51
|
Zhang L, Yao Y, Tian J, Jiang W, Zhou S, Chen J, Xu T, Wu M. Alterations and abnormal expression of A20 in peripheral monocyte subtypes in patients with rheumatoid arthritis. Clin Rheumatol 2020; 40:341-348. [PMID: 32488768 DOI: 10.1007/s10067-020-05137-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/21/2020] [Accepted: 05/01/2020] [Indexed: 10/24/2022]
Abstract
As the precursors of macrophages and osteoclasts, monocytes play an important role in the pathogenesis of rheumatoid arthritis (RA). Since the deficiency of zinc-finger protein A20 in myeloid cells triggers erosive polyarthritis resembling RA, A20 in monocytes may play a protective role in RA. In the present study, we aimed to investigate the abnormality of monocyte subtypes and the expression of zinc-finger protein A20 in RA. Peripheral blood mononuclear cells and clinical data were collected from RA patients and healthy controls (HCs). Monocyte subtypes and A20 expression were determined through flow cytometry and compared between the two groups. Correlations between monocyte subtypes, A20 expression, and clinical data were analyzed. A total of 43 RA patients and 23 HCs were included in the present study. RA patients had higher absolute monocyte counts (p < 0.001) in the peripheral blood. The proportions and counts of intermediate monocytes (IMs) (both p < 0.001) and non-classical monocytes (NCMs) were higher (both p < 0.001) in RA patients. The expression of A20 in IMs (p < 0.001) was lower in RA patients compared with that in the HCs. Furthermore, the expression of A20 in IMs was negatively correlated with the anti-cyclic citrullinated peptide (CCP) antibody level in RA patients (r = - 0.409, p = 0.01). The expression of A20 in NCMs was positively correlated with modified total Sharp score (mTSS) in RA patients (r = 0.471, p = 0.02). Collectively, we proved that IMs and NCMs were increased in RA patients, suggesting that they played a suggestive role in the pathogenesis of RA. Furthermore, the downregulation of A20 in IMs might be correlated with anti-CCP antibody production. The A20 expression in NCMs might affect bone erosion in RA. Key Points • IMs and NCMs were increased in the peripheral blood of RA patients, suggesting their pathogenic role in RA. • The decreased expression of zinc-finger protein A20 in IMs of RA patients suggested the protective role of A20 in RA. • The negative correlation between the A20 expression in IMs and anti-CCP antibody revealed that A20 in IMs might be related to the formation of anti-CCP antibodies. • The positive correlation between the A20 expression in NCMs and mTSS revealed that A20 in NCMs might affect the bone erosion in RA.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, People's Republic of China
| | - Yao Yao
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, People's Republic of China
| | - Junmei Tian
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, People's Republic of China
| | - Wanlan Jiang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, People's Republic of China
| | - Shiliang Zhou
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, People's Republic of China
| | - Jinyun Chen
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, People's Republic of China
| | - Ting Xu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, People's Republic of China.
| | - Min Wu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, People's Republic of China.
| |
Collapse
|
52
|
Fousert E, Toes R, Desai J. Neutrophil Extracellular Traps (NETs) Take the Central Stage in Driving Autoimmune Responses. Cells 2020; 9:cells9040915. [PMID: 32276504 PMCID: PMC7226846 DOI: 10.3390/cells9040915] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/15/2022] Open
Abstract
Following fifteen years of research, neutrophil extracellular traps (NETs) are widely reported in a large range of inflammatory infectious and non-infectious diseases. Cumulating evidences from in vitro, in vivo and clinical diagnostics suggest that NETs may play a crucial role in inflammation and autoimmunity in a variety of autoimmune diseases, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV). Most likely, NETs contribute to breaking self-tolerance in autoimmune diseases in several ways. During this review, we discuss the current knowledge on how NETs could drive autoimmune responses. NETs can break self-tolerance by being a source of autoantigens for autoantibodies found in autoimmune diseases, such as anti-citrullinated protein antibodies (ACPAs) in RA, anti-dsDNA in SLE and anti-myeloperoxidase and anti-protein 3 in AAV. Moreover, NET components could accelerate the inflammatory response by mediating complement activation, acting as danger-associated molecular patterns (DAMPs) and inflammasome activators, for example. NETs also can activate other immune cells, such as B cells, antigen-presenting cells and T cells. Additionally, impaired clearance of NETs in autoimmune diseases prolongs the presence of active NETs and their components and, in this way, accelerate immune responses. NETs have not only been implicated as drivers of inflammation, but also are linked to resolution of inflammation. Therefore, NETs may be central regulators of inflammation and autoimmunity, serve as biomarkers, as well as promising targets for future therapeutics of inflammatory autoimmune diseases.
Collapse
|
53
|
Native/citrullinated LL37-specific T-cells help autoantibody production in Systemic Lupus Erythematosus. Sci Rep 2020; 10:5851. [PMID: 32245990 PMCID: PMC7125190 DOI: 10.1038/s41598-020-62480-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/12/2020] [Indexed: 01/05/2023] Open
Abstract
LL37 exerts a dual pathogenic role in psoriasis. Bound to self-DNA/RNA, LL37 licenses autoreactivity by stimulating plasmacytoid dendritic cells-(pDCs)-Type I interferon (IFN-I) and acts as autoantigen for pathogenic Th17-cells. In systemic lupus erythematosus (SLE), LL37 also triggers IFN-I in pDCs and is target of pathogenic autoantibodies. However, whether LL37 activates T-cells in SLE and how the latter differ from psoriasis LL37-specific T-cells is unknown. Here we found that 45% SLE patients had circulating T-cells strongly responding to LL37, which correlate with anti-LL37 antibodies/disease activity. In contrast to psoriatic Th17-cells, these LL37-specific SLE T-cells displayed a T-follicular helper-(TFH)-like phenotype, with CXCR5/Bcl-6 and IL-21 expression, implicating a role in stimulation of pathogenic autoantibodies. Accordingly, SLE LL37-specific T-cells promoted B-cell secretion of pathogenic anti-LL37 antibodies in vitro. Importantly, we identified abundant citrullinated LL37 (cit-LL37) in SLE tissues (skin and kidney) and observed very pronounced reactivity of LL37-specific SLE T-cells to cit-LL37, compared to native-LL37, which was much more occasional in psoriasis. Thus, in SLE, we identified LL37-specific T-cells with a distinct functional specialization and antigenic specificity. This suggests that autoantigenic specificity is independent from the nature of the autoantigen, but rather relies on the disease-specific milieu driving T-cell subset polarization and autoantigen modifications.
Collapse
|
54
|
The double-edged role of neutrophil extracellular traps in inflammation. Biochem Soc Trans 2020; 47:1921-1930. [PMID: 31754705 DOI: 10.1042/bst20190629] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 02/06/2023]
Abstract
While there are numerous studies showing that neutrophil extracellular traps (NETs) contribute to autoimmune inflammation and cause bystander tissue injury, human individuals with genetic impairments in NET formation curiously often suffer from exacerbated autoimmune diseases and/or chronic inflammatory conditions. These findings are confirmed in some mouse models of systemic lupus erythematosus (SLE) and gouty arthritis, where an absence of neutrophils or impairment of NET formation leads to exacerbation of autoimmunity and chronic inflammation. Thus, aside from their role as archetypical pro-inflammatory cells, neutrophils in general, and NETs in particular, can also interrupt the self-amplifying loop of cell activation and cell recruitment that characterizes neutrophilic inflammation. Here, we review the current state-of-the-science regarding anti-inflammatory and immune-regulatory action of NETs. We give an overview about the mechanistic involvement of NET-associated neutrophil serine proteases and suggest how tailored induction of NET formation could be exploited for the treatment of chronic autoinflammatory disorders.
Collapse
|
55
|
Affiliation(s)
- Gustaf Wigerblad
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mariana J Kaplan
- Systemic Autoimmunity Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
56
|
Abstract
PURPOSE OF REVIEW To summarize recent evidence on the pathogenic effects of neutrophils and neutrophil extracellular traps (NETs) in autoimmune diseases, including systemic lupus erythematosus and rheumatoid arthritis. RECENT FINDINGS NETs can orchestrate innate and adaptive immune dysregulation through diverse mechanisms. NETs induce potent inflammatory responses and represent sources of many autoantigens, creating a feed-forward loop that may perpetuate disease and lead to organ damage. NETs are also increasingly relevant in atherosclerosis and could contribute to the increased risk of premature cardiovascular disease in patients with autoimmunity. SUMMARY NET formation is increased in a variety of autoimmune and autoinflammatory diseases and can have remarkable effects on cell and tissue-specific damage. Novel therapeutics that target NET formation or clearance is a promising strategy for clinical management of autoimmune diseases and may prevent chronic complications associated with these conditions.
Collapse
Affiliation(s)
- Rishi R Goel
- Systemic Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | | |
Collapse
|
57
|
Granger V, Peyneau M, Chollet-Martin S, de Chaisemartin L. Neutrophil Extracellular Traps in Autoimmunity and Allergy: Immune Complexes at Work. Front Immunol 2019; 10:2824. [PMID: 31849989 PMCID: PMC6901596 DOI: 10.3389/fimmu.2019.02824] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/15/2019] [Indexed: 12/17/2022] Open
Abstract
Neutrophil extracellular traps (NETs) have been initially described as main actors in host defense owing to their ability to immobilize and sometimes kill microorganisms. Subsequent studies have demonstrated their implication in the pathophysiology of various diseases, due to the toxic effects of their main components on surrounding tissues. Several distinct NETosis pathways have been described in response to various triggers. Among these triggers, IgG immune complexes (IC) play an important role since they induce robust NET release upon binding to activating FcγRs on neutrophils. Few in vitro studies have documented the mechanisms of IC-induced NET release and evidence about the partners involved is controversial. In vivo, animal models and clinical studies have strongly suggested the importance of IgG IC-induced NET release for autoimmunity and anaphylaxis. In this review, we will focus on two autoimmune diseases in which NETs are undoubtedly major players, systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA). We will also discuss anaphylaxis as another example of disease recently associated with IC-induced NET release. Understanding the role of IC-induced NETs in these settings will pave the way for new diagnostic tools and therapeutic strategies.
Collapse
Affiliation(s)
- Vanessa Granger
- Département d'Immunologie et d'Hématologie, UF Auto-immunité et Hypersensibilités, HUPNVS, Hôpital Bichat, Paris, France.,Inflammation Chimiokines et Immunopathologie, INSERM UMR996, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Marine Peyneau
- Département d'Immunologie et d'Hématologie, UF Auto-immunité et Hypersensibilités, HUPNVS, Hôpital Bichat, Paris, France.,Inflammation Chimiokines et Immunopathologie, INSERM UMR996, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Sylvie Chollet-Martin
- Département d'Immunologie et d'Hématologie, UF Auto-immunité et Hypersensibilités, HUPNVS, Hôpital Bichat, Paris, France.,Inflammation Chimiokines et Immunopathologie, INSERM UMR996, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Luc de Chaisemartin
- Département d'Immunologie et d'Hématologie, UF Auto-immunité et Hypersensibilités, HUPNVS, Hôpital Bichat, Paris, France.,Inflammation Chimiokines et Immunopathologie, INSERM UMR996, Faculté de Pharmacie, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|