |
Collapse
|
97
|
Sonkaria S, Fuentes G, Verma C, Narang R, Khare V, Fischer A, Faivre D. Insight into the assembly properties and functional organisation of the magnetotactic bacterial actin-like homolog, MamK. PLoS One 2012; 7:e34189. [PMID: 22586444 PMCID: PMC3346761 DOI: 10.1371/journal.pone.0034189] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 02/23/2012] [Indexed: 12/22/2022] Open
Abstract
Magnetotactic bacteria (MTB) synthesize magnetosomes, which are intracellular vesicles comprising a magnetic particle. A series of magnetosomes arrange themselves in chains to form a magnetic dipole that enables the cell to orient itself along the Earth's magnetic field. MamK, an actin-like homolog of MreB has been identified as a central component in this organisation. Gene deletion, fluorescence microscopy and in vitro studies have yielded mechanistic differences in the filament assembly of MamK with other bacterial cytoskeletal proteins within the cell. With little or no information on the structural and behavioural characteristics of MamK outside the cell, the mamK gene from Magnetospirillium gryphiswaldense was cloned and expressed to better understand the differences in the cytoskeletal properties with its bacterial homologues MreB and acitin. Despite the low sequence identity shared between MamK and MreB (22%) and actin (18%), the behaviour of MamK monitored by light scattering broadly mirrored that of its bacterial cousin MreB primarily in terms of its pH, salt, divalent metal-ion and temperature dependency. The broad size variability of MamK filaments revealed by light scattering studies was supported by transmission electron microscopy (TEM) imaging. Filament morphology however, indicated that MamK conformed to linearly orientated filaments that appeared to be distinctly dissimilar compared to MreB suggesting functional differences between these homologues. The presence of a nucleotide binding domain common to actin-like proteins was demonstrated by its ability to function both as an ATPase and GTPase. Circular dichroism and structural homology modelling showed that MamK adopts a protein fold that is consistent with the 'classical' actin family architecture but with notable structural differences within the smaller domains, the active site region and the overall surface electrostatic potential.
Collapse
Affiliation(s)
- Sanjiv Sonkaria
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| | | | | | | | | | | | | |
Collapse
|
98
|
Compromised DNA damage repair promotes genetic instability of the genomic magnetosome island in Magnetospirillum magneticum AMB-1. Curr Microbiol 2012; 65:98-107. [PMID: 22538470 DOI: 10.1007/s00284-012-0131-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
Abstract
Magnetotactic bacteria (MTB) are capable of synthesizing nano-sized, intracellular membrane-bound magnetosomes. To learn more about the genetic factors involved in magnetosome formation, transposon mutagenesis was carried out by conjugation using a hyperactive mariner transposon to obtain nonmagnetic mutants of Magnetospirillum magneticum AMB-1. A mutant with defect in uvrA gene encoding the DNA binding subunit of the UvrABC complex responsible for the process of nucleotide excision repair, was obtained. Growth, magnetosome formation and maintenance of magnetosome island (MAI) were further analyzed in the absence of UvrA. Interruption of uvrA led to decreased capacity to form magnetosome when cultured in the presence of oxygen. The deficiency in UvrA also resulted in an accelerated loss of the MAI under aerobic conditions indicating that the nucleotide excision repair system guards against the instability of the MAI. The incapacity of MTB to efficiently initiate recombination mediated by RecA rescued the instability of MAI observed in uvrA mutant. Elevated recombination activity resulting from the accumulation of unrepaired mutations may thus account for the instability of MAI in the absence of UvrA.
Collapse
|
99
|
Analysis of the CtrA pathway in Magnetospirillum reveals an ancestral role in motility in alphaproteobacteria. J Bacteriol 2012; 194:2973-86. [PMID: 22467786 DOI: 10.1128/jb.00170-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Developmental events across the prokaryotic life cycle are highly regulated at the transcriptional and posttranslational levels. Key elements of a few regulatory networks are conserved among phylogenetic groups of bacteria, although the features controlled by these conserved systems are as diverse as the organisms encoding them. In this work, we probed the role of the CtrA regulatory network, conserved throughout the Alphaproteobacteria, in the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1, which possesses unique intracellular organization and compartmentalization. While we have shown that CtrA in AMB-1 is not essential for viability, it is required for motility, and its putative phosphorylation state dictates the ability of CtrA to activate the flagellar biosynthesis gene cascade. Gene expression analysis of strains expressing active and inactive CtrA alleles points to the composition of the extended CtrA regulon, including both direct and indirect targets. These results, combined with a bioinformatic study of the AMB-1 genome, enabled the prediction of an AMB-1-specific CtrA binding site. Further, phylogenetic studies comparing CtrA sequences from alphaproteobacteria in which the role of CtrA has been experimentally examined reveal an ancestral role of CtrA in the regulation of motility and suggest that its essential functions in other alphaproteobacteria were acquired subsequently.
Collapse
|
100
|
Komeili A. Molecular mechanisms of compartmentalization and biomineralization in magnetotactic bacteria. FEMS Microbiol Rev 2012; 36:232-55. [PMID: 22092030 DOI: 10.1111/j.1574-6976.2011.00315.x] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Magnetotactic bacteria (MB) are remarkable organisms with the ability to exploit the earth's magnetic field for navigational purposes. To do this, they build specialized compartments called magnetosomes that consist of a lipid membrane and a crystalline magnetic mineral. These organisms have the potential to serve as models for the study of compartmentalization as well as biomineralization in bacteria. Additionally, they offer the opportunity to design applications that take advantage of the particular properties of magnetosomes. In recent years, a sustained effort to identify the molecular basis of this process has resulted in a clearer understanding of the magnetosome formation and biomineralization. Here, I present an overview of MB and explore the possible molecular mechanisms of membrane remodeling, protein sorting, cytoskeletal organization, iron transport, and biomineralization that lead to the formation of a functional magnetosome organelle.
Collapse
Affiliation(s)
- Arash Komeili
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|