51
|
Abstract
Diarrhoeal disease remains a major health burden worldwide. Secretory diarrhoeas are caused by certain bacterial and viral infections, inflammatory processes, drugs and genetic disorders. Fluid secretion across the intestinal epithelium in secretory diarrhoeas involves multiple ion and solute transporters, as well as activation of cyclic nucleotide and Ca(2+) signalling pathways. In many secretory diarrhoeas, activation of Cl(-) channels in the apical membrane of enterocytes, including the cystic fibrosis transmembrane conductance regulator and Ca(2+)-activated Cl(-) channels, increases fluid secretion, while inhibition of Na(+) transport reduces fluid absorption. Current treatment of diarrhoea includes replacement of fluid and electrolyte losses using oral rehydration solutions, and drugs targeting intestinal motility or fluid secretion. Therapeutics in the development pipeline target intestinal ion channels and transporters, regulatory proteins and cell surface receptors. This Review describes pathogenic mechanisms of secretory diarrhoea, current and emerging therapeutics, and the challenges in developing antidiarrhoeal therapeutics.
Collapse
Affiliation(s)
- Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Children's Hospital Boston, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Mark Donowitz
- Departments of Physiology and Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Ross 925, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | - Alan S Verkman
- Departments of Medicine and Physiology, 1246 Health Sciences East Tower, University of California, 500 Parnassus Avenue, San Francisco, CA 94143, USA
| |
Collapse
|
52
|
ErbB small molecule tyrosine kinase inhibitor (TKI) induced diarrhoea: Chloride secretion as a mechanistic hypothesis. Cancer Treat Rev 2015; 41:646-52. [PMID: 26073491 DOI: 10.1016/j.ctrv.2015.05.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 12/27/2022]
Abstract
Diarrhoea is a common, debilitating and potentially life threatening toxicity of many cancer therapies. While the mechanisms of diarrhoea induced by traditional chemotherapy have been the focus of much research, the mechanism(s) of diarrhoea induced by small molecule ErbB TKI, have received relatively little attention. Given the increasing use of small molecule ErbB TKIs, identifying this mechanism is key to optimal cancer care. This paper critically reviews the literature and forms a hypothesis that diarrhoea induced by small molecule ErbB TKIs is driven by intestinal chloride secretion based on the negative regulation of chloride secretion by ErbB receptors being disrupted by tyrosine kinase inhibition.
Collapse
|
53
|
Huang H, Liao D, Liang L, Song L, Zhao W. Genistein inhibits rotavirus replication and upregulates AQP4 expression in rotavirus-infected Caco-2 cells. Arch Virol 2015; 160:1421-33. [PMID: 25877820 DOI: 10.1007/s00705-015-2404-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 03/19/2015] [Indexed: 11/29/2022]
Abstract
Rotavirus (RV) is the primary cause of severe dehydrating gastroenteritis and acute diarrheal disease in infants and young children. Previous studies have revealed that genistein can inhibit the infectivity of enveloped or nonenveloped viruses. Although the biological properties of genistein are well studied, the mechanisms of action underlying their anti-rotavirus properties have not been fully elucidated. Here, we report that genistein significantly inhibits RV-Wa replication in vitro by repressing viral RNA transcripts, and possibly viral protein synthesis. Interestingly, we also found that aquaporin 4 (AQP4) mRNA and protein expression, which was downregulated in RV-infected Caco-2 cells, can be upregulated by genistein in a time- and dose-dependent manner. Further experiments confirmed that genistein triggers CREB phosphorylation through PKA activation and subsequently promotes AQP4 gene transcription. These findings suggest that the pathophysiological mechanism of RV infection involves decreased expression of AQP4 and that genistein may be a useful candidate for developing a new anti-RV strategy by inhibiting rotavirus replication and upregulating AQP4 expression via the cAMP/PKA/CREB signaling pathway. Further studies on the effect of genistein on RV-induced diarrhea are warranted.
Collapse
Affiliation(s)
- Haohai Huang
- School of Pharmacy, Guangdong Medical College, No. 1, Xincheng Road of Songshan Lake Science and Technology Industry Park, Dongguan, 523808, Guangdong, China
| | | | | | | | | |
Collapse
|
54
|
Yin Y, Metselaar HJ, Sprengers D, Peppelenbosch MP, Pan Q. Rotavirus in organ transplantation: drug-virus-host interactions. Am J Transplant 2015; 15:585-93. [PMID: 25693470 DOI: 10.1111/ajt.13135] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/21/2014] [Accepted: 12/01/2014] [Indexed: 01/25/2023]
Abstract
Although rotavirus is usually recognized as the most common etiology of diarrhea in young children, it can in fact cause severe diseases in organ transplantation recipients irrespective of pediatric or adult patients. This comprehensive literature analysis revealed 200 cases of rotavirus infection with 8 related deaths in the setting of organ transplantation been recorded. Based on published cohort studies, an average incidence of 3% (187 infections out of 6176 organ recipients) was estimated. Rotavirus infection often causes severe gastroenteritis complications and occasionally contributes to acute cellular rejection in these patients. Immunosuppressive agents, universally used after organ transplantation to prevent organ rejection, conceivably play an important role in such a severe pathogenesis. Interestingly, rotavirus can in turn affect the absorption and metabolism of particular immunosuppressive medications via several distinct mechanisms. Even though rotaviral enteritis is self-limiting in general, infected transplantation patients are usually treated with intensive care, rehydration and replacement of nutrition, as well as applying preventive strategies. This article aims to properly assess the clinical impact of rotavirus infection in the setting of organ transplantation and to disseminate the interactions among the virus, host and immunosuppressive medications.
Collapse
Affiliation(s)
- Y Yin
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | | | | | | | | |
Collapse
|
55
|
Jiang Y, Yu B, Fang F, Cao H, Ma T, Yang H. Modulation of Chloride Channel Functions by the Plant Lignan Compounds Kobusin and Eudesmin. FRONTIERS IN PLANT SCIENCE 2015; 6:1041. [PMID: 26635857 PMCID: PMC4658577 DOI: 10.3389/fpls.2015.01041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/09/2015] [Indexed: 05/05/2023]
Abstract
Plant lignans are diphenolic compounds widely present in vegetables, fruits, and grains. These compounds have been demonstrated to have protective effect against cancer, hypertension and diabetes. In the present study, we showed that two lignan compounds, kobusin and eudesmin, isolated from Magnoliae Flos, could modulate intestinal chloride transport mediated by cystic fibrosis transmembrane conductance regulator (CFTR) and calcium-activated chloride channels (CaCCs). The compounds activated CFTR channel function in both FRT cells and in HT-29 cells. The modulating effects of kobusin and eudesmin on the activity of CaCCgie (CaCC expressed in gastrointestinal epithelial cells) were also investigated, and the result showed that both compounds could stimulate CaCCgie-mediated short-circuit currents and the stimulation was synergistic with ATP. In ex vivo studies, both compounds activated CFTR and CaCCgie chloride channel activities in mouse colonic epithelia. Remarkably, the compounds showed inhibitory effects toward ANO1/CaCC-mediated short-circuit currents in ANO1/CaCC-expressing FRT cells, with IC50 values of 100 μM for kobusin and 200 μM for eudesmin. In charcoal transit study, both compounds mildly reduced gastrointestinal motility in mice. Taken together, these results revealed a new kind of activity displayed by the lignan compounds, one that is concerned with the modulation of chloride channel function.
Collapse
Affiliation(s)
- Yu Jiang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University Dalian, China
| | - Bo Yu
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University Dalian, China
| | - Fang Fang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University Dalian, China
| | - Huanhuan Cao
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University Dalian, China
| | - Tonghui Ma
- College of Basic Medical Sciences, Dalian Medical University Dalian, China
| | - Hong Yang
- School of Life Sciences, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University Dalian, China
| |
Collapse
|
56
|
Pongkorpsakol P, Pathomthongtaweechai N, Srimanote P, Soodvilai S, Chatsudthipong V, Muanprasat C. Inhibition of cAMP-activated intestinal chloride secretion by diclofenac: cellular mechanism and potential application in cholera. PLoS Negl Trop Dis 2014; 8:e3119. [PMID: 25188334 PMCID: PMC4154654 DOI: 10.1371/journal.pntd.0003119] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 07/15/2014] [Indexed: 01/01/2023] Open
Abstract
Cyclic AMP-activated intestinal Cl− secretion plays an important role in pathogenesis of cholera. This study aimed to investigate the effect of diclofenac on cAMP-activated Cl− secretion, its underlying mechanisms, and possible application in the treatment of cholera. Diclofenac inhibited cAMP-activated Cl− secretion in human intestinal epithelial (T84) cells with IC50 of ∼20 µM. The effect required no cytochrome P450 enzyme-mediated metabolic activation. Interestingly, exposures of T84 cell monolayers to diclofenac, either in apical or basolateral solutions, produced similar degree of inhibitions. Analyses of the apical Cl− current showed that diclofenac reversibly inhibited CFTR Cl− channel activity (IC50∼10 µM) via mechanisms not involving either changes in intracellular cAMP levels or CFTR channel inactivation by AMP-activated protein kinase and protein phosphatase. Of interest, diclofenac had no effect on Na+-K+ ATPases and Na+-K+-Cl− cotransporters, but inhibited cAMP-activated basolateral K+ channels with IC50 of ∼3 µM. In addition, diclofenac suppressed Ca2+-activated Cl− channels, inwardly rectifying Cl− channels, and Ca2+-activated basolateral K+ channels. Furthermore, diclofenac (up to 200 µM; 24 h of treatment) had no effect on cell viability and barrier function in T84 cells. Importantly, cholera toxin (CT)-induced Cl− secretion across T84 cell monolayers was effectively suppressed by diclofenac. Intraperitoneal administration of diclofenac (30 mg/kg) reduced both CT and Vibrio cholerae-induced intestinal fluid secretion by ∼70% without affecting intestinal fluid absorption in mice. Collectively, our results indicate that diclofenac inhibits both cAMP-activated and Ca2+-activated Cl− secretion by inhibiting both apical Cl− channels and basolateral K+ channels in intestinal epithelial cells. Diclofenac may be useful in the treatment of cholera and other types of secretory diarrheas resulting from intestinal hypersecretion of Cl−. Diarrhea in cholera results from stimulation of cAMP-mediated intestinal Cl− secretion by cholera toxin (CT). This study demonstrates that diclofenac, a widely used non-steroidal anti-inflammatory drug (NSAID), inhibited cAMP-activated Cl− secretion in human intestinal epithelial (T84) cells by inhibiting both apical Cl− channels (i.e. CFTR) and cAMP-activated basolateral K+ channels (i.e. KCNQ1/KCNE3). The mechanism by which CFTR was inhibited did not involve changes in intracellular cAMP levels and activation of negative regulators of CFTR activity including AMP-activated protein kinase (AMPK) and protein phosphatase. In addition, diclofenac suppressed two other types of apical Cl− channels, namely, Ca2+-activated Cl− channels and inwardly rectifying Cl− channels, and Ca2+-activated basolateral K+ channels (i.e. KCa3.1) without affecting Na+-K+ ATPase and Na+-K+-Cl− cotransporter activities. Of particular importance, diclofenac at 30 mg/kg, which is the human equivalent dose for treatment of pain and inflammation (∼2 mg/kg in human), exhibited anti-secretory efficacy in mouse closed-loop models of cholera induced by either CT or V. cholerae. This study provides a rational basis for further development of diclofenac and related compounds as anti-diarrheal therapy for cholera and other types of diarrheas resulting from Cl− transport-driven intestinal fluid secretion.
Collapse
Affiliation(s)
- Pawin Pongkorpsakol
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nutthapoom Pathomthongtaweechai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Potjanee Srimanote
- Graduate Study, Faculty of Allied Health Sciences, Thammasat University, Pathumtanee, Thailand
| | - Sunhapas Soodvilai
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Varanuj Chatsudthipong
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chatchai Muanprasat
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
57
|
Friedman M. Antibacterial, antiviral, and antifungal properties of wines and winery byproducts in relation to their flavonoid content. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:6025-6042. [PMID: 24945318 DOI: 10.1021/jf501266s] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Grapes produce organic compounds that may be involved in the defense of the plants against invading phytopathogens. These metabolites include numerous phenolic compounds that are also active against human pathogens. Grapes are used to produce a variety of wines, grape juices, and raisins. Grape pomace, seeds, and skins, the remains of the grapes that are a byproduct of winemaking, also contain numerous bioactive compounds that differ from those found in grapes and wines. This overview surveys and interprets our present knowledge of the activities of wines and winery byproducts and some of their bioactive components against foodborne (Bacillus cereus, Campylobacter jejuni, Escherichia coli, Listeria monocytogenes, Salmonella enterica, Staphylococcus aureus, Yersinia enterocolitica, Vibrio cholerae, Vibrio vulnificus), medical (Helicobacter pylori, Klebsiella pneumoniae), and oral pathogenic bacteria, viruses (adeno, cytomegalo, hepatitis, noro, rota), fungi (Candida albicans, Botrytis cinerea), parasites (Eimeria tenella, Trichomonas vaginalis), and microbial toxins (ochratoxin A, Shiga toxin) in culture, in vivo, and in/on food (beef, chicken, frankfurters, hot dogs, lettuce, oysters, peppers, pork, sausages, soup, spinach) in relation to composition and sensory properties. Also covered are antimicrobial wine marinades, antioxidative and immunostimulating aspects, and adverse effects associated with wine consumption. The collated information and suggested research needs might facilitate and guide further studies needed to optimize the use of wines and byproducts to help improve microbial food safety and prevent or treat animal and human infections.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710, United States
| |
Collapse
|
58
|
Anoctamins support calcium-dependent chloride secretion by facilitating calcium signaling in adult mouse intestine. Pflugers Arch 2014; 467:1203-13. [PMID: 24974903 DOI: 10.1007/s00424-014-1559-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 12/13/2022]
Abstract
Intestinal epithelial electrolyte secretion is activated by increase in intracellular cAMP or Ca(2+) and opening of apical Cl(-) channels. In infants and young animals, but not in adults, Ca(2+)-activated chloride channels may cause secretory diarrhea during rotavirus infection. While detailed knowledge exists concerning the contribution of cAMP-activated cystic fibrosis transmembrane conductance regulator (CFTR) channels, analysis of the role of Ca(2+)-dependent Cl(-) channels became possible through identification of the anoctamin (TMEM16) family of proteins. We demonstrate expression of several anoctamin paralogues in mouse small and large intestines. Using intestinal-specific mouse knockout models for anoctamin 1 (Ano1) and anoctamin 10 (Ano10) and a conventional knockout model for anoctamin 6 (Ano6), we demonstrate the role of anoctamins for Ca(2+)-dependent Cl(-) secretion induced by the muscarinic agonist carbachol (CCH). Ano1 is preferentially expressed in the ileum and large intestine, where it supports Ca(2+)-activated Cl(-) secretion. In contrast, Ano10 is essential for Ca(2+)-dependent Cl(-) secretion in jejunum, where expression of Ano1 was not detected. Although broadly expressed, Ano6 has no role in intestinal cholinergic Cl(-) secretion. Ano1 is located in a basolateral compartment/membrane rather than in the apical membrane, where it supports CCH-induced Ca(2+) increase, while the essential and possibly only apical Cl(-) channel is CFTR. These results define a new role of Ano1 for intestinal Ca(2+)-dependent Cl(-) secretion and demonstrate for the first time a contribution of Ano10 to intestinal transport.
Collapse
|
59
|
Biasi F, Deiana M, Guina T, Gamba P, Leonarduzzi G, Poli G. Wine consumption and intestinal redox homeostasis. Redox Biol 2014; 2:795-802. [PMID: 25009781 PMCID: PMC4085343 DOI: 10.1016/j.redox.2014.06.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 02/07/2023] Open
Abstract
Regular consumption of moderate doses of wine is an integral part of the Mediterranean diet, which has long been considered to provide remarkable health benefits. Wine's beneficial effect has been attributed principally to its non-alcoholic portion, which has antioxidant properties, and contains a wide variety of phenolics, generally called polyphenols. Wine phenolics may prevent or delay the progression of intestinal diseases characterized by oxidative stress and inflammation, especially because they reach higher concentrations in the gut than in other tissues. They act as both free radical scavengers and modulators of specific inflammation-related genes involved in cellular redox signaling. In addition, the importance of wine polyphenols has recently been stressed for their ability to act as prebiotics and antimicrobial agents. Wine components have been proposed as an alternative natural approach to prevent or treat inflammatory bowel diseases. The difficulty remains to distinguish whether these positive properties are due only to polyphenols in wine or also to the alcohol intake, since many studies have reported ethanol to possess various beneficial effects. Our knowledge of the use of wine components in managing human intestinal inflammatory diseases is still quite limited, and further clinical studies may afford more solid evidence of their beneficial effects.
Collapse
Key Words
- AKT, serine/threonine protein kinase (v-akt murine thimoma viral oncogene homolog1)
- Antioxidants
- CD, Crohns disease
- COX-2, cyclooxygenase-2
- Cys, cysteine
- DSS, dextran sodium sulfate
- ERK, extracellular signal-regulated kinase
- GRP, grape reaction product
- GSH, reduced glutathione
- Gut
- IBD, inflammatory bowel disease
- IFN, interferon
- IKB, inhibitor of NF-κB
- IL, interleukin
- Inflammation
- LPS, lipopolysaccharide
- MAPK, mitogen-activated protein kinase
- NADPH, nicotinamide adenine dinucleotide phosphate reduced
- NF-κB, nuclear factor-κB
- Nrf2, nuclear factor erythroid-2-related factor 2
- Oxidative stress
- PGE-2, prostaglandin E-2
- Polyphenols
- ROS, reactive oxygen species
- SIRT-1, silent mating type information regulation-1
- TNF-α, tumor necrosis factor alpha
- UC, Ulcerative Colitis
- Wine
- apoB48, apolipoprotein B48
- iNOS, inducible nitric oxide synthase
Collapse
Affiliation(s)
- Fiorella Biasi
- Department of Clinical and Biological Sciences, University of Turin at San Luigi Gonzaga Hospital, Orbassano, Turin 10043, Italy
| | - Monica Deiana
- Department of Biomedical Sciences, University of Cagliari, Cagliari 09124, Italy
| | - Tina Guina
- Department of Clinical and Biological Sciences, University of Turin at San Luigi Gonzaga Hospital, Orbassano, Turin 10043, Italy
| | - Paola Gamba
- Department of Clinical and Biological Sciences, University of Turin at San Luigi Gonzaga Hospital, Orbassano, Turin 10043, Italy
| | - Gabriella Leonarduzzi
- Department of Clinical and Biological Sciences, University of Turin at San Luigi Gonzaga Hospital, Orbassano, Turin 10043, Italy
| | - Giuseppe Poli
- Department of Clinical and Biological Sciences, University of Turin at San Luigi Gonzaga Hospital, Orbassano, Turin 10043, Italy
| |
Collapse
|
60
|
Böhles N, Böhles N, Busch K, Busch K, Hensel M, Hensel M. Vaccines against human diarrheal pathogens: current status and perspectives. Hum Vaccin Immunother 2014; 10:1522-35. [PMID: 24861668 PMCID: PMC5396248 DOI: 10.4161/hv.29241] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/08/2014] [Accepted: 05/15/2014] [Indexed: 12/16/2022] Open
Abstract
Worldwide, nearly 1.7 billion people per year contract diarrheal infectious diseases (DID) and almost 760 000 of infections are fatal. DID are a major problem in developing countries where poor sanitation prevails and food and water may become contaminated by fecal shedding. Diarrhea is caused by pathogens such as bacteria, protozoans and viruses. Important diarrheal pathogens are Vibrio cholerae, Shigella spp. and rotavirus, which can be prevented with vaccines for several years. The focus of this review is on currently available vaccines against these three pathogens, and on development of new vaccines. Currently, various types of vaccines based on traditional (killed, live attenuated, toxoid or conjugate vaccines) and reverse vaccinology (DNA/mRNA, vector, recombinant subunit, plant vaccines) are in development or already available. Development of new vaccines demands high levels of knowledge, experience, budget, and time, yet promising new vaccines often fail in preclinical and clinical studies. Efficacy of vaccination also depends on the route of delivery, and mucosal immunization in particular is of special interest for preventing DID. Furthermore, adjuvants, delivery systems and other vaccine components are essential for an adequate immune response. These aspects will be discussed in relation to the improvement of existing and development of new vaccines against DID.
Collapse
Affiliation(s)
| | | | | | | | - Michael Hensel
- Abt. Mikrobiologie; Universität Osnabrück; Osnabrück, Germany
| | - Michael Hensel
- Abt. Mikrobiologie; Universität Osnabrück; Osnabrück, Germany
| |
Collapse
|
61
|
Tradtrantip L, Ko EA, Verkman AS. Antidiarrheal efficacy and cellular mechanisms of a Thai herbal remedy. PLoS Negl Trop Dis 2014; 8:e2674. [PMID: 24551253 PMCID: PMC3923670 DOI: 10.1371/journal.pntd.0002674] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/17/2013] [Indexed: 01/31/2023] Open
Abstract
Screening of herbal remedies for Cl(-) channel inhibition identified Krisanaklan, a herbal extract used in Thailand for treatment of diarrhea, as an effective antidiarrheal in mouse models of secretory diarrheas with inhibition activity against three Cl(-) channel targets. Krisanaklan fully inhibited cholera toxin-induced intestinal fluid secretion in a closed-loop mouse model with ∼50% inhibition at a 1 ∶ 50 dilution of the extract. Orally administered Krisanaklan (5 µL/g) prevented rotavirus-induced diarrhea in neonatal mice. Short-circuit current measurements showed full inhibition of cAMP and Ca(2+) agonist-induced Cl(-) conductance in human colonic epithelial T84 cells, with ∼ 50% inhibition at a 1 ∶ 5,000 dilution of the extract. Krisanaklan also strongly inhibited intestinal smooth muscle contraction in an ex vivo preparation. Together with measurements using specific inhibitors, we conclude that the antidiarrheal actions of Krisanaklan include inhibition of luminal CFTR and Ca(2+)-activated Cl(-) channels in enterocytes. HPLC fractionation indicated that the three Cl(-) inhibition actions of Krisanaklan are produced by different components in the herbal extract. Testing of individual herbs comprising Krisanaklan indicated that agarwood and clove extracts as primarily responsible for Cl(-) channel inhibition. The low cost, broad antidiarrheal efficacy, and defined cellular mechanisms of Krisanaklan suggests its potential application for antisecretory therapy of cholera and other enterotoxin-mediated secretory diarrheas in developing countries.
Collapse
Affiliation(s)
- Lukmanee Tradtrantip
- Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California, United States of America
| | - Eun-A Ko
- Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California, United States of America
| | - Alan S. Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
62
|
Thiagarajah JR, Ko EA, Tradtrantip L, Donowitz M, Verkman A. Discovery and development of antisecretory drugs for treating diarrheal diseases. Clin Gastroenterol Hepatol 2014; 12:204-9. [PMID: 24316107 PMCID: PMC3935719 DOI: 10.1016/j.cgh.2013.12.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diarrheal diseases constitute a significant global health burden and are a major cause of childhood mortality and morbidity. Treatment of diarrheal disease has centered on the replacement of fluid and electrolyte losses using oral rehydration solutions. Although oral rehydration solutions have been highly successful, significant mortality and morbidity due to diarrheal disease remains. Secretory diarrheas, such as those caused by bacterial and viral enterotoxins, result from activation of cyclic nucleotide and/or Ca(2+) signaling pathways in intestinal epithelial cells, enterocytes, which increase the permeability of Cl(-) channels at the lumen-facing membrane. Additionally, there is often a parallel reduction in intestinal Na(+) absorption. Inhibition of enterocyte Cl(-) channels, including the cystic fibrosis transmembrane conductance regulator and Ca(2+)-activated Cl(-) channels, represents an attractive strategy for antisecretory drug therapy. High-throughput screening of synthetic small-molecule collections has identified several classes of Cl(-) channel inhibitors that show efficacy in animal models of diarrhea but remain to be tested clinically. In addition, several natural product extracts with Cl(-) channel inhibition activity have shown efficacy in diarrhea models. However, a number of challenges remain to translate the promising bench science into clinically useful therapeutics, including efficiently targeting orally administered drugs to enterocytes during diarrhea, funding development costs, and carrying out informative clinical trials. Nonetheless, Cl(-) channel inhibitors may prove to be effective adjunctive therapy in a broad spectrum of clinical diarrheas, including acute infectious and drug-related diarrheas, short bowel syndrome, and congenital enteropathies.
Collapse
Affiliation(s)
- Jay R. Thiagarajah
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA, 94143-0521,Department of Gastroenterology, Hepatology and Nutrition, Children's Hospital Boston, Harvard Medical School, Boston, MA 02115
| | - Eun-A Ko
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA, 94143-0521
| | - Lukmanee Tradtrantip
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA, 94143-0521
| | - Mark Donowitz
- Departments of Physiology and Medicine, Gastroenterology Division, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - A.S. Verkman
- Departments of Medicine and Physiology, University of California, San Francisco, CA, USA, 94143-0521
| |
Collapse
|