51
|
Tanaka A, Kato M, Nagase T, Kobayashi T, Tsukagoshi N. Isolation of genes encoding novel transcription factors which interact with the Hap complex from Aspergillus species. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1576:176-82. [PMID: 12031499 DOI: 10.1016/s0167-4781(02)00286-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Saccharomyces cerevisiae CCAAT-binding factor is composed of four subunits Hap2p, Hap3p, Hap4p and Hap5p. Three subunits, Hap2/3/5p, are required for DNA-binding and Hap4p is involved in transcriptional activation. Although homologues of Hap2/3/5p (in the case of Aspergillus nidulans; HapB/C/E, respectively) were found in many eukaryotes, no Hap4p homologues have been found except for the other yeast, Kluyveromyces lactis. With the lexA-hap2, -hapB, -hapC, or -hapE fusion gene, we evaluated the ability of interaction between Aspergillus Hap subunits and S. cerevisiae Hap4p subunit in S. cerevisiae. Using the system with lexA-hapB, a gene encoding a novel transcriptional activator, which interacted with the Hap complex, was isolated from A. nidulans and designated hapX.
Collapse
Affiliation(s)
- Akimitsu Tanaka
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | | | |
Collapse
|
52
|
Kato M, Tateyama Y, Hayashi K, Naruse F, Oonishi R, Tanoue S, Tanaka A, Kobayashi T, Tsukagoshi N. A quantity control mechanism regulating levels of the HapE subunit of the Hap complex in Aspergillus nidulans: no accumulation of HapE in hapC deletion mutants. FEBS Lett 2002; 512:227-9. [PMID: 11852085 DOI: 10.1016/s0014-5793(02)02266-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Aspergillus nidulans CCAAT-binding complex (Hap complex) consists of at least three subunits, HapB, HapC and HapE. To investigate the quantity control mechanisms of the subunits during assembly of the Hap complex, reconstitution studies with the recombinant subunits and extracts prepared from the respective hap subunit deletion mutants were carried out. Furthermore, Western blot analysis of the Hap subunits and Northern blot analysis of the hap genes with the respective deletion mutants were also performed. From all the results together, it was suggested that the number of the HapC molecule could adjust that of the HapE molecule by forming stable heterodimers prior to assembly of the Hap complex.
Collapse
Affiliation(s)
- M Kato
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, 464-8601, Nagoya, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Hynes MJ, Draht OW, Davis MA. Regulation of the acuF gene, encoding phosphoenolpyruvate carboxykinase in the filamentous fungus Aspergillus nidulans. J Bacteriol 2002; 184:183-90. [PMID: 11741859 PMCID: PMC134779 DOI: 10.1128/jb.184.1.183-190.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphoenolpyruvate carboxykinase (PEPCK) is a key enzyme required for gluconeogenesis when microorganisms grow on carbon sources metabolized via the tricarboxylic acid (TCA) cycle. Aspergillus nidulans acuF mutants isolated by their inability to use acetate as a carbon source specifically lack PEPCK. The acuF gene has been cloned and shown to encode a protein with high similarity to PEPCK from bacteria, plants, and fungi. The regulation of acuF expression has been studied by Northern blotting and by the construction of lacZ fusion reporters. Induction by acetate is abolished in mutants unable to metabolize acetate via the TCA cycle, and induction by amino acids metabolized via 2-oxoglutarate is lost in mutants unable to form 2-oxoglutarate. Induction by acetate and proline is not additive, consistent with a single mechanism of induction. Malate and succinate result in induction, and it is proposed that PEPCK is controlled by a novel mechanism of induction by a TCA cycle intermediate or derivative, thereby allowing gluconeogenesis to occur during growth on any carbon source metabolized via the TCA cycle. It has been shown that the facB gene, which mediates acetate induction of enzymes specifically required for acetate utilization, is not directly involved in PEPCK induction. This is in contrast to Saccharomyces cerevisiae, where Cat8p and Sip4p, homologs of FacB, regulate PEPCK as well as the expression of other genes necessary for growth on nonfermentable carbon sources in response to the carbon source present. This difference in the control of gluconeogenesis reflects the ability of A. nidulans and other filamentous fungi to use a wide variety of carbon sources in comparison with S. cerevisiae. The acuF gene was also found to be subject to activation by the CCAAT binding protein AnCF, a protein homologous to the S. cerevisiae Hap complex and the mammalian NFY complex.
Collapse
Affiliation(s)
- Michael J Hynes
- Department of Genetics, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | |
Collapse
|
54
|
de Vries RP, Visser J. Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 2001; 65:497-522, table of contents. [PMID: 11729262 PMCID: PMC99039 DOI: 10.1128/mmbr.65.4.497-522.2001] [Citation(s) in RCA: 558] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Degradation of plant cell wall polysaccharides is of major importance in the food and feed, beverage, textile, and paper and pulp industries, as well as in several other industrial production processes. Enzymatic degradation of these polymers has received attention for many years and is becoming a more and more attractive alternative to chemical and mechanical processes. Over the past 15 years, much progress has been made in elucidating the structural characteristics of these polysaccharides and in characterizing the enzymes involved in their degradation and the genes of biotechnologically relevant microorganisms encoding these enzymes. The members of the fungal genus Aspergillus are commonly used for the production of polysaccharide-degrading enzymes. This genus produces a wide spectrum of cell wall-degrading enzymes, allowing not only complete degradation of the polysaccharides but also tailored modifications by using specific enzymes purified from these fungi. This review summarizes our current knowledge of the cell wall polysaccharide-degrading enzymes from aspergilli and the genes by which they are encoded.
Collapse
Affiliation(s)
- R P de Vries
- Molecular Genetics of Industrial Microorganisms, Wageningen University, 6703 HA Wageningen, The Netherlands.
| | | |
Collapse
|
55
|
Kato M, Naruse F, Kobayashi T, Tsukagoshi N. No factors except for the hap complex increase the Taka-amylase A gene expression by binding to the CCAAT sequence in the promoter region. Biosci Biotechnol Biochem 2001; 65:2340-2. [PMID: 11758937 DOI: 10.1271/bbb.65.2340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To examine the possibility that factors different from the Hap complex are involved in increasing Taka-amylase A gene (taa) expression in Aspergillus nidulans, either the authentic taa gene or the mutant taa gene with a replacement of the CCAAT box was expressed in either a wild type strain or a mutant strain lacking the functional Hap complex (hapCdelta). When the mutant taa was expressed in the hapCdelta strain, enzyme activity was as low as that of the hapCdelta strain transformed with the authentic taa gene, indicating that no factors except for the Hap complex increase transcription of the taa gene by binding to the CCAAT sequence.
Collapse
Affiliation(s)
- M Kato
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Japan.
| | | | | | | |
Collapse
|
56
|
Steidl S, Hynes MJ, Brakhage AA. The Aspergillus nidulans multimeric CCAAT binding complex AnCF is negatively autoregulated via its hapB subunit gene. J Mol Biol 2001; 306:643-53. [PMID: 11243777 DOI: 10.1006/jmbi.2001.4412] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cis-acting CCAAT elements are frequently found in eukaryotic promoter regions. Many of them are bound by conserved multimeric complexes. In the fungus Aspergillus nidulans the respective complex was designated AnCF (A. nidulans CCAAT binding factor). AnCF is composed of at least three subunits designated HapB, HapC and HapE. Here, we show that the promoter regions of the hapB genes in both A. nidulans and Aspergillus oryzae contain two inversely oriented, conserved CCAAT boxes (box alpha and box beta). Electrophoretic mobility shift assays (EMSAs) using both nuclear extracts and the purified, reconstituted AnCF complex indicated that AnCF binding in vitro to these boxes occurs in a non-mutually exclusive manner. Western and Northern blot analyses showed that steady-state levels of HapB protein as well as hapB mRNA were elevated in hapC and hapE deletion mutants, suggesting a repressing effect of AnCF on hapB expression. Consistently, in a hapB deletion background the hapB-lacZ expression level was elevated compared with the expression in the wild-type. This was further supported by overexpression of hapB using an inducible alcA-hapB construct. Induction of alcA-hapB expression strongly repressed the expression of a hapB-lacZ gene fusion. However, mutagenesis of box beta led to a fivefold reduced expression of a hapB-lacZ gene fusion compared with the expression derived from a wild-type hapB-lacZ fusion. These results indicate that (i) box beta is an important positive cis-acting element in hapB regulation, (ii) AnCF does not represent the corresponding positive trans-acting factor and (iii) that AnCF is involved in repression of hapB.
Collapse
Affiliation(s)
- S Steidl
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Schnittspahnstrasse 10, Darmstadt, D-64287, Germany
| | | | | |
Collapse
|
57
|
Tsukagoshi N, Kobayashi T, Kato M. Regulation of the amylolytic and (hemi-)cellulolytic genes in aspergilli. J GEN APPL MICROBIOL 2001; 47:1-19. [PMID: 12483563 DOI: 10.2323/jgam.47.1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Filamentous fungi produce high levels of polysaccharide-degrading enzymes and are frequently used for the production of industrial enzymes. Because of the high secretory capacity for enzymes, filamentous fungi are effective hosts for the production of foreign proteins. Genetic studies with Aspergillus nidulans have shown pathway-specific regulatory systems that control a set of genes that must be expressed to catabolize particular substrates. Besides the pathway-specific regulation, wide domain regulatory systems exist that affect a great many individual genes in different pathways. A molecular analysis of various regulated systems has confirmed the formal models derived from purely genetic data. In general, many genes are subject to more than one regulatory system. In this article, we describe two transcriptional activators, AmyR and XlnR, and an enhancer, Hap complex, in view of their regulatory roles in the expression of the amylolytic and (hemi-)cellulolytic genes mainly in aspergilli. The amyR gene has been isolated as a transcriptional activator involved in the expression of amylolytic genes from A. oryzae, A. niger, and A. nidulans, and the xlnR gene, which has been isolated from A. niger and A. oryzae, activates the expression of xylanolytic genes as well as some cellulolytic genes in aspergilli. Both AmyR and XlnR have a typical zinc binuclear cluster DNA-binding domain at their N-terminal regions. Hap complex, a CCAAT-binding complex, enhances the overall promoter activity and increases the expression levels of many fungal genes, including the Taka-amylase A gene. Hap complex comprises three subunits, HapB, HapC, and HapE, in A. nidulans and A. oryzae as well as higher eukaryotes, whereas HAP complex in Saccharomyces cerevisiae and Kluyveromyces lactis has the additional subunit, Hap4p, which is responsible for the transcriptional activation. Hap complex is suggested to enhance transcription by remodeling the chromatin structure. The regulation of gene expression in filamentous fungi of industrial interest could follow basically the same general principles as those discovered in A. nidulans. The knowledge of regulation of gene expression in combination with traditional genetic techniques is expected to be increasingly utilized for strain breeding. Furthermore, this knowledge provides a basis for the rational application of transcriptional regulators for biotechnological processes in filamentous fungi.
Collapse
Affiliation(s)
- Norihiro Tsukagoshi
- Department of Biological Mechanisms and Functions, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | |
Collapse
|
58
|
Fraser JA, Davis MA, Hynes MJ. The formamidase gene of Aspergillus nidulans: regulation by nitrogen metabolite repression and transcriptional interference by an overlapping upstream gene. Genetics 2001; 157:119-31. [PMID: 11139496 PMCID: PMC1461490 DOI: 10.1093/genetics/157.1.119] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The ability to utilize formamide as a sole nitrogen source has been found in numerous fungi. We have cloned the fmdS gene encoding a formamidase from Aspergillus nidulans and found that it belongs to a highly conserved family of proteins separate from the major amidase families. The expression of fmdS is primarily regulated via AreA-mediated nitrogen metabolite repression and does not require the addition of exogenous inducer. Consistent with this, deletion analysis of the 5' region of fmdS has confirmed the presence of multiple AreA-binding sites containing a characteristic core GATA sequence. Under carbon starvation conditions the response to nitrogen starvation is eliminated, indicating that the lack of a carbon source may result in inactivation of AreA. Sequence analysis and isolation of cDNAs show that a gene of unknown function lies directly 5' of fmdS with its transcript overlapping the fmdS coding region. Disruption of the 5' gene and analysis of the effects of overexpression of this gene on fmdS expression has shown that expression of this upstream gene interferes with fmdS transcription, resulting in a strong dependence on AreA activation for expression. Therefore the relative position of these two genes is essential for normal regulation of fmdS.
Collapse
Affiliation(s)
- J A Fraser
- Department of Genetics, University of Melbourne, Victoria, 3010 Australia
| | | | | |
Collapse
|
59
|
Zeilinger S, Haller M, Mach R, Kubicek CP. Molecular characterization of a cellulase-negative mutant of Hypocrea jecorina. Biochem Biophys Res Commun 2000; 277:581-8. [PMID: 11061997 DOI: 10.1006/bbrc.2000.3726] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The "cbh2 activating element," CAE, consisting of two separate boxes (ATTGG = CCAAT and GTAATA, respectively) is essential for cellobiohydrolase II gene expression in the filamentous fungus Hypcrea jecorina. Here we report that cell-free extracts from a cellulase-negative mutant form CAE-protein complexes with higher mobility and lower binding-strength compared to the wild type. EMSA analysis demonstrated an increased mobility of the GTAATA-binding protein complex and, supported by in vivo footprinting, a lowered binding strength of the HAP2/3/5 proteins. However, the hap2/hap3/hap5 genes of the mutant are unaltered and transcribed normally. A nucleotide fragment of the cbh1 promoter containing a (GG)CTAATA motif without an adjacent CCAAT box is also bound by cell-free extracts of H. jecorina, and the protein-DNA complex of the mutant shows the characteristic increase in mobility. We conclude that this mutant is defective in the functional formation of the CAE-protein complexes but not in their binding to the target sequences itself.
Collapse
Affiliation(s)
- S Zeilinger
- Section Microbial Biochemistry, Institute of Biochemical Technology and Microbiology, Technical University of Vienna, Getreidemarkt 9, Wien, A-1060, Austria.
| | | | | | | |
Collapse
|
60
|
Martín JF. Molecular control of expression of penicillin biosynthesis genes in fungi: regulatory proteins interact with a bidirectional promoter region. J Bacteriol 2000; 182:2355-62. [PMID: 10762232 PMCID: PMC111294 DOI: 10.1128/jb.182.9.2355-2362.2000] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- J F Martín
- Area of Microbiology, Faculty of Biology, University of León, 24071 León, and Institute of Biotechnology (INBIOTEC), Science Park of León, 24006 León, Spain.
| |
Collapse
|
61
|
Espeso EA, Arst HN. On the mechanism by which alkaline pH prevents expression of an acid-expressed gene. Mol Cell Biol 2000; 20:3355-63. [PMID: 10779325 PMCID: PMC85628 DOI: 10.1128/mcb.20.10.3355-3363.2000] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous work has shown that zinc finger transcription factor PacC mediates the regulation of gene expression by ambient pH in the fungus Aspergillus nidulans. This regulation ensures that the syntheses of molecules functioning in the external environment, such as permeases, secreted enzymes, and exported metabolites, are tailored to the pH of the growth environment. A direct role for PacC in activating the expression of an alkaline-expressed gene has previously been demonstrated, but the mechanism by which alkaline ambient pH prevents the expression of any eukaryotic acid-expressed gene has never been reported. Here we show that a double PacC binding site in the promoter of the acid-expressed gabA gene, encoding gamma-aminobutyrate (GABA) permease, overlaps the binding site for the transcriptional activator IntA, which mediates omega-amino acid induction. Using bacterially expressed fusion proteins, we have shown that PacC competes with IntA for DNA binding in vitro at this site. Thus, PacC repression of GABA permease synthesis is direct and occurs by blocking induction. A swap of IntA sites between promoters for gabA and amdS, a gene not subject to pH regulation, makes gabA expression pH independent and amdS acid expressed.
Collapse
Affiliation(s)
- E A Espeso
- Department of Infectious Diseases, Imperial College School of Medicine at Hammersmith Hospital, London W12 0NN, United Kingdom
| | | |
Collapse
|
62
|
Van Den Brulle J, Steidl S, Brakhage AA. Cloning and characterization of an Aspergillus nidulans gene involved in the regulation of penicillin biosynthesis. Appl Environ Microbiol 1999; 65:5222-8. [PMID: 10583968 PMCID: PMC91708 DOI: 10.1128/aem.65.12.5222-5228.1999] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify regulators of penicillin biosynthesis, a previously isolated mutant of Aspergillus nidulans (Prg-1) which carried the trans-acting prgA1 mutation was used. This mutant also contained fusions of the penicillin biosynthesis genes acvA and ipnA with reporter genes (acvA-uidA and ipnA-lacZ) integrated in a double-copy arrangement at the chromosomal argB gene. The prgA1 mutant strain exhibited only 20 to 50% of the ipnA-lacZ and acvA-uidA expression exhibited by the wild-type strain and had only 20 to 30% of the penicillin produced by the wild-type strain. Here, using complementation with a genomic cosmid library, we isolated a gene (suAprgA1) which complemented the prgA1 phenotype to the wild-type phenotype; i.e., the levels of expression of both gene fusions and penicillin production were nearly wild-type levels. Analysis of the suAprgA1 gene in the prgA1 mutant did not reveal any mutation in the suAprgA1 gene or unusual transcription of the gene. This suggested that the suAprgA1 gene is a suppressor of the prgA1 mutation. The suAprgA1 gene is 1,245 bp long. Its five exons encode a deduced protein that is 303 amino acids long. The putative SUAPRGA1 protein was similar to both the human p32 protein and Mam33p of Saccharomyces cerevisiae. Analysis of the ordered gene library of A. nidulans indicated that suAprgA1 is located on chromosome VI. Deletion of the suAprgA1 gene resulted in an approximately 50% reduction in ipnA-lacZ expression and in a slight reduction in acvA-uidA expression. The DeltasuAprgA1 strain produced about 60% of the amount of penicillin produced by the wild-type strain.
Collapse
Affiliation(s)
- J Van Den Brulle
- Lehrstuhl für Mikrobiologie, Universität München, Munich, Germany
| | | | | |
Collapse
|
63
|
Abstract
Protein coding genes are transcribed by Polymerase II, under the control of short discrete DNA elements in promoters and enhancers, recognized with high efficiency and specificity by trans-acting factors and by general transcription proteins (Tjian and Maniatis, 1994). The former regulate specific genes or set of genes, usually in a tissue-, developmental-, cell-cycle or stimuli-dependent way; the latter are involved in the activation of all promoters, as a whole multi-subunit holoenzyme (Parvis and Young, 1998). A limited set of elements, such as the GC and CCAAT-boxes, are present in a very high number of promoters. The whole process is further complicated by the need to operate in the context of higher order chromatin structures (Workman and Kingston, 1998). This review focuses on the CCAAT sequence and on the NF-Y protein, also known as CBF, which binds to it.
Collapse
Affiliation(s)
- R Mantovani
- Dipartimento di Genetica e Biologia dei Microrganismi, Università di Milano, Italy.
| |
Collapse
|
64
|
Narendja FM, Davis MA, Hynes MJ. AnCF, the CCAAT binding complex of Aspergillus nidulans, is essential for the formation of a DNase I-hypersensitive site in the 5' region of the amdS gene. Mol Cell Biol 1999; 19:6523-31. [PMID: 10490592 PMCID: PMC84622 DOI: 10.1128/mcb.19.10.6523] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CCAAT sequence in the amdS promoter of Aspergillus nidulans is recognized by AnCF, a complex consisting of the three evolutionary conserved subunits HapB, HapC, and HapE. In this study we have investigated the effect of AnCF on the chromatin structure of the amdS gene. The AnCF complex and the CCAAT sequence were found to be necessary for the formation of a nucleosome-free, DNase I-hypersensitive region in the 5' region of the amdS gene. Deletion of the hapE gene results in loss of the DNase I-hypersensitive site, and the positioning of nucleosomes over the transcriptional start point is lost. Likewise, a point mutation in the CCAAT motif, as well as a 530-bp deletion which removes the CCAAT box, results in the loss of the DNase I-hypersensitive region. The DNase I-hypersensitive region and the nucleosome positioning can be restored by insertion of a 35-bp oligonucleotide carrying the CCAAT motif. A DNase I-hypersensitive region has been found in the CCAAT-containing fmdS gene and was also hapE dependent. These data indicate a critical role for the AnCF complex in establishing an open chromatin structure in A. nidulans.
Collapse
Affiliation(s)
- F M Narendja
- Department of Genetics, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | | |
Collapse
|
65
|
Brakhage AA, Andrianopoulos A, Kato M, Steidl S, Davis MA, Tsukagoshi N, Hynes MJ. HAP-Like CCAAT-binding complexes in filamentous fungi: implications for biotechnology. Fungal Genet Biol 1999; 27:243-52. [PMID: 10441450 DOI: 10.1006/fgbi.1999.1136] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulatory CCAAT boxes are found frequently in eukaryotic promoter regions. They are bound by different CCAAT-binding factors. Until now, a single CCAAT-binding complex has been reported in fungi. It is also found in higher eukaryotes and is highly conserved among eukaryotic organisms. This multimeric protein complex is designated HAP, AnCF, CBF, or NF-Y. The complex consists of at least three subunits. In fungi, only the HAP complex of Saccharomyces cerevisiae had been known for a long time. The recent cloning of genes encoding the components of the corresponding complex (AnCF/PENR1) of Aspergillus nidulans and characterization of CCAAT-regulated genes in A. nidulans, as well as other filamentous fungi, led to a deeper insight into the role of this transcription complex, in particular in aerobically growing fungi. An overview of the function of HAP-like complexes in gene regulation in filamentous fungi is presented. Some of the genes that have been found to be regulated by HAP-like complexes encode enzymes of biotechnological interest, like taka-amylase, xylanases, cellobiohydrolase, and penicillin biosynthesis enzymes. The importance of HAP-like complexes in controlling the expression of biotechnologically important genes is discussed.
Collapse
Affiliation(s)
- A A Brakhage
- Institut für Mikrobiologie und Genetik, Technische Universität Darmstadt, Germany.
| | | | | | | | | | | | | |
Collapse
|