51
|
Snaith HA, Marlett J, Forsburg SL. Ibp1p, a novel Cdc25-related phosphatase, suppresses Schizosaccharomyces pombe hsk1 ( cdc7). Curr Genet 2003; 44:38-48. [PMID: 14508607 DOI: 10.1007/s00294-003-0424-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2003] [Revised: 06/16/2003] [Accepted: 06/23/2003] [Indexed: 11/28/2022]
Abstract
We report the identification of a novel Cdc25-like protein phosphatase, Ibp1, in the fission yeast Schizosaccharomyces pombe. Ibp1 is closely related to the catalytic subunit of the Cdc25 dual-specificity phosphatases and has phosphatase activity in vitro. Over-production of catalytically active Ibp1 robustly suppresses a mutation in the replication initiation kinase Hsk1p, a member of the Cdc7 family of protein kinases and weakly suppresses mutation of Rad4/Cut5, a DNA polymerase epsilon-associated factor. Ibp1 is not required for viability, suggesting it may be a non-essential regulator of DNA replication or chromosome structure during S phase.
Collapse
Affiliation(s)
- Hilary A Snaith
- The Salk Institute, 10010 North Torrey Pines Road, La Jolla, CA 92037-1099, USA
| | | | | |
Collapse
|
52
|
Ishimi Y, Komamura-Kohno Y, Kwon HJ, Yamada K, Nakanishi M. Identification of MCM4 as a target of the DNA replication block checkpoint system. J Biol Chem 2003; 278:24644-50. [PMID: 12714602 DOI: 10.1074/jbc.m213252200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Inhibition of the progression of DNA replication prevents further initiation of DNA replication and allows cells to maintain arrested replication forks, but the proteins that are targets of the replication checkpoint system remain to be identified. We report here that human MCM4, a subunit of the putative DNA replicative helicase, is extensively phosphorylated in HeLa cells when they are incubated in the presence of inhibitors of DNA synthesis or are exposed to UV irradiation. The data presented here indicate that the consecutive actions of ATR-CHK1 and CDK2 kinases are involved in this phosphorylation in the presence of hydroxyurea. The phosphorylation sites in MCM4 were identified using specific anti-phosphoantibodies. Based on results that showed that the DNA helicase activity of the MCM4-6-7 complex is negatively regulated by CDK2 phosphorylation, we suggest that the phosphorylation of MCM4 in the checkpoint control inhibits DNA replication, which includes blockage of DNA fork progression, through inactivation of the MCM complex.
Collapse
Affiliation(s)
- Yukio Ishimi
- Biomolecular and Technology Department, Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida, Tokyo 194-8511, Japan.
| | | | | | | | | |
Collapse
|
53
|
Cuddihy AR, O'Connell MJ. Cell-cycle responses to DNA damage in G2. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 222:99-140. [PMID: 12503848 DOI: 10.1016/s0074-7696(02)22013-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cellular reproduction, at its basic level, is simply the passing of genetic information from a single parent cell into two daughter cells. As the cellular genome encodes all the information that defines a cell, it is crucial that the genome be accurately replicated. Furthermore, the duplicated genome must be properly segregated so that each daughter cell contains the exact same information as the parent cell. The processes by which this occurs is known as the cell cycle. The failure of either duplication or segregation of the genome can have disastrous consequences for an organism, including cancer and death. This article discusses what is known about checkpoints, the surveillance mechanisms that monitor both the fidelity and accuracy of DNA replication and segregation. Specifically, we will focus on the G2 checkpoint that is responsible for ensuring proper segregation of the duplicated genome into the daughter cells and how this checkpoint functions to arrest entry into mitosis in response to DNA damage.
Collapse
Affiliation(s)
- Andrew R Cuddihy
- Trescowthick Research Laboratories, Peter MacCallum Cancer Institute, Melbourne, Victoria 8006 Australia
| | | |
Collapse
|
54
|
Costanzo V, Shechter D, Lupardus PJ, Cimprich KA, Gottesman M, Gautier J. An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication. Mol Cell 2003; 11:203-13. [PMID: 12535533 DOI: 10.1016/s1097-2765(02)00799-2] [Citation(s) in RCA: 320] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We have analyzed how single-strand DNA gaps affect DNA replication in Xenopus egg extracts. DNA lesions generated by etoposide, a DNA topoisomerase II inhibitor, or by exonuclease treatment activate a DNA damage checkpoint that blocks initiation of plasmid and chromosomal DNA replication. The checkpoint is abrogated by caffeine and requires ATR, but not ATM, protein kinase. The block to DNA synthesis is due to inhibition of Cdc7/Dbf4 protein kinase activity and the subsequent failure of Cdc45 to bind to chromatin. The checkpoint does not require pre-RC assembly but requires loading of the single-strand binding protein, RPA, on chromatin. This is the biochemical demonstration of a DNA damage checkpoint that targets Cdc7/Dbf4 protein kinase.
Collapse
Affiliation(s)
- Vincenzo Costanzo
- Department of Genetics and Development, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
55
|
Williams DR, McIntosh JR. mcl1+, the Schizosaccharomyces pombe homologue of CTF4, is important for chromosome replication, cohesion, and segregation. EUKARYOTIC CELL 2002; 1:758-73. [PMID: 12455694 PMCID: PMC126746 DOI: 10.1128/ec.1.5.758-773.2002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2002] [Accepted: 06/26/2002] [Indexed: 11/20/2022]
Abstract
The fission yeast minichromosome loss mutant mcl1-1 was identified in a screen for mutants defective in chromosome segregation. Missegregation of the chromosomes in mcl1-1 mutant cells results from decreased centromeric cohesion between sister chromatids. mcl1+ encodes a beta-transducin-like protein with similarity to a family of eukaryotic proteins that includes Ctf4p from Saccharomyces cerevisiae, sepB from Aspergillus nidulans, and AND-1 from humans. The previously identified fungal members of this protein family also have chromosome segregation defects, but they primarily affect DNA metabolism. Chromosomes from mcl1-1 cells were heterogeneous in size or structure on pulsed-field electrophoresis gels and had elongated heterogeneous telomeres. mcl1-1 was lethal in combination with the DNA checkpoint mutations rad3delta and rad26delta, demonstrating that loss of Mcl1p function leads to DNA damage. mcl1-1 showed an acute sensitivity to DNA damage that affects S-phase progression. It interacts genetically with replication components and causes an S-phase delay when overexpressed. We propose that Mcl1p, like Ctf4p, has a role in regulating DNA replication complexes.
Collapse
Affiliation(s)
- Dewight R Williams
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA.
| | | |
Collapse
|
56
|
Fung AD, Ou J, Bueler S, Brown GW. A conserved domain of Schizosaccharomyces pombe dfp1(+) is uniquely required for chromosome stability following alkylation damage during S phase. Mol Cell Biol 2002; 22:4477-90. [PMID: 12052858 PMCID: PMC133926 DOI: 10.1128/mcb.22.13.4477-4490.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2001] [Revised: 01/31/2002] [Accepted: 03/25/2002] [Indexed: 11/20/2022] Open
Abstract
The fission yeast Dbf4 homologue Dfp1 has a well-characterized role in regulating the initiation of DNA replication. Sequence analysis of Dfp1 homologues reveals three highly conserved regions, referred to as motifs N, M, and C. To determine the roles of these conserved regions in Dfp1 function, we have generated dfp1 alleles with mutations in these regions. Mutations in motif N render cells sensitive to a broad range of DNA-damaging agents and replication inhibitors, yet these mutant proteins are efficient activators of Hsk1 kinase in vitro. In contrast, mutations in motif C confer sensitivity to the alkylating agent methyl methanesulfonate (MMS) but, surprisingly, not to UV, ionizing radiation, or hydroxyurea. Motif C mutants are poor activators of Hsk1 in vitro but can fulfill the essential function(s) of Dfp1 in vivo. Strains carrying dfp1 motif C mutants have an intact mitotic and intra-S-phase checkpoint, and epistasis analysis indicates that dfp1 motif C mutants function outside of the known MMS damage repair pathways, suggesting that the observed MMS sensitivity is due to defects in recovery from DNA damage. The motif C mutants are most sensitive to MMS during S phase and are partially suppressed by deletion of the S-phase checkpoint kinase cds1. Following treatment with MMS, dfp1 motif C mutants exhibit nuclear fragmentation, chromosome instability, precocious recombination, and persistent checkpoint activation. We propose that Dfp1 plays at least two genetically separable roles in the DNA damage response in addition to its well-characterized role in the initiation of DNA replication and that motif C plays a critical role in the response to alkylation damage, perhaps by restarting or stabilizing stalled replication forks.
Collapse
Affiliation(s)
- Amy D Fung
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | | | |
Collapse
|
57
|
Masai H, Arai KI. Cdc7 kinase complex: a key regulator in the initiation of DNA replication. J Cell Physiol 2002; 190:287-96. [PMID: 11857444 DOI: 10.1002/jcp.10070] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA replication results from the action of a staged set of highly regulated processes. Among the stages of DNA replication, initiation is the key point at which all the G1 regulatory signals culminate. Cdc7 kinase is the critical regulator for the ultimate firing of the origins of initiation. Cdc7, originally identified in budding yeast and later in higher eukaryotes, forms a complex with a Dbf4-related regulatory subunit to generate an active kinase. Genetic evidence in mammals demonstrates essential roles for Cdc7 in mammalian DNA replication. Mini-chromosome maintenance protein (MCM) is the major physiological target of Cdc7. Genetic studies in yeasts indicate additional roles of Cdc7 in meiosis, checkpoint responses, maintenance of chromosome structures, and repair. The interplay between Cdc7 and Cdk, another kinase essential for the S phase, is also discussed.
Collapse
Affiliation(s)
- Hisao Masai
- Department of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Minato-ku, Tokyo, Japan.
| | | |
Collapse
|
58
|
Tanaka K, Russell P. Mrc1 channels the DNA replication arrest signal to checkpoint kinase Cds1. Nat Cell Biol 2001; 3:966-72. [PMID: 11715017 DOI: 10.1038/ncb1101-966] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Checkpoint responses change as cells proceed through the cell cycle. Here we describe a novel checkpoint gene in fission yeast, mrc1 (mediator of replication checkpoint), that confers activation of the checkpoint kinase Cds1 to DNA synthesis (S) phase. Mrc1 associates with Cds1 and is required for regulation of Cds1 by the checkpoint kinase Rad3. Mrc1 is regulated by the cell cycle, with the appearance of Mrc1 mRNA and protein coinciding with S phase. We propose that coordinated expression of Mrc1 with replication control proteins helps to ensure activation of the appropriate checkpoint response during DNA replication.
Collapse
Affiliation(s)
- K Tanaka
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
59
|
Liang DT, Forsburg SL. Characterization of Schizosaccharomyces pombe mcm7(+) and cdc23(+) (MCM10) and interactions with replication checkpoints. Genetics 2001; 159:471-86. [PMID: 11606526 PMCID: PMC1461838 DOI: 10.1093/genetics/159.2.471] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
MCM proteins are required for the proper regulation of DNA replication. We cloned fission yeast mcm7(+) and showed it is essential for viability; spores lacking mcm7(+) begin S phase later than wild-type cells and arrest with an apparent 2C DNA content. We isolated a novel temperature-sensitive allele, mcm7-98, and also characterized two temperature-sensitive alleles of the fission yeast homolog of MCM10, cdc23(+). mcm7-98 and both cdc23ts alleles arrest with damaged chromosomes and an S phase delay. We find that mcm7-98 is synthetically lethal with the other mcmts mutants but does not interact genetically with either cdc23ts allele. However, cdc23-M36 interacts with mcm4ts. Unlike other mcm mutants or cdc23, mcm7-98 is synthetically lethal with checkpoint mutants Deltacds1, Deltachk1, or Deltarad3, suggesting chromosomal defects even at permissive temperature. Mcm7p is a nuclear protein throughout the cell cycle, and its localization is dependent on the other MCM proteins. Our data suggest that the Mcm3p-Mcm5p dimer interacts with the Mcm4p-Mcm6p-Mcm7p core complex through Mcm7p.
Collapse
Affiliation(s)
- D T Liang
- Department of Biology, University of California, San Diego, 92093, USA
| | | |
Collapse
|
60
|
Takeda T, Ogino K, Tatebayashi K, Ikeda H, Arai Ki, Masai H. Regulation of initiation of S phase, replication checkpoint signaling, and maintenance of mitotic chromosome structures during S phase by Hsk1 kinase in the fission yeast. Mol Biol Cell 2001; 12:1257-74. [PMID: 11359920 PMCID: PMC34582 DOI: 10.1091/mbc.12.5.1257] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2000] [Revised: 12/27/2000] [Accepted: 02/20/2001] [Indexed: 01/31/2023] Open
Abstract
Hsk1, Saccharomyces cerevisiae Cdc7-related kinase in Shizosaccharomyces pombe, is required for G1/S transition and its kinase activity is controlled by the regulatory subunit Dfp1/Him1. Analyses of a newly isolated temperature-sensitive mutant, hsk1-89, reveal that Hsk1 plays crucial roles in DNA replication checkpoint signaling and maintenance of proper chromatin structures during mitotic S phase through regulating the functions of Rad3 (ATM)-Cds1 and Rad21 (cohesin), respectively, in addition to expected essential roles for initiation of mitotic DNA replication through phosphorylating Cdc19 (Mcm2). Checkpoint defect in hsk1-89 is indicated by accumulation of cut cells at 30 degrees C. hsk1-89 displays synthetic lethality in combination with rad3 deletion, indicating that survival of hsk1-89 depends on Rad3-dependent checkpoint pathway. Cds1 kinase activation, which normally occurs in response to early S phase arrest by nucleotide deprivation, is largely impaired in hsk1-89. Furthermore, Cds1-dependent hyperphosphorylation of Dfp1 in response to hydroxyurea arrest is eliminated in hsk1-89, suggesting that sufficient activation of Hsk1-Dfp1 kinase is required for S phase entry and replication checkpoint signaling. hsk1-89 displays apparent defect in mitosis at 37 degrees C leading to accumulation of cells with near 2C DNA content and with aberrant nuclear structures. These phenotypes are similar to those of rad21-K1 and are significantly enhanced in a hsk1-89 rad21-K1 double mutant. Consistent with essential roles of Rad21 as a component for the cohesin complex, sister chromatid cohesion is partially impaired in hsk1-89, suggesting a possibility that infrequent origin firing of the mutant may affect the cohesin functions during S phase.
Collapse
Affiliation(s)
- T Takeda
- Departments of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan.
| | | | | | | | | | | |
Collapse
|
61
|
Abstract
Control of mitotic entry is a component of the checkpoint response that contributes to cell survival following DNA damage. In some eukaryotic cells, mitotic entry relies heavily on regulation of the state of tyrosine phosphorylation of the cyclin-dependent kinase Cdc2. Evidence that checkpoint regulation of cell-cycle progression operates through controlling the state of Cdc2 tyrosine phosphorylation exists. Whether other targets of the checkpoint pathway could play important roles in the response to DNA damage is a subject of ongoing investigations.
Collapse
Affiliation(s)
- N C Walworth
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, The Cancer Institute of New Jersey, 675 Hoes Lane, Piscataway, New Jersey 08854-5635, USA.
| |
Collapse
|
62
|
|
63
|
Jares P, Donaldson A, Blow JJ. The Cdc7/Dbf4 protein kinase: target of the S phase checkpoint? EMBO Rep 2000; 1:319-22. [PMID: 11269496 PMCID: PMC1083750 DOI: 10.1093/embo-reports/kvd076] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2000] [Revised: 08/14/2000] [Accepted: 08/29/2000] [Indexed: 11/13/2022] Open
Abstract
Cdc7/Dbf4 is a protein kinase that is required for the initiation of DNA replication in eukaryotes. Recent work has provided new clues to the role that Cdc7/Dbf4 plays in this process. A range of other observations suggest that Cdc7/Dbf4 also plays another, less well characterized, role in checkpoint function and in the maintenance of genomic integrity. In this review we attempt to bring together new information to explain how Cdc7/Dbf4 may perform these two distinct functions.
Collapse
Affiliation(s)
- P Jares
- Department of Biochemistry, University of Dundee, UK.
| | | | | |
Collapse
|