51
|
Aoki E, Fujiwara K, Shimizu A, Takase-Yoden S, Ikeguchi M. Optimization of Haemophilus influenzae adhesin transmembrane domain expression in Escherichia coli. Protein Expr Purif 2017; 145:19-24. [PMID: 29284141 DOI: 10.1016/j.pep.2017.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 11/20/2022]
Abstract
To obtain a high yield of the transmembrane domain of Haemophilus influenzae adhesin (HiaTD) in Escherichia coli, we attempted to express the HiaTD with and without a signal sequence using a T7 expression system. The expression level of HiaTD after induction was followed by quantification of the purified HiaTD, flow cytometric analysis of the outer membrane integrated HiaTD, and immunoblotting assay of fractionated cell lysate. In the expression system with a signal sequence, although the amount of cell-surface-expressed HiaTD increased over time, the number of HiaTD-expressing cells decreased, probably because of plasmid instability. As a result, the amount of purified HiaTD reached a plateau at 2 h postinduction. Although expression without the signal sequence provides a large amount of proteins as inclusion bodies in some membrane proteins, HiaTD expressed without a signal sequence was not observed as inclusion bodies and seemed to be assembled into the outer membrane during or after cell lysis.
Collapse
Affiliation(s)
- Eriko Aoki
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Kazuo Fujiwara
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Akio Shimizu
- Department of Environmental Engineering for Symbiosis, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Sayaka Takase-Yoden
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Masamichi Ikeguchi
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan.
| |
Collapse
|
52
|
Webb CT, Chandrapala D, Oslan SN, Bamert RS, Grinter RD, Dunstan RA, Gorrell RJ, Song J, Strugnell RA, Lithgow T, Kwok T. Reductive evolution in outer membrane protein biogenesis has not compromised cell surface complexity in Helicobacter pylori. Microbiologyopen 2017; 6. [PMID: 29055967 PMCID: PMC5727368 DOI: 10.1002/mbo3.513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022] Open
Abstract
Helicobacter pylori is a gram‐negative bacterial pathogen that chronically inhabits the human stomach. To survive and maintain advantage, it has evolved unique host–pathogen interactions mediated by Helicobacter‐specific proteins in the bacterial outer membrane. These outer membrane proteins (OMPs) are anchored to the cell surface via a C‐terminal β‐barrel domain, which requires their assembly by the β‐barrel assembly machinery (BAM). Here we have assessed the complexity of the OMP C‐terminal β‐barrel domains employed by H. pylori, and characterized the H. pyloriBAM complex. Around 50 Helicobacter‐specific OMPs were assessed with predictive structural algorithms. The data suggest that H. pylori utilizes a unique β‐barrel architecture that might constitute H. pylori‐specific Type V secretions system. The structural and functional diversity in these proteins is encompassed by their extramembrane domains. Bioinformatic and biochemical characterization suggests that the low β‐barrel‐complexity requires only minimalist assembly machinery. The H. pylori proteins BamA and BamD associate to form a BAM complex, with features of BamA enabling an oligomerization that might represent a mechanism by which a minimalist BAM complex forms a larger, sophisticated machinery capable of servicing the outer membrane proteome of H. pylori.
Collapse
Affiliation(s)
- Chaille T. Webb
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Dilini Chandrapala
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| | - Siti Nurbaya Oslan
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Department of BiochemistryFaculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaSerdangSelangorMalaysia
- Enzyme and Microbial Technology Research CenterUniversiti Putra MalaysiaSerdangSelangorMalaysia
| | - Rebecca S. Bamert
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Rhys D. Grinter
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Rhys A. Dunstan
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Rebecca J. Gorrell
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| | - Jiangning Song
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
- Monash Centre for Data ScienceFaculty of Information TechnologyMonash UniversityMelbourneAustralia
| | - Richard A. Strugnell
- Department of Microbiology & ImmunologyUniversity of MelbourneParkvilleAustralia
| | - Trevor Lithgow
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Terry Kwok
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| |
Collapse
|
53
|
Peterson JH, Plummer AM, Fleming KG, Bernstein HD. Selective pressure for rapid membrane integration constrains the sequence of bacterial outer membrane proteins. Mol Microbiol 2017; 106:777-792. [PMID: 28941249 DOI: 10.1111/mmi.13845] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2017] [Indexed: 12/11/2022]
Abstract
Almost all bacterial outer membrane proteins (OMPs) contain a β barrel domain that serves as a membrane anchor, but the assembly and quality control of these proteins are poorly understood. Here, we show that the introduction of a single lipid-facing arginine residue near the middle of the β barrel of the Escherichia coli OMPs OmpLA and EspP creates an energy barrier that impedes membrane insertion. Although several unintegrated OmpLA mutants remained insertion-competent, they were slowly degraded by the periplasmic protease DegP. Two EspP mutants were also gradually degraded by DegP but were toxic because they first bound to the Bam complex, an essential heteroligomer that catalyzes the membrane insertion of OMPs. Interestingly, another EspP mutant likewise formed a prolonged, deleterious interaction with the Bam complex but was protected from degradation and eventually inserted into the membrane in a native conformation. The different types of interactions between the EspP mutants and the Bam complex that we observed may correspond to distinct stages in OMP assembly. Our results show that sequences that significantly delay assembly are disfavored not only because unintegrated OMPs are subjected to degradation, but also because OMPs that assemble slowly can form dominant-negative interactions with the Bam complex.
Collapse
Affiliation(s)
- Janine H Peterson
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD 20892, USA
| | - Ashlee M Plummer
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Harris D Bernstein
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
54
|
Vo JL, Martínez Ortiz GC, Subedi P, Keerthikumar S, Mathivanan S, Paxman JJ, Heras B. Autotransporter Adhesins in Escherichia coli Pathogenesis. Proteomics 2017; 17. [PMID: 28665015 DOI: 10.1002/pmic.201600431] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 06/21/2017] [Indexed: 12/14/2022]
Abstract
Most bacteria produce adhesion molecules to facilitate the interaction with host cells and establish successful infections. An important group of bacterial adhesins belong to the autotransporter (AT) superfamily, the largest group of secreted and outer membrane proteins in Gram-negative bacteria. AT adhesins possess diverse functions that facilitate bacterial colonisation, survival and persistence, and as such are often associated with increased bacterial fitness and pathogenic potential. In this review, we will describe AIDA-I type AT adhesins, which comprise the biggest and most diverse group in the AT family. We will focus on Escherichia coli proteins and define general aspects of their biogenesis, distribution, structural properties and key roles in infection.
Collapse
Affiliation(s)
- Julieanne L Vo
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Gabriela Constanza Martínez Ortiz
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Pramod Subedi
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Shivakumar Keerthikumar
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Jason J Paxman
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Begoña Heras
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
55
|
Casasanta MA, Yoo CC, Smith HB, Duncan AJ, Cochrane K, Varano AC, Allen-Vercoe E, Slade DJ. A chemical and biological toolbox for Type Vd secretion: Characterization of the phospholipase A1 autotransporter FplA from Fusobacterium nucleatum. J Biol Chem 2017; 292:20240-20254. [PMID: 29021252 PMCID: PMC5724010 DOI: 10.1074/jbc.m117.819144] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 10/10/2017] [Indexed: 01/28/2023] Open
Abstract
Fusobacterium nucleatum is an oral pathogen that is linked to multiple human infections and colorectal cancer. Strikingly, F. nucleatum achieves virulence in the absence of large, multiprotein secretion systems (Types I, II, III, IV, and VI), which are widely used by Gram-negative bacteria for pathogenesis. By contrast, F. nucleatum strains contain genomic expansions of Type V secreted effectors (autotransporters) that are critical for host cell adherence, invasion, and biofilm formation. Here, we present the first characterization of an F. nucleatum Type Vd phospholipase class A1 autotransporter (strain ATCC 25586, gene FN1704) that we hereby rename Fusobacterium phospholipase autotransporter (FplA). Biochemical analysis of multiple Fusobacterium strains revealed that FplA is expressed as a full-length 85-kDa outer membrane–embedded protein or as a truncated phospholipase domain that remains associated with the outer membrane. Whereas the role of Type Vd secretion in bacteria remains unidentified, we show that FplA binds with high affinity to host phosphoinositide-signaling lipids, revealing a potential role for this enzyme in establishing an F. nucleatum intracellular niche. To further analyze the role of FplA, we developed an fplA gene knock-out strain, which will guide future in vivo studies to determine its potential role in F. nucleatum pathogenesis. In summary, using recombinant FplA constructs, we have identified a biochemical toolbox that includes lipid substrates for enzymatic assays, potent inhibitors, and chemical probes to detect, track, and characterize the role of Type Vd secreted phospholipases in Gram-negative bacteria.
Collapse
Affiliation(s)
- Michael A Casasanta
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Christopher C Yoo
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Hans B Smith
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Alison J Duncan
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061
| | - Kyla Cochrane
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia V5Z 4S6, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada; Department of Biochemistry and Molecular Biology, Simon Fraser University, Vancouver, British Columbia V5A 1S6, Canada
| | - Ann C Varano
- Virginia Tech Carilion Research Institute, Roanoke, Virginia 24016
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Daniel J Slade
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061.
| |
Collapse
|
56
|
Gunasinghe SD, Webb CT, Elgass KD, Hay ID, Lithgow T. Super-Resolution Imaging of Protein Secretion Systems and the Cell Surface of Gram-Negative Bacteria. Front Cell Infect Microbiol 2017; 7:220. [PMID: 28611954 PMCID: PMC5447050 DOI: 10.3389/fcimb.2017.00220] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 05/12/2017] [Indexed: 12/28/2022] Open
Abstract
Gram-negative bacteria have a highly evolved cell wall with two membranes composed of complex arrays of integral and peripheral proteins, as well as phospholipids and glycolipids. In order to sense changes in, respond to, and exploit their environmental niches, bacteria rely on structures assembled into or onto the outer membrane. Protein secretion across the cell wall is a key process in virulence and other fundamental aspects of bacterial cell biology. The final stage of protein secretion in Gram-negative bacteria, translocation across the outer membrane, is energetically challenging so sophisticated nanomachines have evolved to meet this challenge. Advances in fluorescence microscopy now allow for the direct visualization of the protein secretion process, detailing the dynamics of (i) outer membrane biogenesis and the assembly of protein secretion systems into the outer membrane, (ii) the spatial distribution of these and other membrane proteins on the bacterial cell surface, and (iii) translocation of effector proteins, toxins and enzymes by these protein secretion systems. Here we review the frontier research imaging the process of secretion, particularly new studies that are applying various modes of super-resolution microscopy.
Collapse
Affiliation(s)
- Sachith D Gunasinghe
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash UniversityClayton, VIC, Australia
| | - Chaille T Webb
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash UniversityClayton, VIC, Australia
| | | | - Iain D Hay
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash UniversityClayton, VIC, Australia
| | - Trevor Lithgow
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash UniversityClayton, VIC, Australia
| |
Collapse
|
57
|
Guérin J, Bigot S, Schneider R, Buchanan SK, Jacob-Dubuisson F. Two-Partner Secretion: Combining Efficiency and Simplicity in the Secretion of Large Proteins for Bacteria-Host and Bacteria-Bacteria Interactions. Front Cell Infect Microbiol 2017; 7:148. [PMID: 28536673 PMCID: PMC5422565 DOI: 10.3389/fcimb.2017.00148] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/10/2017] [Indexed: 12/31/2022] Open
Abstract
Initially identified in pathogenic Gram-negative bacteria, the two-partner secretion (TPS) pathway, also known as Type Vb secretion, mediates the translocation across the outer membrane of large effector proteins involved in interactions between these pathogens and their hosts. More recently, distinct TPS systems have been shown to secrete toxic effector domains that participate in inter-bacterial competition or cooperation. The effects of these systems are based on kin vs. non-kin molecular recognition mediated by specific immunity proteins. With these new toxin-antitoxin systems, the range of TPS effector functions has thus been extended from cytolysis, adhesion, and iron acquisition, to genome maintenance, inter-bacterial killing and inter-bacterial signaling. Basically, a TPS system is made up of two proteins, the secreted TpsA effector protein and its TpsB partner transporter, with possible additional factors such as immunity proteins for protection against cognate toxic effectors. Structural studies have indicated that TpsA proteins mainly form elongated β helices that may be followed by specific functional domains. TpsB proteins belong to the Omp85 superfamily. Open questions remain on the mechanism of protein secretion in the absence of ATP or an electrochemical gradient across the outer membrane. The remarkable dynamics of the TpsB transporters and the progressive folding of their TpsA partners at the bacterial surface in the course of translocation are thought to be key elements driving the secretion process.
Collapse
Affiliation(s)
- Jeremy Guérin
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, USA
| | - Sarah Bigot
- Molecular Microbiology and Structural Biochemistry, Centre National de La Recherche Scientifique UMR 5086-Université Lyon 1, Institute of Biology and Chemistry of ProteinsLyon, France
| | - Robert Schneider
- NMR and Molecular Interactions, Université de Lille, Centre National de La Recherche Scientifique, UMR 8576-Unité de Glycobiologie Structurale et FonctionnelleLille, France
| | - Susan K Buchanan
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of HealthBethesda, MD, USA
| | - Françoise Jacob-Dubuisson
- Université de Lille, Centre National de La Recherche Scientifique, Institut National de La Santé et de La Recherche Médicale, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-Centre d'Infection et d'Immunité de LilleLille, France
| |
Collapse
|
58
|
Aoki E, Sato D, Fujiwara K, Ikeguchi M. Electrostatic Repulsion between Unique Arginine Residues Is Essential for the Efficient in Vitro Assembly of the Transmembrane Domain of a Trimeric Autotransporter. Biochemistry 2017; 56:2139-2148. [PMID: 28357859 DOI: 10.1021/acs.biochem.6b01130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Haemophilus influenzae adhesin (Hia) belongs to the trimeric autotransporter family and mediates the adherence of these bacteria to the epithelial cells of host organisms. Hia contains a passenger and a transmembrane domain. The transmembrane domain forms a 12-stranded β-barrel in which four strands are provided by each subunit. The β-barrel has a pore that is traversed by three α-helices. This domain has a unique arginine cluster, in which the side chains of the three arginine residues located at position 1077 (Arg1077) protrude into the pore of the β-barrel. This arrangement seems to be unfavorable for assembly, because of repulsion between the positive charges. In this study, we investigated the in vitro assembly of the Hia transmembrane minimum domain (mHiaTD) and found that the dissociated mHiaTD reassembled in detergent solution. To investigate the role of Arg1077 in trimer assembly, we generated mutant proteins in which Arg1077 was replaced with methionine or lysine. The reassembly kinetics of the mutants was compared with that of the wild-type protein. The methionine mutant showed misassembly, whereas the lysine mutant showed reversible assembly, similar to that observed for the wild-type protein. These results show that electrostatic repulsion between the positive charges of Arg1077 is important for preventing the formation of misassembled oligomers by the mHiaTD in vitro.
Collapse
Affiliation(s)
- Eriko Aoki
- Department of Bioinformatics, Soka University , 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Daisuke Sato
- Department of Bioinformatics, Soka University , 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Kazuo Fujiwara
- Department of Bioinformatics, Soka University , 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Masamichi Ikeguchi
- Department of Bioinformatics, Soka University , 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| |
Collapse
|
59
|
Ieva R. Interfering with outer membrane biogenesis to fight Gram-negative bacterial pathogens. Virulence 2017; 8:1049-1052. [PMID: 28277902 DOI: 10.1080/21505594.2017.1296617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Raffaele Ieva
- a Laboratoire de Microbiologie et de Génétique Moléculaires (LMGM) , Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS , Toulouse , France
| |
Collapse
|
60
|
Abstract
Coiled coils appear in countless structural contexts, as appendages to small proteins, as parts of multi-domain proteins, and as building blocks of filaments. Although their structure is unpretentious and their basic properties are understood in great detail, the spectrum of functional properties they provide in different proteins has become increasingly complex. This chapter aims to depict this functional spectrum, to identify common themes and their molecular basis, with an emphasis on new insights gained into dynamic aspects.
Collapse
Affiliation(s)
- Marcus D Hartmann
- Max Planck Institute for Developmental Biology, Spemannstraße 35, 72076, Tübingen, Germany.
| |
Collapse
|