51
|
Abstract
Long noncoding RNA (lncRNA) is >200 nucleotides long and lacks coding ability. LncRNA was regarded as transcript noise, until emerging results showed its roles in development, homeostasis and carcinogenesis. LncRNAs containing microRNA (miRNA) response elements could compete with the miRNA target gene and regulate its expression through decreasing free functional miRNA. Such lncRNA is called competing endogenous RNA (ceRNA), and the 'lncRNA-miRNA' interaction appreciably enriches the world of RNA-RNA regulation. Gastric cancer involves dysregulation of both protein-coding genes and noncoding genes, and the ceRNA regulatory mechanism may participate in this pathogenic process. In this review, we discuss recent findings on the roles of ceRNAs in gastric carcinogenesis.
Collapse
|
52
|
Muscarinic receptor M3 mediates cell proliferation induced by acetylcholine and contributes to apoptosis in gastric cancer. Tumour Biol 2015; 37:2105-17. [DOI: 10.1007/s13277-015-4011-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 08/27/2015] [Indexed: 01/07/2023] Open
|
53
|
Cao MS, Liu BY, Dai WT, Zhou WX, Li YX, Li YY. Differential network analysis reveals dysfunctional regulatory networks in gastric carcinogenesis. Am J Cancer Res 2015; 5:2605-2625. [PMID: 26609471 PMCID: PMC4633893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 08/04/2015] [Indexed: 06/05/2023] Open
Abstract
Gastric Carcinoma is one of the most common cancers in the world. A large number of differentially expressed genes have been identified as being associated with gastric cancer progression, however, little is known about the underlying regulatory mechanisms. To address this problem, we developed a differential networking approach that is characterized by including a nascent methodology, differential coexpression analysis (DCEA), and two novel quantitative methods for differential regulation analysis. We first applied DCEA to a gene expression dataset of gastric normal mucosa, adenoma and carcinoma samples to identify gene interconnection changes during cancer progression, based on which we inferred normal, adenoma, and carcinoma-specific gene regulation networks by using linear regression model. It was observed that cancer genes and drug targets were enriched in each network. To investigate the dynamic changes of gene regulation during carcinogenesis, we then designed two quantitative methods to prioritize differentially regulated genes (DRGs) and gene pairs or links (DRLs) between adjacent stages. It was found that known cancer genes and drug targets are significantly higher ranked. The top 4% normal vs. adenoma DRGs (36 genes) and top 6% adenoma vs. carcinoma DRGs (56 genes) proved to be worthy of further investigation to explore their association with gastric cancer. Out of the 16 DRGs involved in two top-10 DRG lists of normal vs. adenoma and adenoma vs. carcinoma comparisons, 15 have been reported to be gastric cancer or cancer related. Based on our inferred differential networking information and known signaling pathways, we generated testable hypotheses on the roles of GATA6, ESRRG and their signaling pathways in gastric carcinogenesis. Compared with established approaches which build genome-scale GRNs, or sub-networks around differentially expressed genes, the present one proved to be better at enriching cancer genes and drug targets, and prioritizing disease-related genes on the dataset we considered. We propose this extendable differential networking framework as a promising way to gain insights into gene regulatory mechanisms underlying cancer progression and other phenotypic changes.
Collapse
Affiliation(s)
- Mu-Shui Cao
- School of Life Science and Technology, Tongji UniversityShanghai 200092, P. R. China
- Shanghai Center for Bioinformation TechnologyShanghai 200235, P. R. China
- Shanghai Industrial Technology Institute1278 Keyuan Road, Shanghai 201203, P. R. China
| | - Bing-Ya Liu
- Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200025, P. R. China
| | - Wen-Tao Dai
- Shanghai Center for Bioinformation TechnologyShanghai 200235, P. R. China
- Shanghai Industrial Technology Institute1278 Keyuan Road, Shanghai 201203, P. R. China
| | - Wei-Xin Zhou
- Shanghai Center for Bioinformation TechnologyShanghai 200235, P. R. China
- Shanghai Industrial Technology Institute1278 Keyuan Road, Shanghai 201203, P. R. China
- Shanghai Engineering Research Center of Pharmaceutical Translation1278 Keyuan Road, Shanghai 201203, P. R. China
| | - Yi-Xue Li
- School of Life Science and Technology, Tongji UniversityShanghai 200092, P. R. China
- Shanghai Center for Bioinformation TechnologyShanghai 200235, P. R. China
- Shanghai Industrial Technology Institute1278 Keyuan Road, Shanghai 201203, P. R. China
- Shanghai Engineering Research Center of Pharmaceutical Translation1278 Keyuan Road, Shanghai 201203, P. R. China
| | - Yuan-Yuan Li
- Shanghai Center for Bioinformation TechnologyShanghai 200235, P. R. China
- Shanghai Industrial Technology Institute1278 Keyuan Road, Shanghai 201203, P. R. China
- Shanghai Engineering Research Center of Pharmaceutical Translation1278 Keyuan Road, Shanghai 201203, P. R. China
| |
Collapse
|
54
|
Affiliation(s)
- Jie Xu
- Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Jing-Yuan Fang
- Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| |
Collapse
|
55
|
Octamer transcription factor 1 mediates epithelial-mesenchymal transition in colorectal cancer. Tumour Biol 2015; 36:9941-6. [PMID: 26178483 DOI: 10.1007/s13277-015-3766-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 07/06/2015] [Indexed: 01/09/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancer types worldwide. Octamer transcription factor 1 (OCT1) is associated with tumor progression and a poor patient survival rate. However, little is known regarding the effect of OCT1 in CRC. Moreover, because the epithelial-to-mesenchymal transition (EMT) is a key player in metastasis, whether OCT1 induces EMT in CRC remains unclear. In the present study, we investigate the role of OCT1 in CRC and its expression pattern and clinical significance. The expression of OCT1 in CRC tissues and the adjacent noncancerous tissues was detected using quantitative real-time PCR (QRT-PCR), Western blot, and immunohistochemistry analyses. In addition, silencing of OCT1 with small interfering RNA (siRNA) was performed in CRC cell lines, and the impact on proliferation, migration, and the EMT marker of CRC was analyzed. Our results found that OCT1 levels were significant higher in CRC tissues compared with the adjacent noncancerous tissues. Furthermore, OCT1 siRNA significantly reduced the proliferation rate of SW620 and LoVo cells, inhibited the migration and invasion, and could reverse EMT in these two CRC cells, indicating that OCT1 plays a critical role in CRC progression.
Collapse
|
56
|
Gastric cancer and gene copy number variation: emerging cancer drivers for targeted therapy. Oncogene 2015; 35:1475-82. [PMID: 26073079 DOI: 10.1038/onc.2015.209] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 12/15/2022]
Abstract
Gastric cancer (GC) is among the most common malignancy in the world with poor prognosis and limited treatment options. It has been established that gastric carcinogenesis is caused by a complex interaction between host and environmental factors. Copy number variation (CNV) refers to a form of genomic structural variation that results in abnormal gene copy numbers, including gene amplification, gain, loss and deletion. DNA CNV is an important influential factor for the expression of both protein-coding and non-coding genes, affecting the activity of various signaling pathways. CNV arises as a result of preferential selection that favors cancer development, and thus, targeting the amplified 'driver genes' in GC may provide novel opportunities for personalized therapy. The detection of CNVs in chromosomal or mitochondrial DNA from tissue or blood samples may assist the diagnosis, prognosis and targeted therapy of GC. In this review, we discuss the recent CNV discoveries that shed light on the molecular pathogenesis of GC, with a specific emphasis on CNVs that display diagnostic, prognostic or therapeutic significances in GC.
Collapse
|
57
|
Chen WM, Huang MD, Kong R, Xu TP, Zhang EB, Xia R, Sun M, De W, Shu YQ. Antisense Long Noncoding RNA HIF1A-AS2 Is Upregulated in Gastric Cancer and Associated with Poor Prognosis. Dig Dis Sci 2015; 60:1655-62. [PMID: 25686741 DOI: 10.1007/s10620-015-3524-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 01/05/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have been recently shown to play important regulatory roles in fundamental biological processes, and many of them are deregulated in several human cancers. LncRNA hypoxia-inducible factor 1alpha antisense RNA-2 (HIF1A-AS2) is overexpressed in nonpapillary clear-cell renal carcinomas and involved in cancer progression. AIM This study was to evaluate the expression of HIF1A-AS2 in gastric cancer (GC) and further explore its biological function in GC cells. MATERIALS AND METHODS Quantitative real-time polymerase chain reaction was used to detect the expression level of HIF1A-AS2 in GC tissues. The correlation of its expression with clinicopathological features was analyzed. Area under receiver operating characteristic curve (ROC(AUC)) was constructed to evaluate the diagnostic value of HIF1A-AS2. Besides, tumor cell proliferation was assessed following knockdown of HIF1A-AS2, by MTT and colony formation assay in vitro, and tumor formation assay in a nude mouse model in vivo. RESULTS The expression of HIF1A-AS2 was upregulated in GC tumorous tissues compared with the adjacent normal tissues (P < 0.001). Its overexpression was correlated with TNM stages (P = 0.008), tumor invasion (P = 0.016), lymph node metastasis (P = 0.042), and poor prognosis (P = 0.001). In addition, ROC(AUC) of HIF1A-AS2 was up to 0.673 (95 % CI 0.596-0.744, P < 0.001). Moreover, knockdown of HIF1A-AS2 expression by siRNA could inhibit cell proliferation in vitro and tumorigenesis in vivo. CONCLUSIONS HIF1A-AS2 is overexpressed in GC and may play a pivotal role in tumor cell proliferation. It can be used as a potential diagnostic and prognostic biomarker for GC.
Collapse
Affiliation(s)
- Wen-Ming Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, Jiangsu Province, China,
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Xu SH, Huang JZ, Xu ML, Yu G, Yin XF, Chen D, Yan GR. ACK1 promotes gastric cancer epithelial-mesenchymal transition and metastasis through AKT-POU2F1-ECD signalling. J Pathol 2015; 236:175-85. [PMID: 25678401 DOI: 10.1002/path.4515] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 01/30/2015] [Accepted: 02/05/2015] [Indexed: 12/19/2022]
Abstract
Amplification of the activated Cdc42-associated kinase 1 (ACK1) gene is frequent in gastric cancer (GC). However, little is known about the clinical roles and molecular mechanisms of ACK1 abnormalities in GC. Here, we found that the ACK1 protein level and ACK1 phosphorylation at Tyr 284 were frequently elevated in GC and associated with poor patient survival. Ectopic ACK1 expression in GC cells induced epithelial-mesenchymal transition (EMT) and promoted migration and invasion in vitro, and metastasis in vivo; the depletion of ACK1 induced the opposite effects. We utilized SILAC quantitative proteomics to discover that the level of the cell cycle-related protein ecdysoneless homologue (ECD) was markedly altered by ACK1. Overexpression of ECD promoted EMT, migration, and invasion in GC, similar to the effects of ACK1 overexpression. Silencing of ECD completely blocked the augmentation of ACK1 overexpression-induced EMT, migration, and invasion. Mechanistically, ACK1 phosphorylated AKT at Thr 308 and Ser 473 and activated the AKT pathway to up-regulate the transcription factor POU2F1, which directly bound to the promoter region of its novel target gene ECD and thus regulated ECD expression in GC cells. Furthermore, the phosphorylation levels of AKT at Thr 308 and Ser 473 and POU2F1 and ECD levels were positively associated with ACK1 levels in clinical GC specimens. Collectively, we have demonstrated that ACK1 promotes EMT, migration, and invasion by activating AKT-POU2F1-ECD signalling in GC cells. ACK1 may be employed as a new prognostic factor and therapeutic target for GC.
Collapse
Affiliation(s)
- Song-Hui Xu
- Biomedicine Research Center and Department of Surgery, The Third Affiliated Hospital of Guangzhou Medicine University, Guangzhou, China.,Institutes of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Jin-Zhou Huang
- Institutes of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Man-Li Xu
- Institutes of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Guangchuang Yu
- School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Xing-Feng Yin
- Institutes of Life and Health Engineering, Jinan University, Guangzhou, China
| | - De Chen
- Biomedicine Research Center and Department of Surgery, The Third Affiliated Hospital of Guangzhou Medicine University, Guangzhou, China
| | - Guang-Rong Yan
- Biomedicine Research Center and Department of Surgery, The Third Affiliated Hospital of Guangzhou Medicine University, Guangzhou, China.,Institutes of Life and Health Engineering, Jinan University, Guangzhou, China
| |
Collapse
|