51
|
Oka M, Kageshita T, Ono T, Goto A, Kuroki T, Ichihashi M. Protein kinase C alpha associates with phospholipase D1 and enhances basal phospholipase D activity in a protein phosphorylation-independent manner in human melanoma cells. J Invest Dermatol 2003; 121:69-76. [PMID: 12839565 DOI: 10.1046/j.1523-1747.2003.12300.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is well known that phospholipase D plays a crucial part in the signal transduction of many types of cells, and is activated by protein kinase C alpha when cells are stimulated. To elucidate the role of phospholipase D in melanoma, the expression of phospholipase D1 and protein kinase C alpha in primary and metastatic lesions of acral lentiginous melanoma and superficial spreading melanoma was investigated using immunohistologic techniques. In addition, the mechanism of regulation of phospholipase D1 by protein kinase C alpha was examined in a human melanoma cell line HM3KO using an adenovirus-mediated gene transfer technique. Both phospholipase D1 and protein kinase C alpha were strongly expressed in primary and metastatic lesions of superficial spreading melanoma. Conversely, in acral lentiginous melanoma lesions, the expression of these two proteins increased dramatically with tumor progression; the expression of both phospholipase D1 and protein kinase C alpha was almost negative in the radial growth phase of primary acral lentiginous melanoma lesions, and increased synchronously in a progression-related manner in advanced acral lentiginous melanoma lesions, including vertical growth phase and metastatic lesions. Immunoprecipitation study showed that phospholipase D1 and protein kinase C alpha are associated physiologically in resting melanoma cells. Further immunoprecipitation study using HM3KO cells after adenovirus-mediated simultaneous overexpression of phospholipase D1 and protein kinase C alpha, or phospholipase D1 and the kinase-negative mutant of protein kinase C alpha revealed that both protein kinase C alpha and the kinase-negative mutant of protein kinase C alpha are associated with phospholipase D1 in melanoma cells in the absence of an external signal. Overexpression of protein kinase C alpha or the kinase-negative mutant of protein kinase C alpha in melanoma cells by the adenovirus vectors resulted in the enhancement of basal phospholipase D activity in a viral concentration-dependent manner. Furthermore, enhanced basal phospholipase D activity increased the in vitro invasive potential of HM3KO cells. These results suggest that upregulation of phospholipase D1 and protein kinase C alpha plays a part in the progression of acral lentiginous melanoma from the radial growth phase to the vertical growth phase. The present results also suggest that protein kinase C alpha associates with phospholipase D1 and enhances basal phospholipase D activity in a protein phosphorylation-independent manner in melanoma cells, which contributes to the cell's high invasive potential.
Collapse
Affiliation(s)
- Masahiro Oka
- Department of Dermatology, Kobe University Graduate School of Medicine, Kobe, Japan.
| | | | | | | | | | | |
Collapse
|
52
|
Chen Y, Zheng Y, Foster DA. Phospholipase D confers rapamycin resistance in human breast cancer cells. Oncogene 2003; 22:3937-42. [PMID: 12813467 DOI: 10.1038/sj.onc.1206565] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
mTOR (mammalian target of rapamycin) is a protein kinase that regulates cell cycle progression and cell growth. Rapamycin is a highly specific inhibitor of mTOR in clinical trials for the treatment of breast and other cancers. mTOR signaling was reported to require phosphatidic acid (PA), the metabolic product of phospholipase D (PLD). PLD, like mTOR, has been implicated in survival signaling and the regulation of cell cycle progression. PLD activity is frequently elevated in breast cancer. We have investigated the effect of rapamycin on breast cancer cell lines with different levels of PLD activity. MCF-7 cells, with relatively low levels of PLD activity, were highly sensitive to the growth-arresting effects of rapamycin, whereas MDA-MB-231 cells, with a 10-fold higher PLD activity than MCF-7 cells, were highly resistant to rapamycin. Elevating PLD activity in MCF-7 cells led to rapamycin resistance; and inhibition of PLD activity in MDA-MB-231 cells increased rapamycin sensitivity. Elevated PLD activity in MCF-7 cells also caused rapamycin resistance for S6 kinase phosphorylation and serum-induced Myc expression. These data implicate mTOR as a critical target for survival signals generated by PLD and suggest that PLD levels in breast cancer could be a valuable indicator of the likely efficacy of rapamycin treatment.
Collapse
Affiliation(s)
- Yuhong Chen
- Department of Biological Sciences, Hunter College of The City University of New York, 695 Park Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
53
|
Kwun HJ, Lee JH, Min DS, Jang KL. Transcriptional repression of cyclin-dependent kinase inhibitor p21 gene by phospholipase D1 and D2. FEBS Lett 2003; 544:38-44. [PMID: 12782287 DOI: 10.1016/s0014-5793(03)00446-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Phospholipase D (PLD) is known to stimulate cell cycle progression and to transform murine fibroblast cells into tumorigenic forms, although the precise mechanisms are not elucidated. In this report, we demonstrated that both PLD1 and PLD2 repressed expression of cyclin-dependent kinase inhibitor p21 gene in an additive manner. The phospholipase activity of PLDs was important for the effect. PLD1 repressed the p21 promoter by decreasing the level of p53, whereas PLD2 via a p53-independent pathway through modulating Sp1 activity. Taken together, we suggest that PLD isozymes stimulate cell growth by repressing expression of p21 gene, which may ultimately lead to carcinogenesis.
Collapse
Affiliation(s)
- Hyun Jin Kwun
- Department of Microbiology, College of Natural Sciences, Pusan National University, South Korea
| | | | | | | |
Collapse
|
54
|
Kapoor GS, O'Rourke DM. Mitogenic signaling cascades in glial tumors. Neurosurgery 2003; 52:1425-34; discussion 1434-5. [PMID: 12762887 DOI: 10.1227/01.neu.0000065135.28143.39] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2002] [Accepted: 01/29/2003] [Indexed: 01/29/2023] Open
Abstract
Gliomas are primary central nervous system tumors that arise from astrocytes, oligodendrocytes, or their precursors. Gliomas can be classified into several groups according to histological features. A number of genetic alterations have been identified in human gliomas; these generally affect either signal transduction pathways activated by receptor tyrosine kinases or cell cycle growth arrest pathways. These observed genetic alterations are now being used to complement histopathological diagnosis. The aim of the present review is to give a broad overview of the receptor tyrosine kinase signaling machinery involved in gliomagenesis, with an emphasis on the cooperative interaction between receptor tyrosine kinase signaling and the cell cycle-regulatory machinery. Understanding molecular features of primary glial tumors will eventually allow for target-selective intervention in distinct glioma subsets and a more rational approach to adjuvant therapies for these refractory diseases.
Collapse
Affiliation(s)
- Gurpreet S Kapoor
- Department of Neurosurgery, University of Pennsylvania School of Medicine, 36th and Hamilton Walk, Philadelphia, PA 19104, USA
| | | |
Collapse
|
55
|
Ahn BH, Kim SY, Kim EH, Choi KS, Kwon TK, Lee YH, Chang JS, Kim MS, Jo YH, Min DS. Transmodulation between phospholipase D and c-Src enhances cell proliferation. Mol Cell Biol 2003; 23:3103-15. [PMID: 12697812 PMCID: PMC153190 DOI: 10.1128/mcb.23.9.3103-3115.2003] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Phospholipase D (PLD) has been implicated in the signal transduction pathways initiated by several mitogenic protein tyrosine kinases. We demonstrate for the first time that most notably PLD2 and to a lesser extent the PLD1 isoform are tyrosine phosphorylated by c-Src tyrosine kinase via direct association. Moreover, epidermal growth factor induced tyrosine phosphorylation of PLD2 and its interaction with c-Src in A431 cells. Interaction between these proteins is via the pleckstrin homology domain of PLD2 and the catalytic domain of c-Src. Coexpression of PLD1 or PLD2 with c-Src synergistically enhances cellular proliferation compared with expression of either molecule. While PLD activity as a lipid-hydrolyzing enzyme is not affected by c-Src, wild-type PLDs but not catalytically inactive PLD mutants significantly increase c-Src kinase activity, up-regulating c-Src-mediated paxillin phosphorylation and extracellular signal-regulated kinase activity. These results demonstrate the critical role of PLD catalytic activity in the stimulation of Src signaling. In conclusion, we provide the first evidence that c-Src acts as a kinase of PLD and PLD acts as an activator of c-Src. This transmodulation between c-Src and PLD may contribute to the promotion of cellular proliferation via amplification of mitogenic signaling pathways.
Collapse
Affiliation(s)
- Bong-Hyun Ahn
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Zhong M, Shen Y, Zheng Y, Joseph T, Jackson D, Foster DA. Phospholipase D prevents apoptosis in v-Src-transformed rat fibroblasts and MDA-MB-231 breast cancer cells. Biochem Biophys Res Commun 2003; 302:615-9. [PMID: 12615079 DOI: 10.1016/s0006-291x(03)00229-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phospholipase D (PLD) activity is elevated in response to mitogenic and oncogenic signals. PLD also cooperates with overexpressed tyrosine kinases to transform rat fibroblasts. 3Y1 rat fibroblasts overexpressing the tyrosine kinase c-Src undergo apoptosis in response to serum withdrawal. We report here that elevated expression of either PLD1 or PLD2 in these cells prevents apoptosis induced by serum withdrawal. 3Y1 cells transformed by the activated tyrosine kinase v-Src have elevated PLD activity and are resistant to apoptosis induced by serum withdrawal. However, if PLD activity is blocked, the v-Src-transformed cells underwent apoptosis. MDA-MB-231 cells are a human breast cancer cell line with substantially elevated levels of PLD activity. Inhibiting PLD activity in these cells similarly rendered them sensitive to the apoptotic insult of serum withdrawal. These data indicate that elevated PLD activity generates a survival signal(s) allowing cells to overcome default apoptosis programs.
Collapse
Affiliation(s)
- Minghao Zhong
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
57
|
Kim SW, Hayashi M, Lo JF, Yang Y, Yoo JS, Lee JD. ADP-ribosylation factor 4 small GTPase mediates epidermal growth factor receptor-dependent phospholipase D2 activation. J Biol Chem 2003; 278:2661-8. [PMID: 12446727 DOI: 10.1074/jbc.m205819200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) plays a critical role in the development, proliferation, and differentiation of cells of epithelial and mesenchymal origin. These EGFR-dependent cellular processes are mediated by a repertoire of intracellular signaling pathways triggered by the activation of the EGFR cytoplasmic domain, which originates from ligand binding of its extracellular domain. To understand the molecular mechanisms by which the intracellular domain of EGFR transmits mitogenic messages to the downstream signaling pathways, we used the cytoplasmic region of EGFR as bait in yeast two-hybrid screening. We found that ADP-ribosylation factor 4 (ARF4) interacts with the intracellular part of EGFR and mediates the EGF-dependent cellular activation of phospholipase D2 (PLD2) but does not mediate the activation of PLD1. In addition, ARF4-mediated PLD2 activation leads to dramatic activation of the transcription factor activator protein 1 (AP-1), and, importantly, ARF4 activity is required for EGF-induced activation of cellular AP-1. Our findings indicate that ARF4 is a critical molecule that directly regulates cellular PLD2 activity and that this ARF4-mediated PLD2 activation stimulates AP-1-dependent transcription in the EGF-induced cellular response.
Collapse
Affiliation(s)
- Sung-Woo Kim
- Department of Immunology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
58
|
Xu L, Frankel P, Jackson D, Rotunda T, Boshans RL, D'Souza-Schorey C, Foster DA. Elevated phospholipase D activity in H-Ras- but not K-Ras-transformed cells by the synergistic action of RalA and ARF6. Mol Cell Biol 2003; 23:645-54. [PMID: 12509462 PMCID: PMC151535 DOI: 10.1128/mcb.23.2.645-654.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Phospholipase D (PLD) activity is elevated in response to the oncogenic stimulus of H-Ras but not K-Ras. H-Ras and K-Ras have been reported to localize to different membrane microdomains, with H-Ras localizing to caveolin-enriched light membrane fractions. We reported previously that PLD activity elevated in response to mitogenic stimulation is restricted to the caveolin-enriched light membrane fractions. PLD activity in H-Ras-transformed cells is dependent upon RalA, and consistent with a lack of elevated PLD activity in K-Ras-transformed cells, RalA was not activated in K-Ras-transformed cells. Although H-Ras-induced PLD activity is dependent upon RalA, an activated mutant of RalA is not sufficient to elevate PLD activity. We reported previously that RalA interacts with PLD activating ADP ribosylation factor (ARF) proteins. In cells transformed by H-Ras, we found increased coprecipitation of ARF6 with RalA. Moreover, ARF6 colocalized with RalA in light membrane fractions. Interestingly, ARF6 protein levels were elevated in H-Ras- but not K-Ras-transformed cells. A dominant-negative mutant of ARF6 inhibited PLD activity in H-Ras-transformed NIH 3T3 cells. Activated mutants of either ARF6 or RalA were not sufficient to elevate PLD activity in NIH 3T3 cells; however, expression of both activated RalA and activated ARF6 in NIH 3T3 cells led to increased PLD activity. These data suggest a model whereby H-Ras stimulates the activation of both RalA and ARF6, which together lead to the elevation of PLD activity.
Collapse
Affiliation(s)
- Lizhong Xu
- Department of Biological Sciences, Hunter College of The City University of New York, New York, New York 10021, USA
| | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
Accumulating evidence has recognized phospholipase D (PLD) as an important element in signal transduction of cell responses, including proliferation and differentiation, However, its role in pro-apoptotic, anti-apoptotic or pro-survival signaling is not well-understood. Involvement of PLD in these signaling mechanisms is considered to differ depending on the cell type and the extracellular stimulus.
Collapse
Affiliation(s)
- Yoshinori Nozawa
- Department of Environmental Cell Responses, Gifu International Institute of Biotechnology, Mitakecho 2193-128, Kanigun, Gifu 505-0116, Japan.
| |
Collapse
|
60
|
Zhu T, Ling L, Lobie PE. Identification of a JAK2-independent pathway regulating growth hormone (GH)-stimulated p44/42 mitogen-activated protein kinase activity. GH activation of Ral and phospholipase D is Src-dependent. J Biol Chem 2002; 277:45592-603. [PMID: 12218045 DOI: 10.1074/jbc.m201385200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have demonstrated here that growth hormone (GH) stimulates the formation of the active GTP-bound form of both RalA and RalB in NIH-3T3 cells. Full activation of RalA and RalB by GH required the combined activity of c-Src and JAK2, both kinases activated by GH independent of the other. Activation of RalA and RalB by growth hormone did not require the activity of JAK2 per se. Ras was also activated by GH and was required for the GH-stimulated formation of GTP-bound RalA and RalB. Activation of RalA by GH subsequently resulted in increased phospholipase D activity and the formation of its metabolite, phosphatidic acid. GH-stimulated RalA-phospholipase D-dependent formation of phosphatidic acid was required for activation of p44/42 MAPK and subsequent Elk-1-mediated transcription stimulated by GH. Thus we report the identification of a JAK2-independent pathway regulating GH-stimulated p44/42 MAPK activity.
Collapse
Affiliation(s)
- Tao Zhu
- Institute of Molecular and Cell Biology, Singapore, Republic of Singapore
| | | | | |
Collapse
|
61
|
Zhong M, Joseph T, Jackson D, Beychenok S, Foster DA. Elevated phospholipase D activity induces apoptosis in normal rat fibroblasts. Biochem Biophys Res Commun 2002; 298:474-7. [PMID: 12408976 DOI: 10.1016/s0006-291x(02)02495-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Elevated expression of phospholipase D (PLD) in rat fibroblasts overexpressing a tyrosine kinase leads to cell transformation. However, it has been difficult to get elevated expression of PLD in normal rat fibroblasts. Using transient transfection and an inducible expression system, we were able to get elevated expression of PLD1 and PLD2 in 3Y1 rat fibroblasts. Elevated expression of either PLD1 or PLD2 in 3Y1 cells led to apoptosis in the absence of serum. Elevated PLD expression resulted in reduced cell viability and the cleavage of the caspase 3 substrates poly-ADP-ribose polymerase (PARP) and protein kinase C delta. Elevated PLD expression also stimulated cytochrome c release, indicating that the mitochondrial apoptosis pathway was activated. Thus, while elevated PLD expression can transform cells with elevated tyrosine kinase expression, elevated expression of PLD activity in normal cells renders cells sensitive to apoptotic insult.
Collapse
Affiliation(s)
- Minghao Zhong
- Department of Biological Sciences, Hunter College of The City University of New York, 695 Park Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
62
|
Abstract
Structural studies of plant and bacterial members of the phospholipase D (PLD) superfamily are providing information about the role of the conserved HKD domains in the structure of the catalytic center and the catalytic mechanism of mammalian PLD isozymes (PLD1 and PLD2). Mutagenesis and sequence comparison studies have also defined the presence of pleckstrin homology and phox homology domains in the N-terminus and have demonstrated that a conserved sequence at the C-terminus is required for catalysis. The N- and C-terminal regions of PLD1 also contain interaction sites for protein kinase C, which can directly activate the enzyme through a non-phosphorylating mechanism. Small G proteins of the Rho and ADP-ribosylation factor families also directly regulate the enzyme, with RhoA binding to a sequence in the C-terminus. Certain tyrosine kinases and members of the Ras subfamily of small G proteins can activate the enzyme, but the mechanisms appear to be indirect. The mechanisms by which agonists activate PLD in vivo probably involve multiple pathways.
Collapse
Affiliation(s)
- John H Exton
- Howard Hughes Medical Institute and Vanderbilt University Medical Center, Nashville, TN 38232-0295, USA.
| |
Collapse
|
63
|
Hamad NM, Elconin JH, Karnoub AE, Bai W, Rich JN, Abraham RT, Der CJ, Counter CM. Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev 2002; 16:2045-57. [PMID: 12183360 PMCID: PMC186434 DOI: 10.1101/gad.993902] [Citation(s) in RCA: 321] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The spectrum of tumors associated with oncogenic Ras in humans often differs from those in mice either treated with carcinogens or engineered to sporadically express oncogenic Ras, suggesting that the mechanism of Ras transformation may be different in humans. Ras stimulates primarily three main classes of effector proteins, Rafs, PI3-kinase, and RalGEFs, with Raf generally being the most potent at transforming murine cells. Using oncogenic Ras mutants that activate single effectors as well as constitutively active effectors, we find that the RalGEF, and not the Raf or PI3-kinase pathway, is sufficient for Ras transformation in human cells. Thus, oncogenic Ras may transform murine and human cells by distinct mechanisms, and the RalGEF pathway--previously deemed to play a secondary role in Ras transformation--could represent a new target for anti-cancer therapy.
Collapse
Affiliation(s)
- Nesrin M Hamad
- Department of Pharmacology, Division of Neurology, Duke University Medical Center, Durham North Carolina 27710, USA
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Affiliation(s)
- J H Exton
- Howard Hughes Medical Institute, Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
65
|
Joseph T, Bryant A, Frankel P, Wooden R, Kerkhoff E, Rapp UR, Foster DA. Phospholipase D overcomes cell cycle arrest induced by high-intensity Raf signaling. Oncogene 2002; 21:3651-8. [PMID: 12032867 DOI: 10.1038/sj.onc.1205380] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2001] [Revised: 12/04/2001] [Accepted: 02/07/2002] [Indexed: 11/09/2022]
Abstract
Low level expression of an active Raf kinase results in a transformed phenotype; however, high intensity Raf signals block cell cycle progression. Phospholipase D (PLD) has been implicated in regulating cell cycle progression and PLD activity is elevated in Raf transformed cells. We report here that high intensity Raf signals reduce PLD activity and that elevated expression of either PLD1 or PLD2 prevents cell cycle arrest induced by high intensity Raf signals. Overexpression of either PLD1 or PLD2 also reversed increases in p21(Cip1) and protein kinase C delta (PKC delta) cleavage seen with high intensity Raf signals. These data indicate that PLD signaling provides a novel survival signal that overcomes cell cycle arrest induced by high intensity Raf signaling.
Collapse
Affiliation(s)
- Troy Joseph
- Department of Biological Sciences, Hunter College of The City University of New York, New York, NY 10021, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
Shen Y, Zheng Y, Foster DA. Phospholipase D2 stimulates cell protrusion in v-Src-transformed cells. Biochem Biophys Res Commun 2002; 293:201-6. [PMID: 12054584 DOI: 10.1016/s0006-291x(02)00204-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholipase D (PLD) activity has been implicated in several aspects of cell physiology including vesicle transport, signal transduction, cell proliferation, cytoskeletal structure, and oncogenic transformation. Two PLD isoforms (PLD1 and PLD2) have been identified and characterized. We have expressed both wild-type and catalytically inactive forms of PLD1 and PLD2 in 3Y1 rat fibroblasts and in 3Y1 cells transformed by v-Src, a tyrosine kinase that elevates PLD activity. The v-Src-transformed 3Y1 cells have small, but distinct cell protrusions, implicated in cell migration and metastasis. We report here that elevated expression of PLD2 substantially increased the length of the cell protrusions and that a catalytically inactive PLD2 mutant abolished the cell protrusions. The extended protrusions in the PLD2-overexpressing cells were dependent upon microtubule assembly. These data suggest a role for PLD2 in the v-Src-mediated formation of cell protrusions that may be critical for the invasive properties of v-Src-transformed cells.
Collapse
Affiliation(s)
- Yingjie Shen
- Department of Biological Sciences, Hunter College of The City University of New York, New York 10021, USA
| | | | | |
Collapse
|
67
|
Wilde C, Barth H, Sehr P, Han L, Schmidt M, Just I, Aktories K. Interaction of the Rho-ADP-ribosylating C3 exoenzyme with RalA. J Biol Chem 2002; 277:14771-6. [PMID: 11847234 DOI: 10.1074/jbc.m201072200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
RhoA, -B, and -C are ADP-ribosylated and biologically inactivated by Clostridium botulinum C3 exoenzyme and related C3-like transferases. We report that RalA GTPase, which is not ADP-ribosylated by C3, inhibits ADP-ribosylation of RhoA by C3 from C. botulinum (C3bot), Clostridium limosum (C3lim), and Bacillus cereus (C3cer) but not from Staphylococcus aureus (C3stau) in human platelet membranes and rat brain lysate. Inhibition by RalA occurs with the GDP- and guanosine 5'-3-O-(thio)triphosphate-bound forms of RalA and is overcome by increasing concentrations of C3. A direct interaction of RalA with C3 was verified by precipitation of the transferase with GST-RalA-Sepharose. The affinity constant (K(d)) of the binding of RalA to C3lim was 12 nm as determined by fluorescence titration. RalA increased the NAD glycohydrolase activity of C3bot by about 5-fold. Although RalA had no effect on glucosylation of Rho GTPases by Clostridium difficile toxin B, C3bot and C3lim inhibited glucosylation of RalA by Clostridium sordellii lethal toxin. Furthermore, C3bot decreased activation of phospholipase D by RalA. The data indicate that several C3 exoenzymes directly interact with RalA without ADP-ribosylating the GTPase. The interaction is of high affinity and interferes with essential functions of C3 and RalA.
Collapse
Affiliation(s)
- Christian Wilde
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Albert-Ludwigs-Universität Freiburg, Otto-Krayer-Haus, Albertstrasse 25, D-79104 Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
68
|
Tian X, Rusanescu G, Hou W, Schaffhausen B, Feig LA. PDK1 mediates growth factor-induced Ral-GEF activation by a kinase-independent mechanism. EMBO J 2002; 21:1327-38. [PMID: 11889038 PMCID: PMC125928 DOI: 10.1093/emboj/21.6.1327] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2001] [Revised: 12/21/2001] [Accepted: 01/28/2002] [Indexed: 01/26/2023] Open
Abstract
Ras proteins transduce extracellular signals to intracellular signaling pathways by binding to and promoting the activation of at least three classes of downstream signaling molecules: Raf kinases, phosphoinositide-3-kinase (PI3-K) and Ral guanine nucleotide exchange factors (Ral-GEFs). Previous work has demonstrated that epidermal growth factor (EGF) activates Ral-GEFs, at least in part, by a Ras-mediated redistribution of the GEFs to their target, Ral-GTPases, in the plasma membrane. Here we show that Ral-GEF stimulation by EGF involves an additional mechanism, PI3-K-dependent kinase 1 (PDK1)-induced enhancement of Ral-GEF catalytic activity. Remarkably, this PDK1 function is not dependent upon its kinase activity. Instead, the non-catalytic N-terminus of PDK1 mediates the formation of an EGF-induced complex with the N-terminus of the Ral-GEF, Ral-GDS, thereby relieving its auto-inhibitory effect on the catalytic domain of Ral-GDS. These results elucidate a novel function for PDK1 and demonstrate that two Ras effector pathways cooperate to promote Ral-GTPase activation.
Collapse
Affiliation(s)
| | | | | | | | - Larry A. Feig
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111, USA
Corresponding author e-mail:
| |
Collapse
|
69
|
Zhong M, Lu Z, Foster DA. Downregulating PKC delta provides a PI3K/Akt-independent survival signal that overcomes apoptotic signals generated by c-Src overexpression. Oncogene 2002; 21:1071-8. [PMID: 11850824 DOI: 10.1038/sj.onc.1205165] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2001] [Revised: 11/02/2001] [Accepted: 11/08/2001] [Indexed: 11/09/2022]
Abstract
3Y1 rat fibroblasts overexpressing the tyrosine kinase c-Src (3Y1(c-Src) cells) become transformed by downregulation of protein kinase C delta (PKC delta). However, when 3Y1(c-Src) cells were subjected to serum withdrawal, they underwent apoptosis via a cytochrome c/caspase 9 pathway. In contrast, neither parental nor v-Src-transformed 3Y1 cells underwent apoptosis when subjected to serum withdrawal. If PKC delta was downregulated, the apoptotic phenotypes induced by serum withdrawal in the 3Y1(c-Src) cells were suppressed. The apparent survival signal generated by PKC delta downregulation was independent of the phosphatidylinositol-3-kinase (PI3K)/Akt survival pathway. Collectively, these data indicate that (1) c-Src overexpression renders cells sensitive to apoptotic stress, and (2) that downregulation of PKC delta provides a novel PI3K/Akt-independent survival signal capable of suppressing apoptotic signals.
Collapse
Affiliation(s)
- Minghao Zhong
- Department of Biological Sciences, Hunter College of The City University of New York, NY 10021, USA
| | | | | |
Collapse
|
70
|
Denmat-Ouisse LA, Phebidias C, Honkavaara P, Robin P, Geny B, Min DS, Bourgoin S, Frohman MA, Raymond MN. Regulation of constitutive protein transit by phospholipase D in HT29-cl19A cells. J Biol Chem 2001; 276:48840-6. [PMID: 11687572 DOI: 10.1074/jbc.m104276200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase D (PLD) plays a central role in the control of vesicle budding and protein transit. We previously showed that in resting epithelial HT29-cl19A cells, PLD is implicated in the control of constitutive protein transit, from the trans-Golgi network to the plasma membrane, and that phorbol ester stimulation of protein transit is correlated with PLD activation (Auger, R., Robin, P., Camier, B., Vial, G., Rossignol, B., Tenu, J.-P., and Raymond, M.-N. (1999) J. Biol. Chem. 274, 28652-28659). In this paper we demonstrate that: 1) PLD is not implicated in the earliest phases of protein transit; 2) PLD controls apical but not basolateral protein transit; 3) HT29-cl19A cells express PLD1b and PLD2a mRNAs and proteins; 4) the expression of a catalytically inactive mutant of PLD2 (mPLD2-K758R) significantly inhibited apical constitutive protein transit whereas expression of a catalytically inactive mutant of PLD1 (hPLD1b-K898R) prevented increases in the rate of apical transit as triggered by phorbol esters; 5) PLD2 appears to be located in a perinuclear region containing the Golgi whereas PLD1, which is scattered in the cytoplasm in resting cells, is translocated to the plasma membrane after phorbol ester stimulation. Taken together, these data lead to the conclusion that in HT29-cl19A cells, both PLDs regulate protein transit between the trans-Golgi network and the apical plasma membrane, but that they do so at different steps in the pathway.
Collapse
Affiliation(s)
- L A Denmat-Ouisse
- Laboratoire de Biochimie des Transports Cellulaires, CNRS, U.M.R. 8619, bâtiment 430, Université Paris XI, 91405 Orsay Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Joseph T, Wooden R, Bryant A, Zhong M, Lu Z, Foster DA. Transformation of cells overexpressing a tyrosine kinase by phospholipase D1 and D2. Biochem Biophys Res Commun 2001; 289:1019-24. [PMID: 11741292 DOI: 10.1006/bbrc.2001.6118] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholipase D (PLD) activity is elevated in response to most mitogenic signals. Two mammalian PLD genes (PLD1 and PLD2) have been cloned and their gene products have been characterized. PLD1 is a downstream target of the Ras/RalA GTPase cascade implicated in mitogenic and oncogenic signaling. Consistent with a role in mitogenic signaling, elevated expression of PLD1 transforms cells overexpressing the epidermal growth factor (EGF) receptor (EGFR). However, PLD2 colocalizes with the EGFR in caveolin-enriched light membrane microdomains. We therefore investigated whether PLD2 could also contribute to the transformation of cells overexpressing a tyrosine kinase. We report here that elevated expression of PLD2 transforms rat fibroblasts overexpressing either the EGFR or c-Src. Since overexpression of a tyrosine kinase is a common genetic alteration in several human cancers, these data suggest that elevation of either PLD1 or PLD2 may contribute to the progression to a malignant phenotype in cells with elevated tyrosine kinase activity.
Collapse
Affiliation(s)
- T Joseph
- Department of Biological Sciences, Hunter College, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
72
|
De Ruiter ND, Burgering BM, Bos JL. Regulation of the Forkhead transcription factor AFX by Ral-dependent phosphorylation of threonines 447 and 451. Mol Cell Biol 2001; 21:8225-35. [PMID: 11689711 PMCID: PMC99987 DOI: 10.1128/mcb.21.23.8225-8235.2001] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2001] [Accepted: 08/20/2001] [Indexed: 01/09/2023] Open
Abstract
AFX is a Forkhead transcription factor that induces a G(1) cell cycle arrest via upregulation of the cell cycle inhibitor p27(Kip1). Previously we have shown that protein kinase B (PKB) phosphorylates AFX causing inhibition of AFX by nuclear exclusion. In addition, Ras, through the activation of the RalGEF-Ral pathway, induces phosphorylation of AFX. Here we show that the Ras-Ral pathway provokes phosphorylation of threonines 447 and 451 in the C terminus of AFX. A mutant protein in which both threonines are substituted for alanines (T447A/T451A) still responds to PKB-regulated nuclear-cytoplasmic shuttling, but transcriptional activity and consequent G(1) cell cycle arrest are greatly impaired. Furthermore, inhibition of the Ral signaling pathway abolishes both AFX-mediated transcription and regulation of p27(Kip1), while activation of Ral augments AFX activity. From these results we conclude that Ral-mediated phosphorylation of threonines 447 and 451 is required for proper activity of AFX-WT. Interestingly, the T447A/T451A mutation did not affect the induction of transcription and G(1) cell cycle arrest by the PKB-insensitive AFX-A3 mutant, suggesting that Ral-mediated phosphorylation plays a role in the regulation of AFX by PKB.
Collapse
Affiliation(s)
- N D De Ruiter
- Department of Physiological Chemistry and Centre for Biomedical Genetics, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | | | | |
Collapse
|
73
|
Mwanjewe J, Spitaler M, Ebner M, Windegger M, Geiger M, Kampfer S, Hofmann J, Uberall F, Grunicke HH. Regulation of phospholipase D isoenzymes by transforming Ras and atypical protein kinase C-iota. Biochem J 2001; 359:211-7. [PMID: 11563985 PMCID: PMC1222137 DOI: 10.1042/0264-6021:3590211] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The activation of phospholipase D (PLD) by transforming Ras is well documented. Although two distinct PLD isoforms, PLD1 and PLD2, have been cloned from mammalian cells, it has remained unclear whether both isoenzymes are activated by Ras and, if this is the case, whether they are stimulated by a common mechanism. In the present study we show that expression of transforming Ras in HC11 mouse mammary epithelial cells enhanced the activity of endogenous PLD. Co-expression of Ras with either PLD1b or PLD2 resulted in elevated activities of both PLD isoenzymes in HC11 cells, indicating that transforming Ras was capable of activating both PLD isoforms in vivo. Ras-induced activation of PLD was resistant to the protein kinase C (PKC) inhibitor GF109203X, which preferentially affects conventional- and novel-type PKCs, but sensitive to Ro-31-8220, which inhibits atypical PKCs more effectively. Co-transfection of atypical PKC-iota with either PLD1b or PLD2 led to a selective activation of PLD2 by PKC-iota, whereas PLD1b was not affected. PLD1b, however, was found to be a potent activator of PKC-iota, whereas PLD2 was less effective in this respect. The data suggest that PKC-iota acts upstream of PLD2 and that PLD1b is implicated in the activation of PKC-iota. The data are discussed as indicating a putative signalling cascade comprising Ras-->PLD1b-->PKC-iota-->PLD2. Evidence for the implication of this pathway in the transcriptional regulation of cyclin D1 is also presented.
Collapse
Affiliation(s)
- J Mwanjewe
- Institute of Medical Chemistry and Biochemistry, University of Innsbruck, Fritz-Pregl-Strasse 3/VI, A-6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Banno Y, Takuwa Y, Akao Y, Okamoto H, Osawa Y, Naganawa T, Nakashima S, Suh PG, Nozawa Y. Involvement of phospholipase D in sphingosine 1-phosphate-induced activation of phosphatidylinositol 3-kinase and Akt in Chinese hamster ovary cells overexpressing EDG3. J Biol Chem 2001; 276:35622-8. [PMID: 11468290 DOI: 10.1074/jbc.m105673200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase D (PLD), phosphatidylinositol 3-kinase (PI3K), and Akt are known to be involved in cellular signaling related to proliferation and cell survival. In this report, we provide evidence that PLD links sphingosine 1-phosphate (S1P)-induced activation of the G protein-coupled EDG3 receptor to stimulation of PI3K and its downstream effector Akt in Chinese hamster ovary (CHO) cells. S1P stimulation of EDG3-overexpressing CHO cells but not vector-transfected cells induced activation of PLD, PI3K, and Akt in a time- and dose-dependent manner. Akt phosphorylation was prevented by the PI3K inhibitors wortmannin and LY294002 (2-(4-monrpholinyl)-8-phenyl-4H-1-benzopyran-4-one), indicating that Akt activation was dependent on PI3K. S1P-induced activation of PI3K and Akt was abrogated by 1-butanol, which inhibited S1P-induced accumulation of phosphatidic acid by serving as a phosphatidyl group acceptor in the transphosphatidylation reaction catalyzed by PLD, whereas both PI3K and Akt activation were not inhibited by 2-butanol without such reaction. Co-expression of wild-type PLD2 with myc-Akt resulted in increased Akt activation in response to S1P. In contrast, co-expression of a catalytically inactive mutant of PLD2 eliminated the S1P-induced Akt activation. The treatment of EDG3-expressing CHO cells with exogenous Streptomyces chromofuscus PLD, which caused an accumulation of phosphatidic acid, resulted in increases in PI3K activity and the phosphorylation of Akt, the latter of which was completely abolished by LY294002. Furthermore, S1P-induced membrane ruffling, which was dependent on PI3K and Rac, was inhibited by 1-butanol, but not by 2-butanol. These results demonstrate that PLD participates in the activation of PI3K and Akt stimulation of EDG3 receptor.
Collapse
Affiliation(s)
- Y Banno
- Departments of Biochemistry and Internal Medicine, Gifu University School of Medicine, Gifu 500-8705, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Aznar S, Lacal JC. Searching new targets for anticancer drug design: the families of Ras and Rho GTPases and their effectors. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 67:193-234. [PMID: 11525383 DOI: 10.1016/s0079-6603(01)67029-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Ras superfamily of low-molecular-weight GTPases are proteins that, in response to diverse stimuli, control key cellular processes such as cell growth and development, apoptosis, lipid metabolism, cytoarchitecture, membrane trafficking, and transcriptional regulation. More than 100 genes of this superfamily grouped in six subfamilies have been described so far, pointing to the complexities and specificities of their cellular functions. Dysregulation of members of at least two of these families (the Ras and the Rho families) is involved in the events that lead to the uncontrolled proliferation and invasiveness of human tumors. In recent years, the cloning and characterization of downstream effectors for Ras and Rho proteins have given crucial clues to the specific pathways that lead to aberrant cellular growth and ultimately to tumorigenesis. A direct link between the functions of some of these effectors with the appearance of transformed cells and their ability to proliferate and invade surrounding tissues has been made. Accordingly, drugs that specifically alter their functions display antineoplasic properties, and some of these drugs are already under clinical trials. In this review, we survey the progress made in understanding the underlying molecular connections between carcinogenesis and the specific cellular functions elicited by some of these effectors. We also discuss new drugs with antineoplastic or antimetastatic activity that are targeted to specific effectors for Ras or Rho proteins.
Collapse
Affiliation(s)
- S Aznar
- Instituto de Investigaciones Biomédicas, CSIC, Madrid, Spain
| | | |
Collapse
|
76
|
Zong H, Kaibuchi K, Quilliam LA. The insert region of RhoA is essential for Rho kinase activation and cellular transformation. Mol Cell Biol 2001; 21:5287-98. [PMID: 11463812 PMCID: PMC87252 DOI: 10.1128/mcb.21.16.5287-5298.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RhoA is involved in multiple cellular processes, including cytoskeletal organization, gene expression, and transformation. These processes are mediated by a variety of downstream effector proteins. However, which effectors are involved in cellular transformation and how these proteins are activated following interaction with Rho remains to be established. A unique feature that distinguishes the Rho family from other Ras-related GTPases is the insert region, which may confer Rho-specific signaling events. Here we report that deletion of the insert region does not result in impaired effector binding. Instead, this insert deletion mutant (RhoDeltaRas, in which the insert helix has been replaced with loop 8 of Ras) acted in a dominant inhibitory fashion to block RhoA-induced transformation. Since RhoDeltaRas failed to promote stress fiber formation, we examined the ability of this mutant to bind to and subsequently activate Rho kinase. Surprisingly, RhoDeltaRas-GTP coprecipitated with Rho kinase but failed to activate it in vivo. These data suggested that the insert domain is not required for Rho kinase binding but plays a role in its activation. The constitutively active catalytic domain of Rho kinase did not promote focus formation alone or in the presence of Raf(340D) but cooperated with RhoDeltaRas to induce cellular transformation. This suggests that Rho kinase needs to cooperate with additional Rho effectors to promote transformation. Further, the Rho kinase catalytic domain reversed the inhibitory effect of RhoDeltaRas on Rho-induced transformation, suggesting that one of the downstream targets of Rho-induced transformation abrogated by RhoDeltaRas is indeed Rho kinase. In conclusion, we have demonstrated that the insert region of RhoA is required for Rho kinase activation but not for binding and that this kinase activity is required to induce morphologic transformation of NIH 3T3 cells.
Collapse
Affiliation(s)
- H Zong
- Department of Biochemistry and Molecular Biology and Walther Oncology Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
77
|
Hong JH, Oh SO, Lee M, Kim YR, Kim DU, Hur GM, Lee JH, Lim K, Hwang BD, Park SK. Enhancement of lysophosphatidic acid-induced ERK phosphorylation by phospholipase D1 via the formation of phosphatidic acid. Biochem Biophys Res Commun 2001; 281:1337-42. [PMID: 11243883 DOI: 10.1006/bbrc.2001.4517] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We made stable cell lines overexpressing PLD1 (GP-PLD1) from GP+envAm12 cell, a derivative of NIH 3T3 cell. PLD1 activity and extracellular signal-regulated kinase (ERK) phosphorylation were enhanced in GP-PLD1 cells by the treatment of lysophosphatidic acid (LPA). In contrast, these LPA-induced effects were attenuated with the pretreatment of pertussis toxin (PTX) or protein kinase C (PKC) inhibitor. Moreover, accumulation of phosphatidic acid (PA), a product of PLD action, potentiated the LPA-induced ERK activation in GP-PLD1 cells while blocking of PA production with the treatment of 1-butanol attenuated LPA-induced ERK phosphorylation. From these results, we suggest that LPA activate PLD1 through pertussis toxin-sensitive G protein and PKC-dependent pathways, then PA produced from PLD1 activation facilitate ERK phosphorylation.
Collapse
Affiliation(s)
- J H Hong
- Department of Pharmacology, School of Medicine, Taejon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Lucas L, Hernández-Alcoceba R, Penalva V, Lacal JC. Modulation of phospholipase D by hexadecylphosphorylcholine: a putative novel mechanism for its antitumoral activity. Oncogene 2001; 20:1110-7. [PMID: 11314048 DOI: 10.1038/sj.onc.1204216] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2000] [Revised: 12/28/2000] [Accepted: 01/03/2001] [Indexed: 11/08/2022]
Abstract
Hexadecylphosphorylcholine (HePC, D-18506, INN: Mitelfosine) belongs to the family of alkylphosphocholines with anticancer activity. Previous reports have related its antitumoral activity to their ability to interfere with phospholipid metabolism. However a clear mechanism of action has not been established yet. We have investigated the effect of HePC on two enzymes recently reported to play a role in cell growth proliferation, phospholipase D (PLD) and choline kinase (ChoK). Our results demonstrate that treatment with HePC induces a rapid stimulation of PLD, that may be achieved by PKC dependent or independent mechanisms, depending on the cell line investigated. Both PLD1 and PLD2 isoenzymes are sensitive to HePC activation. By contrast, no effect was observed by HePC on ChoK, a new target for anticancer drug development. Furthermore, in all cell lines tested, a chronic exposure of the cells to HePC abrogates PLD activation by either phorbol esters or HePC itself with no effect on total cellular PLD levels. This is reflected in a strong inhibition of PLD activity. We suggest that the inhibitory effects on PLD by HePC may be related to its antitumoral action.
Collapse
Affiliation(s)
- L Lucas
- Instituto de Investigaciones Biomédicas, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
79
|
Shen Y, Xu L, Foster DA. Role for phospholipase D in receptor-mediated endocytosis. Mol Cell Biol 2001; 21:595-602. [PMID: 11134345 PMCID: PMC86627 DOI: 10.1128/mcb.21.2.595-602.2001] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2000] [Accepted: 10/12/2000] [Indexed: 11/20/2022] Open
Abstract
In response to epidermal growth factor (EGF), the EGF receptor is endocytosed and degraded. A substantial lag period exists between endocytosis and degradation, suggesting that endocytosis is more than a simple negative feedback. Phospholipase D (PLD), which has been implicated in vesicle formation in the Golgi, is activated in response to EGF and other growth factors. We report here that EGF receptor endocytosis is dependent upon PLD and the PLD1 regulators, protein kinase C alpha and RalA. EGF-induced receptor degradation is accelerated by overexpression of either wild-type PLD1 or PLD2 and retarded by overexpression of catalytically inactive mutants of either PLD1 or PLD2. EGF-induced activation of mitogen-activated protein kinase, which is dependent upon receptor endocytosis, is also dependent upon PLD. These data suggest a role for PLD in signaling that facilitates receptor endocytosis.
Collapse
Affiliation(s)
- Y Shen
- Department of Biological Sciences, Hunter College of The City University of New York, New York, New York 10021, USA
| | | | | |
Collapse
|
80
|
Henry DO, Moskalenko SA, Kaur KJ, Fu M, Pestell RG, Camonis JH, White MA. Ral GTPases contribute to regulation of cyclin D1 through activation of NF-kappaB. Mol Cell Biol 2000; 20:8084-92. [PMID: 11027278 PMCID: PMC86418 DOI: 10.1128/mcb.20.21.8084-8092.2000] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Ral GTPases have been implicated as mediators of Ras-induced signal transduction from observations that Ral-specific guanine nucleotide exchange factors associate with Ras and are activated by Ras. The cellular role of Ral family proteins is unclear, as is the contribution that Ral may make to Ras-dependent signaling. Here we show that expression of activated Ral in quiescent rodent fibroblasts is sufficient to induce activation of NF-kappaB-dependent gene expression and cyclin D1 transcription, two key convergence points for mitogenic and survival signaling. The regulation of cyclin D1 transcription by Ral is dependent on NF-kappaB activation and is mediated through an NF-kappaB binding site in the cyclin D1 promoter. Ral activation of these responses is likely through an as yet uncharacterized effector pathway, as we find activation of NF-kappaB and the cyclin D1 promoter by Ral is independent of association of Ral with active phospholipase D1 or Ral-binding protein 1, two proteins proposed to mediate Ral function in cells.
Collapse
Affiliation(s)
- D O Henry
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
de Ruiter ND, Wolthuis RM, van Dam H, Burgering BM, Bos JL. Ras-dependent regulation of c-Jun phosphorylation is mediated by the Ral guanine nucleotide exchange factor-Ral pathway. Mol Cell Biol 2000; 20:8480-8. [PMID: 11046144 PMCID: PMC102154 DOI: 10.1128/mcb.20.22.8480-8488.2000] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The transcription factor c-Jun is critically involved in the regulation of proliferation and differentiation as well as cellular transformation induced by oncogenic Ras. The signal transduction pathways that couple Ras activation to c-Jun phosphorylation are still partially elusive. Here we show that an activated version of the Ras effector Rlf, a guanine nucleotide exchange factor (GEF) of the small GTPase Ral, can induce the phosphorylation of serines 63 and 73 of c-Jun. In addition, we show that growth factor-induced, Ras-mediated phosphorylation of c-Jun is abolished by inhibitory mutants of the RalGEF-Ral pathway. These results suggest that the RalGEF-Ral pathway plays a major role in Ras-dependent c-Jun phosphorylation. Ral-dependent regulation of c-Jun phosphorylation includes JNK, a still elusive JNKK, and possibly Src.
Collapse
Affiliation(s)
- N D de Ruiter
- Department of Physiological Chemistry and Centre for Biomedical Genetics, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
82
|
de Bruyn KM, de Rooij J, Wolthuis RM, Rehmann H, Wesenbeek J, Cool RH, Wittinghofer AH, Bos JL. RalGEF2, a pleckstrin homology domain containing guanine nucleotide exchange factor for Ral. J Biol Chem 2000; 275:29761-6. [PMID: 10889189 DOI: 10.1074/jbc.m001160200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ral is a ubiquitously expressed Ras-like small GTPase. Several guanine nucleotide exchange factors for Ral have been identified, including members of the RalGDS family, which exhibit a Ras binding domain and are regulated by binding to RasGTP. Here we describe a novel type of RalGEF, RalGEF2. This guanine nucleotide exchange factor has a characteristic Cdc25-like catalytic domain at the N terminus and a pleckstrin homology (PH) domain at the C terminus. RalGEF2 is able to activate Ral both in vivo and in vitro. Deletion of the PH domain results in an increased cytoplasmic localization of the protein and a corresponding reduction in activity in vivo, suggesting that the PH domain functions as a membrane anchor necessary for optimal activity in vivo.
Collapse
Affiliation(s)
- K M de Bruyn
- Department of Physiological Chemistry, University Medical Centre Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
Ligand binding to the EGF receptor initiates both the activation of mitogenic signal transduction pathways plus trafficking events that relocalize the receptor on the cell surface and within intracellular compartments. The trafficking compartments include caveolae, clathrin-coated pits, and various endosome populations prior to receptor degradation in lysosomes. Evidence is presented that distinct signaling pathways are initiated from these different compartments. These include the Ras/MAP kinase cascade and the PLC-dependent hydrolysis of PI-4,5 P(2). Multiple tyrosine kinase substrates that facilitate EGF receptor trafficking between these various compartments, as well as the participation of phosphoinositides and Ras-like G proteins in the trafficking pathway are also described.
Collapse
Affiliation(s)
- G Carpenter
- Department of Biochemistry, Vanderbilt University School of Medicine Nashville, TN 37232-0146, USA.
| |
Collapse
|
84
|
Xu L, Shen Y, Joseph T, Bryant A, Luo JQ, Frankel P, Rotunda T, Foster DA. Mitogenic phospholipase D activity is restricted to caveolin-enriched membrane microdomains. Biochem Biophys Res Commun 2000; 273:77-83. [PMID: 10873567 DOI: 10.1006/bbrc.2000.2907] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phospholipase D (PLD) activity is elevated in response to the oncogenic stimulus of several signaling oncogenes. PLD activity is also elevated in response to peptide growth factors, indicating that PLD likely plays an important role in mitogenic signaling. Many proteins that mediate mitogenic signaling are localized in caveolin-enriched membrane microdomains (CEMMs). We report here that the elevated PLD activity in NIH 3T3 cells transformed by activated oncogenic forms of Src, Ras, and Raf is largely restricted to the CEMMs. Likewise, the PLD activity stimulated by epidermal growth factor is also restricted to the CEMMs. Although both PLD1 and PLD2 were found in CEMMs, neither was particularly enriched in the CEMMs of the transformed relative to the parental cells, indicating that it is the specific activity of PLD that is increased in the CEMMs. An apparent PLD substrate specificity in transformed cells for phosphatidylcholine lacking arachidonate acyl groups is also explained by the localization of activity in the CEMMs where [(3)H]arachidonate-labeled PC was excluded. These data indicate that mitogenic signals through PLD are initiated in CEMMs where many signaling molecules colocalize.
Collapse
Affiliation(s)
- L Xu
- Department of Biological Sciences, Hunter College of the City University of New York, 695 Park Avenue, New York, New York, 10021 USA
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Goi T, Shipitsin M, Lu Z, Foster DA, Klinz SG, Feig LA. An EGF receptor/Ral-GTPase signaling cascade regulates c-Src activity and substrate specificity. EMBO J 2000; 19:623-30. [PMID: 10675331 PMCID: PMC305600 DOI: 10.1093/emboj/19.4.623] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
c-Src is a membrane-associated tyrosine kinase that can be activated by many types of extracellular signals, and can regulate the function of a variety of cellular protein substrates. We demonstrate that epidermal growth factor (EGF) and beta-adrenergic receptors activate c-Src by different mechanisms leading to the phosphorylation of distinct sets of c-Src substrates. In particular, we found that EGF receptors, but not beta(2)-adrenergic receptors, activated c-Src by a Ral-GTPase-dependent mechanism. Also, c-Src activated by EGF treatment or expression of constitutively activated Ral-GTPase led to tyrosine phosphorylation of Stat3 and cortactin, but not Shc or subsequent Erk activation. In contrast, c-Src activated by isoproterenol led to tyrosine phosphorylation of Shc and subsequent Erk activation, but not tyrosine phosphorylation of cortactin or Stat3. These results identify a role for Ral-GTPases in the activation of c-Src by EGF receptors and the coupling of EGF to transcription through Stat3 and the actin cytoskeleton through cortactin. They also show that c-Src kinase activity can be used differently by individual extracellular stimuli, possibly contributing to their ability to generate unique cellular responses.
Collapse
Affiliation(s)
- T Goi
- Department of Biochemistry, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | | | | | |
Collapse
|