51
|
Erdi-Krausz G, Rocha R, Brown A, Myneni A, Lennartsson F, Romsauerova A, Cianfaglione R, Edmonds CJ, Vollmer B. Neonatal hypoxic-ischaemic encephalopathy: Motor impairment beyond cerebral palsy. Eur J Paediatr Neurol 2021; 35:74-81. [PMID: 34666231 DOI: 10.1016/j.ejpn.2021.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/21/2021] [Accepted: 10/09/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Research investigating neuromotor function in the absence of cerebral palsy (CP) for children who had neonatal HIE is limited. AIMS To investigate school-age neurological and neuromotor function, and correlations with attention, neonatal Magnetic Resonance Imaging (MRI), and neuromotor assessments at toddler age. METHODS Twenty-seven children with neonatal HIE without CP who underwent hypothermia treatment and a comparison group of 20 children were assessed at age 5-7 years for Minor Neurological Dysfunction (MND; simplified Touwen), motor skills (Movement Assessment Battery for Children-2; MABC-2), parental concern over motor function (MABC Checklist), general cognition (Wechsler Preschool and Primary Scale of Intelligence-IV, WPPSI), and attention (DuPaul ADHD Rating Scale). Neurological examination and motor development, using Bayley-3 scales, at age 24-months was extracted from the clinical database. Clinical neonatal MRI was assessed for hypoxic-ischaemic injury. RESULTS In the HIE group, MND was more prevalent (p = 0.026) and M-ABC performance (total score p = 0.006; balance subtest p = 0.008) was worse; parents were more concerned about children's motor function (p = 0.011). HIE group inattention scores were higher (p = 0.032), which correlated with lower MABC-2 scores (rs = -0.590, p = 0.004). Neurological examination at 24-months correlated with MND (rs = 0.437, p = 0.033); Bayley-3 motor scores did not correlate with M-ABC-2 scores (rs = 368, p = 0.133). Neonatal MRI findings were not associated with school-age MND (rs = 0.140, p = 0.523) or MABC-2 (rs = 0.300, p = 0.165). CONCLUSIONS Children with neonatal HIE, without CP, treated with hypothermia may be more likely to develop MND and motor difficulties than typically developing peers. Inattention may contribute to motor performance. In the absence of CP, neonatal MRI and toddler age assessment of motor development have limited predictive value for school-age outcome. Since this was an exploratory study with a small sample size, findings should be confirmed by a definite larger study.
Collapse
Affiliation(s)
- Gergo Erdi-Krausz
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
| | - Ruben Rocha
- Centro Materno Infantil do Norte, Centro Hospitalar Universitário do Porto, Portugal
| | - Alice Brown
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
| | - Archana Myneni
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
| | - Finn Lennartsson
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK; Department of Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden
| | - Andrea Romsauerova
- Neuroradiology Department, University Hospital of Southampton NHS Foundation Trust, UK
| | - Rina Cianfaglione
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK
| | - Caroline J Edmonds
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK; School of Psychology, University of East London, London, UK
| | - Brigitte Vollmer
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, UK; Neonatal and Paediatric Neurology, Southampton Children's Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| |
Collapse
|
52
|
Wintermark P, Mohammad K, Bonifacio SL. Proposing a care practice bundle for neonatal encephalopathy during therapeutic hypothermia. Semin Fetal Neonatal Med 2021; 26:101303. [PMID: 34711527 DOI: 10.1016/j.siny.2021.101303] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Neonates with neonatal encephalopathy (NE) often present with multi-organ dysfunction that requires multidisciplinary specialized management. Care of the neonate with NE is thus complex with interaction between the brain and various organ systems. Illness severity during the first days of birth, and not only during the initial hypoxia-ischemia event, is a significant predictor of adverse outcomes in neonates with NE treated with therapeutic hypothermia (TH). We thus propose a care practice bundle dedicated to support the injured neonatal brain that is based on the current best evidence for each organ system. The impact of using such bundle on outcomes in NE remains to be demonstrated.
Collapse
Affiliation(s)
- Pia Wintermark
- Department of Pediatrics, Division of Newborn Medicine, Montreal Children's Hospital, McGill University, Montreal, QC, Canada.
| | - Khorshid Mohammad
- Department of Pediatrics, Section of Neonatology, University of Calgary, 28 Oki Drive NW, T3B 6A8, Calgary, AB, Canada.
| | - Sonia L Bonifacio
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine, 750 Welch Road, Suite 315, 94304, Palo Alto, CA, USA.
| | -
- Newborn Brain Society, PO Box 200783, Roxbury Crossing, 02120, MA, USA
| |
Collapse
|
53
|
Marlow N, Shankaran S, Rogers EE, Maitre NL, Smyser CD. Neurological and developmental outcomes following neonatal encephalopathy treated with therapeutic hypothermia. Semin Fetal Neonatal Med 2021; 26:101274. [PMID: 34330680 DOI: 10.1016/j.siny.2021.101274] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In randomized trials, therapeutic hypothermia (TH) is associated with reduced prevalence of the composite outcome mortality or neurodevelopmental morbidity in infants with neonatal encephalopathy (NE). Following systematic review, the reduction in prevalence of both mortality and infant neuromorbidity is clear. Among three trials reporting school age outcomes, the effects of NE and TH suggest that such benefit persists into middle childhood, but none of the major trials were powered to detect differences in these outcomes. Cognitive, educational and behavioural outcomes are all adversely affected by NE in children without moderate or severe neuromorbidity. High-quality longitudinal studies of neurocognitive and educational outcomes following NE in the era of TH, including studies incorporating multimodal neuroimaging assessments, are required to characterise deficits more precisely so that robust interventional targets may be developed, and resource planning can occur. Understanding the impact of NE on families and important educational, social, and behavioural outcomes in childhood is critical to attempts to optimise outcomes through interventions.
Collapse
Affiliation(s)
| | | | | | - Nathalie L Maitre
- Nationwide Children's Hospital, Columbus, OH, USA; Vanderbilt University, Nashville, TN, USA
| | | | | |
Collapse
|
54
|
Chakkarapani AA, Aly H, Benders M, Cotten CM, El-Dib M, Gressens P, Hagberg H, Sabir H, Wintermark P, Robertson NJ. Therapies for neonatal encephalopathy: Targeting the latent, secondary and tertiary phases of evolving brain injury. Semin Fetal Neonatal Med 2021; 26:101256. [PMID: 34154945 DOI: 10.1016/j.siny.2021.101256] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In term and near-term neonates with neonatal encephalopathy, therapeutic hypothermia protocols are well established. The current focus is on how to improve outcomes further and the challenge is to find safe and complementary therapies that confer additional protection, regeneration or repair in addition to cooling. Following hypoxia-ischemia, brain injury evolves over three main phases (latent, secondary and tertiary), each with a different brain energy, perfusion, neurochemical and inflammatory milieu. While therapeutic hypothermia has targeted the latent and secondary phase, we now need therapies that cover the continuum of brain injury that spans hours, days, weeks and months after the initial event. Most agents have several therapeutic actions but can be broadly classified under a predominant action (e.g., free radical scavenging, anti-apoptotic, anti-inflammatory, neuroregeneration, and vascular effects). Promising early/secondary phase therapies include Allopurinol, Azithromycin, Exendin-4, Magnesium, Melatonin, Noble gases and Sildenafil. Tertiary phase agents include Erythropoietin, Stem cells and others. We review a selection of promising therapeutic agents on the translational pipeline and suggest a framework for neuroprotection and neurorestoration that targets the evolving injury.
Collapse
Affiliation(s)
| | - Hany Aly
- Cleveland Clinic Children's Hospital, Cleveland, OH, USA.
| | - Manon Benders
- Department of Neonatology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - C Michael Cotten
- Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA.
| | - Mohamed El-Dib
- Department of Pediatric Newborn Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, Paris, France; Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, United Kingdom.
| | - Henrik Hagberg
- Centre for the Developing Brain, Department of Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, United Kingdom; Centre of Perinatal Medicine & Health, Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Hemmen Sabir
- Department of Neonatology and Pediatric Intensive Care, Children's Hospital University of Bonn, Bonn, Germany; German Centre for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Pia Wintermark
- Department of Pediatrics, Division of Newborn Medicine, Montreal Children's Hospital, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| | - Nicola J Robertson
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, Edinburgh BioQuarter, Edinburgh, United Kingdom; Institute for Women's Health, University College London, London, United Kingdom.
| | | |
Collapse
|
55
|
Edmonds CJ, Cianfaglione R, Cornforth C, Vollmer B. Children with neonatal Hypoxic Ischaemic Encephalopathy (HIE) treated with therapeutic hypothermia are not as school ready as their peers. Acta Paediatr 2021; 110:2756-2765. [PMID: 34160861 DOI: 10.1111/apa.16002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/12/2023]
Abstract
AIM We aimed to determine whether children with neonatal Hypoxic Ischaemic Encephalopathy (HIE) treated with therapeutic hypothermia (TH) differ from their peers on measures of fine motor skills, executive function, language and general cognitive abilities, factors that are important for school readiness. METHODS We compared school readiness in 31children with HIE treated with TH (without Cerebral Palsy; mean age 5 years 4 months) with 20 typically developing children without HIE (mean age 5 years 6 months). RESULTS Children with HIE scored significantly lower than typically developing children on fine motor skills, executive functions, memory and language. CONCLUSION While general cognitive abilities and attainment were in the normal range, our findings suggest those scores mask specific underlying difficulties identified by more focussed assessments. Children with HIE treated with TH may not be as 'school ready' as their typically developing classmates and may benefit from long-term follow-up until starting school.
Collapse
Affiliation(s)
- Caroline J Edmonds
- School of Psychology University of East London London UK
- Clinical and Experimental Sciences Faculty of Medicine Southampton General Hospital University of Southampton Southampton UK
| | - Rina Cianfaglione
- Clinical and Experimental Sciences Faculty of Medicine Southampton General Hospital University of Southampton Southampton UK
| | - Christine Cornforth
- Harris Wellbeing of Women Research Centre Liverpool Women's Hospital University of Liverpool Liverpool UK
| | - Brigitte Vollmer
- Clinical and Experimental Sciences Faculty of Medicine Southampton General Hospital University of Southampton Southampton UK
- Paediatric and Neonatal Neurology Southampton Children’s Hospital University Hospital Southampton NHS Foundation Trust Southampton UK
| |
Collapse
|
56
|
Long-Term Outcomes of Perinatal Hypoxia and Asphyxia at an Early School Age. MEDICINA-LITHUANIA 2021; 57:medicina57090988. [PMID: 34577911 PMCID: PMC8466311 DOI: 10.3390/medicina57090988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/12/2021] [Accepted: 09/16/2021] [Indexed: 11/29/2022]
Abstract
Background and Objectives: Late long-term outcomes of perinatal asphyxia (PA) in school-age are often unclear. To assess long-term outcomes at an early school age in children who had experienced perinatal hypoxia or asphyxia, where therapeutic hypothermia was not applied. Materials and Methods: The case group children were 8–9-year-old children (n = 32) who were born at full term and experienced hypoxia or asphyxia at birth, where therapeutic hypothermia (TH) was not applied. The control group consisted of 8–9-year-old children (n = 16) born without hypoxia. A structured neurological examination was performed at an early school age. The neuromotor function was assessed using the Gross Motor Function Classification System (GMFCS). Health-related quality-of-life was assessed using the Health Utilities Index (HUI) questionnaire. Intellectual abilities were assessed using the Wechsler Intelligence Scale for Children (WISC). Results: The case group, compared with controls, had significantly (p = 0.002) lower mean [SD] full-scale IQ (87(16.86) vs. 107(12.15)), verbal-scale IQ (89(17.45) vs. 105(11.55)), verbal comprehension index (89(17.36) vs. 105(10.74)), working memory index (89(15.68) vs. 104(11.84)), performance IQ (87(16.51) vs. 108(15.48)) and perceptual organization index (85(15.71) vs. 105(15.93)). We did not find any significant differences in the incidence of disorders of neurological examination, movement abilities and health-related quality of life at an early school age between the case and the control group children. Conclusion: In children who experienced perinatal asphyxia but did not have cerebral paralysis (CP), where therapeutic hypothermia was not applied, cognitive assessment scores at an early school age were significantly lower compared to those in the group of healthy children, and were at a low average level.
Collapse
|
57
|
Spencer APC, Byrne H, Lee-Kelland R, Jary S, Thoresen M, Cowan FM, Chakkarapani E, Brooks JCW. An Age-Specific Atlas for Delineation of White Matter Pathways in Children Aged 6-8 Years. Brain Connect 2021; 12:402-416. [PMID: 34210166 PMCID: PMC7612846 DOI: 10.1089/brain.2021.0058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction Diffusion MRI allows non-invasive assessment of white matter connectivity in typical development and of changes due to brain injury or pathology. Probabilistic white matter atlases allow diffusion metrics to be measured in specific white matter pathways, and are a critical component in spatial normalisation for group analysis. However, given the known developmental changes in white matter it may be sub-optimal to use an adult template when assessing data acquired from children. Methods By averaging subject-specific fibre bundles from 28 children aged from 6 to 8 years, we created an age-specific probabilistic white matter atlas for 12 major white matter tracts. Using both the newly developed and Johns Hopkins adult atlases, we compared the atlas to subject-specific fibre bundles in two independent validation cohorts, assessing accuracy in terms of volumetric overlap and measured diffusion metrics. Results Our age-specific atlas gave better overall performance than the adult atlas, achieving higher volumetric overlap with subject-specific fibre tracking and higher correlation of FA measurements with those measured from subject-specific fibre bundles. Specifically, estimates of FA values for cortico-spinal tract, uncinate fasciculus, forceps minor, cingulate gyrus part of the cingulum and anterior thalamic radiation were all significantly more accurate when estimated with an age-specific atlas. Discussion The age-specific atlas allows delineation of white matter tracts in children aged 6-8 years, without the need for tractography, more accurately than when normalising to an adult atlas. To our knowledge, this is the first publicly available probabilistic atlas of white matter tracts for this age group.
Collapse
Affiliation(s)
- Arthur P C Spencer
- Clinical Research and Imaging Centre, University of Bristol, Bristol, United Kingdom.,Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Hollie Byrne
- Clinical Research and Imaging Centre, University of Bristol, Bristol, United Kingdom
| | - Richard Lee-Kelland
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Sally Jary
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Marianne Thoresen
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.,Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Frances M Cowan
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom.,Department of Paediatrics, Imperial College London, London, United Kingdom
| | - Ela Chakkarapani
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jonathan C W Brooks
- Clinical Research and Imaging Centre, University of Bristol, Bristol, United Kingdom.,School of Psychology, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
58
|
Wassink G, Davidson JO, Crisostomo A, Zhou KQ, Galinsky R, Dhillon SK, Lear CA, Bennet L, Gunn AJ. Recombinant erythropoietin does not augment hypothermic white matter protection after global cerebral ischaemia in near-term fetal sheep. Brain Commun 2021; 3:fcab172. [PMID: 34409290 PMCID: PMC8364665 DOI: 10.1093/braincomms/fcab172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2021] [Indexed: 01/07/2023] Open
Abstract
Therapeutic hypothermia for hypoxic-ischaemic encephalopathy provides partial white matter protection. Recombinant erythropoietin reduces demyelination after hypoxia-ischaemia, but it is unclear whether adjunct erythropoietin treatment can further improve outcomes after therapeutic hypothermia. Term-equivalent fetal sheep received sham-ischaemia (n = 9) or cerebral ischaemia for 30 min (ischaemia-vehicle, n = 8), followed by intravenous infusion of recombinant erythropoietin (ischaemia-Epo, n = 8; 5000 IU/kg bolus dose, then 833.3 IU/kg/h), cerebral hypothermia (ischaemia-hypothermia, n = 8), or recombinant erythropoietin plus hypothermia (ischaemia-Epo-hypothermia, n = 8), from 3 to 72 h post-ischaemia. Foetal brains were harvested at 7 days after cerebral ischaemia. Ischaemia was associated with marked loss of total Olig2-positive oligodendrocytes with reduced density of myelin and linearity of the white matter tracts (P < 0.01), and microglial induction and increased caspase-3-positive apoptosis. Cerebral hypothermia improved the total number of oligodendrocytes and restored myelin basic protein (P < 0.01), whereas recombinant erythropoietin partially improved myelin basic protein density and tract linearity. Both interventions suppressed microgliosis and caspase-3 (P < 0.05). Co-treatment improved 2′,3′-cyclic-nucleotide 3′-phosphodiesterase-myelin density compared to hypothermia, but had no other additive effect. These findings suggest that although hypothermia and recombinant erythropoietin independently protect white matter after severe hypoxia-ischaemia, they have partially overlapping anti-inflammatory and anti-apoptotic effects, with little additive benefit of combination therapy.
Collapse
Affiliation(s)
- Guido Wassink
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alyssa Crisostomo
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Kelly Q Zhou
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Victoria, Australia
| | | | - Christopher A Lear
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
59
|
Abstract
Neonatal encephalopathy due to perinatal hypoxia-ischemia (hypoxic-ischemic encephalopathy [HIE]) occurs at a rate of 1 to 3 per 1000 live births. Therapeutic hypothermia is the standard of care and the only currently available therapy to reduce the risk of death or disability in newborns with moderate to severe HIE. Hypothermia therapy needs to be initiated within 6 hours after birth in order to provide the best chance for neuroprotection. All pediatricians and delivery room attendants should be trained to recognize encephalopathy and understand the eligibility criteria for treatment. The modified Sarnat examination is the most frequently used tool to assess the degree of encephalopathy and has six categories, each of which can have mild, moderate, severe abnormalities. Apart from historical and biochemical criteria, a neonate must have 3 of 6 categories scored in the moderate or severe range in order to qualify for hypothermia as was done in the randomized trials. Whether an infant qualifies or there is concern that an infant might have HIE, transfer to a center that can perform treatment should be initiated immediately. Hypothermia significantly reduces the risk of death or moderate to severe impairments at 2 years and at school age. On average, only 7 neonates need to be treated for one neonate to benefit. Although easy in concept, implementation of hypothermia does require expertise and should be carried out under the guidance of a neonatologist. If infants are passively cooled prior to transport, core temperature needs to be closely monitored with a target of 33.5°C ± 0.5°C. Maintenance of homeostasis is important in order to prevent conditions that may result in additional brain injury. Seizures are common in neonates with HIE, but electrographic seizures are rare in the first few hours after birth if the insult occurred during labor and delivery. Prophylactic antiepileptic drugs should not be administered. Brain monitoring in the form of electroencephalogram (EEG) and or amplitude-integrated EEG should be implemented as soon as possible to help with prognosis and to accurately diagnose seizures.
Collapse
Affiliation(s)
- Sonia Lomeli Bonifacio
- NeuroNICU, Division of Neonatal and Developmental Medicine, 750 Welch Road, Suite 315, Palo Alto, CA, USA.
| | - Shandee Hutson
- Department of Neonatology, NICN, Sharp Mary Birch Hospital for Women and Newborns, 8555 Aero Drive #104, San Diego, CA 92123, USA
| |
Collapse
|
60
|
Robertson NJ, Meehan C, Martinello KA, Avdic-Belltheus A, Boggini T, Mutshiya T, Lingam I, Yang Q, Sokolska M, Charalambous X, Bainbridge A, Hristova M, Kramer BW, Golay X, Weil B, Lowdell MW. Human umbilical cord mesenchymal stromal cells as an adjunct therapy with therapeutic hypothermia in a piglet model of perinatal asphyxia. Cytotherapy 2021; 23:521-535. [PMID: 33262073 PMCID: PMC8139415 DOI: 10.1016/j.jcyt.2020.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/12/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND With therapeutic hypothermia (HT) for neonatal encephalopathy, disability rates are reduced, but not all babies benefit. Pre-clinical rodent studies suggest mesenchymal stromal cells (MSCs) augment HT protection. AIMS The authors studied the efficacy of intravenous (IV) or intranasal (IN) human umbilical cord-derived MSCs (huMSCs) as adjunct therapy to HT in a piglet model. METHODS A total of 17 newborn piglets underwent transient cerebral hypoxia-ischemia (HI) and were then randomized to (i) HT at 33.5°C 1-13 h after HI (n = 7), (ii) HT+IV huMSCs (30 × 106 cells) at 24 h and 48 h after HI (n = 5) or (iii) HT+IN huMSCs (30 × 106 cells) at 24 h and 48 h after HI (n = 5). Phosphorus-31 and hydrogen-1 magnetic resonance spectroscopy (MRS) was performed at 30 h and 72 h and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells and oligodendrocytes quantified. In two further piglets, 30 × 106 IN PKH-labeled huMSCs were administered. RESULTS HI severity was similar between groups. Amplitude-integrated electroencephalogram (aEEG) recovery was more rapid for HT+IN huMSCs compared with HT from 25 h to 42 h and 49 h to 54 h (P ≤ 0.05). MRS phosphocreatine/inorganic phosphate was higher on day 2 in HT+IN huMSCs than HT (P = 0.035). Comparing HT+IN huMSCs with HT and HT+IV huMSCs, there were increased OLIG2 counts in hippocampus (P = 0.011 and 0.018, respectively), internal capsule (P = 0.013 and 0.037, respectively) and periventricular white matter (P = 0.15 for IN versus IV huMSCs). Reduced TUNEL-positive cells were seen in internal capsule with HT+IN huMSCs versus HT (P = 0.05). PKH-labeled huMSCs were detected in the brain 12 h after IN administration. CONCLUSIONS After global HI, compared with HT alone, the authors saw beneficial effects of HT+IN huMSCs administered at 24 h and 48 h (30 × 106 cells/kg total dose) based on more rapid aEEG recovery, improved 31P MRS brain energy metabolism and increased oligodendrocyte survival at 72 h.
Collapse
Affiliation(s)
| | | | | | | | - Tiziana Boggini
- Institute for Women's Health, University College London, London, UK
| | - Tatenda Mutshiya
- Institute for Women's Health, University College London, London, UK
| | - Ingran Lingam
- Institute for Women's Health, University College London, London, UK
| | - Qin Yang
- Institute for Women's Health, University College London, London, UK
| | | | | | - Alan Bainbridge
- University College London Hospitals NHS Foundation Trust, London, UK
| | - Mariya Hristova
- Institute for Women's Health, University College London, London, UK
| | - Boris W Kramer
- Department of Pediatrics, University of Maastricht, Maastricht, the Netherlands
| | - Xavier Golay
- Institute for Women's Health, University College London, London, UK
| | - Ben Weil
- Royal Free London NHS Foundation Trust, London, UK
| | - Mark W Lowdell
- Institute for Women's Health, University College London, London, UK; Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
61
|
Pang R, Advic-Belltheus A, Meehan C, Fullen DJ, Golay X, Robertson NJ. Melatonin for Neonatal Encephalopathy: From Bench to Bedside. Int J Mol Sci 2021; 22:5481. [PMID: 34067448 PMCID: PMC8196955 DOI: 10.3390/ijms22115481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/21/2022] Open
Abstract
Neonatal encephalopathy is a leading cause of morbidity and mortality worldwide. Although therapeutic hypothermia (HT) is now standard practice in most neonatal intensive care units in high resource settings, some infants still develop long-term adverse neurological sequelae. In low resource settings, HT may not be safe or efficacious. Therefore, additional neuroprotective interventions are urgently needed. Melatonin's diverse neuroprotective properties include antioxidant, anti-inflammatory, and anti-apoptotic effects. Its strong safety profile and compelling preclinical data suggests that melatonin is a promising agent to improve the outcomes of infants with NE. Over the past decade, the safety and efficacy of melatonin to augment HT has been studied in the neonatal piglet model of perinatal asphyxia. From this model, we have observed that the neuroprotective effects of melatonin are time-critical and dose dependent. Therapeutic melatonin levels are likely to be 15-30 mg/L and for optimal effect, these need to be achieved within the first 2-3 h after birth. This review summarises the neuroprotective properties of melatonin, the key findings from the piglet and other animal studies to date, and the challenges we face to translate melatonin from bench to bedside.
Collapse
Affiliation(s)
- Raymand Pang
- Institute for Women’s Health, University College London, London WC1E 6HU, UK; (R.P.); (A.A.-B.); (C.M.)
| | - Adnan Advic-Belltheus
- Institute for Women’s Health, University College London, London WC1E 6HU, UK; (R.P.); (A.A.-B.); (C.M.)
| | - Christopher Meehan
- Institute for Women’s Health, University College London, London WC1E 6HU, UK; (R.P.); (A.A.-B.); (C.M.)
| | - Daniel J. Fullen
- Translational Research Office, University College London, London W1T 7NF, UK;
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, Institute of Neurology, University College London, London WC1N 3BG, UK;
| | - Nicola J. Robertson
- Institute for Women’s Health, University College London, London WC1E 6HU, UK; (R.P.); (A.A.-B.); (C.M.)
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
62
|
Ahmed J, Pullattayil S AK, Robertson NJ, More K. Melatonin for neuroprotection in neonatal encephalopathy: A systematic review & meta-analysis of clinical trials. Eur J Paediatr Neurol 2021; 31:38-45. [PMID: 33601197 DOI: 10.1016/j.ejpn.2021.02.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/11/2021] [Accepted: 02/04/2021] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Melatonin has shown neuroprotective properties in pre-clinical studies of perinatal asphyxia through antioxidant, anti-apoptotic and anti-inflammatory actions. Studies have also demonstrated its safety and efficacy in neonatal encephalopathy (NE). However, its role in the current era of therapeutic hypothermia (HT) is unclear. The review aims to describe the currently available clinical evidence for Melatonin as a potential therapy for NE. METHODS Data Sources: We searched Medline, EMBASE, CINAHL, LILACS, and Cochrane central databases, published journals, and conference proceedings from inception to May 31, 2020. STUDY SELECTION Randomized controlled trials (RCTs) of Melatonin for NE in term or late preterm infants reporting neurodevelopmental outcomes, death, or both. The evidence quality was evaluated using the GRADE system, while the recommendations were taken according to the quality. RESULTS We included five RCTs involving 215 neonates. Long-term development outcome data is lacking in all except in one small study, reporting significantly higher composite cognition scores at 18 months. One study reported intermediate 6-month favorable development on follow-up. Meta-analysis of mortality in combined HT + Melatonin group vs HT alone (Studies = 2, participants = 54) demonstrated no significant reduction with relative risk (RR) 0.42; 95%CI, 0.99-1.12). The overall GRADE evidence quality was very low for a very small sample size. We did not meta-analyze the data for Melatonin alone therapy without HT, as the included studies were of very low quality. CONCLUSIONS Despite strong experimental data supporting the role of Melatonin as a neuroprotective agent in NE (both alone and as an adjunct with therapeutic hypothermia), the clinical data supporting the neuroprotective effects in neonates is limited. Larger well designed, adequately powered multicentre clinical trials are urgently needed to define the neuroprotective role of Melatonin in optimizing outcomes of NE.
Collapse
Affiliation(s)
- Javed Ahmed
- Division of Neonatology, Women's Wellness and Research Centre, Hamad Medical Corporation, Doha, Qatar.
| | | | - Nicola J Robertson
- Institute for Women's Health, University College London, London, WC1E 6HX, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, BioQuarter, 49 Little France Crescent, Edinburgh, EH16 4SB, UK; The Roslin Institute, University of Edinburgh, Easter Bush Campus, EH25 9RG, UK.
| | - Kiran More
- Division of Neonatology, Sidra Medicine, Doha, Qatar; Weill Cornell Medicine, Doha, Qatar.
| |
Collapse
|
63
|
Spencer APC, Brooks JCW, Masuda N, Byrne H, Lee-Kelland R, Jary S, Thoresen M, Tonks J, Goodfellow M, Cowan FM, Chakkarapani E. Disrupted brain connectivity in children treated with therapeutic hypothermia for neonatal encephalopathy. Neuroimage Clin 2021; 30:102582. [PMID: 33636541 PMCID: PMC7906894 DOI: 10.1016/j.nicl.2021.102582] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 11/27/2022]
Abstract
Therapeutic hypothermia following neonatal encephalopathy due to birth asphyxia reduces death and cerebral palsy. However, school-age children without cerebral palsy treated with therapeutic hypothermia for neonatal encephalopathy still have reduced performance on cognitive and motor tests, attention difficulties, slower reaction times and reduced visuo-spatial processing abilities compared to typically developing controls. We acquired diffusion-weighted imaging data from school-age children without cerebral palsy treated with therapeutic hypothermia for neonatal encephalopathy at birth, and a matched control group. Voxelwise analysis (33 cases, 36 controls) confirmed reduced fractional anisotropy in widespread areas of white matter in cases, particularly in the fornix, corpus callosum, anterior and posterior limbs of the internal capsule bilaterally and cingulum bilaterally. In structural brain networks constructed using probabilistic tractography (22 cases, 32 controls), graph-theoretic measures of strength, local and global efficiency, clustering coefficient and characteristic path length were found to correlate with IQ in cases but not controls. Network-based statistic analysis implicated brain regions involved in visuo-spatial processing and attention, aligning with previous behavioural findings. These included the precuneus, thalamus, left superior parietal gyrus and left inferior temporal gyrus. Our findings demonstrate that, despite the manifest successes of therapeutic hypothermia, brain development is impaired in these children.
Collapse
Affiliation(s)
- Arthur P C Spencer
- Clinical Research and Imaging Centre, University of Bristol, Bristol, United Kingdom
| | - Jonathan C W Brooks
- Clinical Research and Imaging Centre, University of Bristol, Bristol, United Kingdom; School of Psychological Science, University of Bristol, Bristol, United Kingdom
| | - Naoki Masuda
- Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, United States; Computational and Data-Enabled Science and Engineering Program, State University of New York at Buffalo, Buffalo, NY, United States
| | - Hollie Byrne
- Clinical Research and Imaging Centre, University of Bristol, Bristol, United Kingdom
| | - Richard Lee-Kelland
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Sally Jary
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Marianne Thoresen
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - James Tonks
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; University of Exeter Medical School, Exeter, United Kingdom
| | - Marc Goodfellow
- Living Systems Institute, University of Exeter, Exeter, United Kingdom; Wellcome Trust Centre for Biomedical Modelling and Analysis, University of Exeter, Exeter, United Kingdom; EPSRC Centre for Predictive Modelling in Healthcare, University of Exeter, Exeter, United Kingdom; College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, United Kingdom
| | - Frances M Cowan
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; Department of Paediatrics, Imperial College London, London, United Kingdom
| | - Ela Chakkarapani
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom; Neonatal Intensive Care Unit, St Michael's Hospital, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom.
| |
Collapse
|
64
|
Pang R, Avdic-Belltheus A, Meehan C, Martinello K, Mutshiya T, Yang Q, Sokolska M, Torrealdea F, Hristova M, Bainbridge A, Golay X, Juul SE, Robertson NJ. Melatonin and/or erythropoietin combined with hypothermia in a piglet model of perinatal asphyxia. Brain Commun 2020; 3:fcaa211. [PMID: 33604569 PMCID: PMC7876304 DOI: 10.1093/braincomms/fcaa211] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
As therapeutic hypothermia is only partially protective for neonatal encephalopathy, safe and effective adjunct therapies are urgently needed. Melatonin and erythropoietin show promise as safe and effective neuroprotective therapies. We hypothesized that melatonin and erythropoietin individually augment 12-h hypothermia (double therapies) and hypothermia + melatonin + erythropoietin (triple therapy) leads to optimal brain protection. Following carotid artery occlusion and hypoxia, 49 male piglets (<48 h old) were randomized to: (i) hypothermia + vehicle (n = 12), (ii) hypothermia + melatonin (20 mg/kg over 2 h) (n = 12), (iii) hypothermia + erythropoietin (3000 U/kg bolus) (n = 13) or (iv) tripletherapy (n = 12). Melatonin, erythropoietin or vehicle were given at 1, 24 and 48 h after hypoxia–ischaemia. Hypoxia–ischaemia severity was similar across groups. Therapeutic levels were achieved 3 hours after hypoxia–ischaemia for melatonin (15–30 mg/l) and within 30 min of erythropoietin administration (maximum concentration 10 000 mU/ml). Compared to hypothermia + vehicle, we observed faster amplitude-integrated EEG recovery from 25 to 30 h with hypothermia + melatonin (P = 0.02) and hypothermia + erythropoietin (P = 0.033) and from 55 to 60 h with tripletherapy (P = 0.042). Magnetic resonance spectroscopy lactate/N-acetyl aspartate peak ratio was lower at 66 h in hypothermia + melatonin (P = 0.012) and tripletherapy (P = 0.032). With hypothermia + melatonin, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelled-positive cells were reduced in sensorimotor cortex (P = 0.017) and oligodendrocyte transcription factor 2 labelled-positive counts increased in hippocampus (P = 0.014) and periventricular white matter (P = 0.039). There was no reduction in terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelled-positive cells with hypothermia + erythropoietin, but increased oligodendrocyte transcription factor 2 labelled-positive cells in 5 of 8 brain regions (P < 0.05). Overall, melatonin and erythropoietin were safe and effective adjunct therapies to hypothermia. Hypothermia + melatonin double therapy led to faster amplitude-integrated EEG recovery, amelioration of lactate/N-acetyl aspartate rise and reduction in terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labelled-positive cells in the sensorimotor cortex. Hypothermia + erythropoietin doubletherapy was in association with EEG recovery and was most effective in promoting oligodendrocyte survival. Tripletherapy provided no added benefit over the double therapies in this 72-h study. Melatonin and erythropoietin influenced cell death and oligodendrocyte survival differently, reflecting distinct neuroprotective mechanisms which may become more visible with longer-term studies. Staggering the administration of therapies with early melatonin and later erythropoietin (after hypothermia) may provide better protection; each therapy has complementary actions which may be time critical during the neurotoxic cascade after hypoxia–ischaemia.
Collapse
Affiliation(s)
- Raymand Pang
- Department of Neonatology, Institute for Women's Health, University College London, London, UK
| | - Adnan Avdic-Belltheus
- Department of Neonatology, Institute for Women's Health, University College London, London, UK
| | - Christopher Meehan
- Department of Neonatology, Institute for Women's Health, University College London, London, UK
| | - Kathryn Martinello
- Department of Neonatology, Institute for Women's Health, University College London, London, UK
| | - Tatenda Mutshiya
- Department of Neonatology, Institute for Women's Health, University College London, London, UK
| | - Qin Yang
- Department of Neonatology, Institute for Women's Health, University College London, London, UK
| | - Magdalena Sokolska
- Department of Medical Physics and Biomedical Engineering, University College London Hospitals, London, UK
| | - Francisco Torrealdea
- Department of Medical Physics and Biomedical Engineering, University College London Hospitals, London, UK
| | - Mariya Hristova
- Department of Neonatology, Institute for Women's Health, University College London, London, UK
| | - Alan Bainbridge
- Department of Medical Physics and Biomedical Engineering, University College London Hospitals, London, UK
| | - Xavier Golay
- Department of Brain Repair and Rehabilitation, Institute of Neurology, Queen's Square, University College London, London, UK
| | - Sandra E Juul
- Department of Pediatrics, University of Washington, Seattle, Washington, DC, USA
| | - Nicola J Robertson
- Department of Neonatology, Institute for Women's Health, University College London, London, UK
| |
Collapse
|
65
|
Pang R, Mintoft A, Crowley R, Sellwood M, Mitra S, Robertson NJ. Optimizing hemodynamic care in neonatal encephalopathy. Semin Fetal Neonatal Med 2020; 25:101139. [PMID: 33223016 DOI: 10.1016/j.siny.2020.101139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hemodynamic impairment occurs in up to 80% of infants with neonatal encephalopathy (NE). Not all infants benefit from therapeutic hypothermia (HT); there are some indications that the trajectory of brain injury might be modified by neurologic monitoring and early management over the first 72-h period. It is also possible that optimizing hemodynamic management may further improve outomes. The coupling between cerebral blood flow and cerebral metabolism is disrupted in NE, increasing the vulnerability of the newborn brain to secondary injury. Hemodynamic monitoring is usually limited to blood pressure and functional echocardiographic measurements, which may not accurately reflect brain perfusion. This review explores the evidence base for hemodynamic assessment and management of infants with NE while undergoing HT. We discuss the literature behind a systematic approach to a baby with NE with the aim to define best therapies to optimize brain perfusion and reduce secondary injury.
Collapse
Affiliation(s)
- Raymand Pang
- Institute for Women's Health, University College London, London, UK
| | - Alison Mintoft
- Institute for Women's Health, University College London, London, UK
| | - Rose Crowley
- Department of Neonatology, University College London Hospital, London, UK
| | - Mark Sellwood
- Department of Neonatology, University College London Hospital, London, UK
| | - Subhabrata Mitra
- Institute for Women's Health, University College London, London, UK
| | | |
Collapse
|
66
|
Maxwell JR, Zimmerman AJ, Pavlik N, Newville JC, Carlin K, Robinson S, Brigman JL, Northington FJ, Jantzie LL. Neonatal Hypoxic-Ischemic Encephalopathy Yields Permanent Deficits in Learning Acquisition: A Preclinical Touchscreen Assessment. Front Pediatr 2020; 8:289. [PMID: 32582593 PMCID: PMC7291343 DOI: 10.3389/fped.2020.00289] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Neonatal hypoxic-ischemic encephalopathy (HIE) remains a common problem world-wide for infants born at term. The impact of HIE on long-term outcomes, especially into adulthood, is not well-described. To facilitate identification of biobehavioral biomarkers utilizing a translational platform, we sought to investigate the impact of HIE on executive function and cognitive outcomes into adulthood utilizing a murine model of HIE. HIE mice (unilateral common carotid artery occlusion to induce ischemia, followed by hypoxia with a FiO2 of 0.08 for 45 min) and control mice were tested on discrimination and reversal touchscreen tasks (using their noses) shown to be sensitive to loss of basal ganglia or cortical function, respectively. We hypothesized that the HIE injury would result in deficits in reversal learning, revealing complex cognitive and executive functioning impairments. Following HIE, mice had a mild discrimination impairment as measured by incorrect responses but were able to learn the paradigm to similar levels as controls. During reversal, HIE mice required significantly more total trials, errors and correction trials across the paradigm. Analysis of specific stages showed that reversal impairments in HIE were driven by significant increases in all measured parameters during the late learning, striatal-mediated portion of the task. Together, these results support the concept that HIE occurring during the neonatal period results in abnormal neurodevelopment that persists into adulthood, which can impact efficient associated learning. Further, these data show that utilization of an established model of HIE coupled with touchscreen learning provides valuable information for screening therapeutic interventions that could mitigate these deficits to improve the long-term outcomes of this vulnerable population.
Collapse
Affiliation(s)
- Jessie R. Maxwell
- Department of Pediatrics, University of New Mexico, Albuquerque, NM, United States
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Amber J. Zimmerman
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Nathaniel Pavlik
- Department of Pediatrics, University of New Mexico, Albuquerque, NM, United States
| | - Jessie C. Newville
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Katherine Carlin
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Shenandoah Robinson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jonathan L. Brigman
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, United States
| | - Frances J. Northington
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lauren L. Jantzie
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurology, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
67
|
High-Dose Melatonin and Ethanol Excipient Combined with Therapeutic Hypothermia in a Newborn Piglet Asphyxia Model. Sci Rep 2020; 10:3898. [PMID: 32127612 PMCID: PMC7054316 DOI: 10.1038/s41598-020-60858-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/17/2020] [Indexed: 01/13/2023] Open
Abstract
With the current practice of therapeutic hypothermia for neonatal encephalopathy, disability rates and the severity spectrum of cerebral palsy are reduced. Nevertheless, safe and effective adjunct therapies are needed to optimize outcomes. This study's objective was to assess if 18 mg/kg melatonin given rapidly over 2 h at 1 h after hypoxia-ischemia with cooling from 1-13 h was safe, achieved therapeutic levels within 3 h and augmented hypothermic neuroprotection. Following hypoxia-ischemia, 20 newborn piglets were randomized to: (i) Cooling 1-13 h (HT; n = 6); (ii) HT+ 2.5% ethanol vehicle (HT+V; n = 7); (iii) HT + Melatonin (HT+M; n = 7). Intensive care was maintained for 48 h; aEEG was acquired throughout, brain MRS acquired at 24 and 48 h and cell death (TUNEL) evaluated at 48 h. There were no differences for insult severity. Core temperature was higher in HT group for first hour after HI. Comparing HT+M to HT, aEEG scores recovered more quickly by 19 h (p < 0.05); comparing HT+V to HT, aEEG recovered from 31 h (p < 0.05). Brain phosphocreatine/inorganic phosphate and NTP/exchangeable phosphate were higher at 48 h in HT+M versus HT (p = 0.036, p = 0.049 respectively). Including both 24 h and 48 h measurements, the rise in Lactate/N-acetyl aspartate was reduced in white (p = 0.030) and grey matter (p = 0.038) after HI. Reduced overall TUNEL positive cells were observed in HT+M (47.1 cells/mm2) compared to HT (123.8 cells/mm2) (p = 0.0003) and HT+V (97.5 cells/mm2) compared to HT (p = 0.012). Localized protection was seen in white matter for HT+M versus HT (p = 0.036) and internal capsule for HT+M compared to HT (p = 0.001) and HT+V versus HT (p = 0.006). Therapeutic melatonin levels (15-30mg/l) were achieved at 2 h and were neuroprotective following HI, but ethanol vehicle was partially protective.
Collapse
|
68
|
Chakkarapani E. Cognitive and behavioural outcomes: are they impaired in children without cerebral palsy following neonatal hypoxic-ischaemic encephalopathy? Acta Paediatr 2020; 109:11-13. [PMID: 31215076 DOI: 10.1111/apa.14878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ela Chakkarapani
- Translational Health Sciences, University of Bristol, St Michael's Hospital, University Hospitals Bristol NHS Trust, Bristol, UK
| |
Collapse
|
69
|
Jary S, Lee‐Kelland R, Tonks J, Cowan FM, Thoresen M, Chakkarapani E. Motor performance and cognitive correlates in children cooled for neonatal encephalopathy without cerebral palsy at school age. Acta Paediatr 2019; 108:1773-1780. [PMID: 30883895 DOI: 10.1111/apa.14780] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/06/2019] [Accepted: 03/12/2019] [Indexed: 12/29/2022]
Abstract
AIM To investigate whether motor performance in school-age children without cerebral palsy (CP), cooled for neonatal encephalopathy, is associated with perinatal factors and 18-month developmental scores and to explore relationships between school-age motor and cognitive performance. METHODS Motor and cognitive performance was assessed in 29 previously cooled children at six to eight years using the Movement Assessment Battery for Children-2 (MABC-2) and the Wechsler Intelligence Scale for Children (WISC-IV). Associations between MABC-2 scores less than/equal (≤) 15th centile and perinatal factors, social/family background, 18-month Bayley-III scores and WISC-IV scores were explored. RESULTS Eleven of the 29 (38%) children had MABC-2 scores ≤15th centile including 7 (24%) ≤5th centile. No significant perinatal or socio-economic risk factors were identified. Motor scores <85 at 18 months failed to identify children with MABC-2 scores ≤15th centile. MABC-2 scores ≤15th centile were associated with lower Full Scale IQ (p = 0.045), Working Memory (p = 0.03) and Perceptual Reasoning (p = 0.005) scores at six to eight years and receiving greater support in school (p = 0.01). CONCLUSION A third of cooled children without CP had MABC-2 scores indicating motor impairment at school age that was not identified at 18 months by Bayley-III. Most children with low MABC scores needed support at school. Sub-optimal MABC-2 scores indicate need for detailed school-age cognitive evaluation.
Collapse
Affiliation(s)
- S Jary
- Translational Health Sciences Bristol Medical School University of Bristol Bristol UK
| | - R Lee‐Kelland
- Translational Health Sciences Bristol Medical School University of Bristol Bristol UK
| | - J Tonks
- University of Exeter Medical School Exeter UK
| | - F M Cowan
- Translational Health Sciences Bristol Medical School University of Bristol Bristol UK
| | - M Thoresen
- Translational Health Sciences Bristol Medical School University of Bristol Bristol UK
- University of Oslo Oslo Norway
| | - E Chakkarapani
- Translational Health Sciences Bristol Medical School University of Bristol Bristol UK
| |
Collapse
|