51
|
Salvatierra J, Castro J, Erickson A, Li Q, Braz J, Gilchrist J, Grundy L, Rychkov GY, Deiteren A, Rais R, King GF, Slusher BS, Basbaum A, Pasricha PJ, Brierley SM, Bosmans F. NaV1.1 inhibition can reduce visceral hypersensitivity. JCI Insight 2018; 3:121000. [PMID: 29875317 DOI: 10.1172/jci.insight.121000] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 04/26/2018] [Indexed: 12/14/2022] Open
Abstract
Functional bowel disorder patients can suffer from chronic abdominal pain, likely due to visceral hypersensitivity to mechanical stimuli. As there is only a limited understanding of the basis of chronic visceral hypersensitivity (CVH), drug-based management strategies are ill defined, vary considerably, and include NSAIDs, opioids, and even anticonvulsants. We previously reported that the 1.1 subtype of the voltage-gated sodium (NaV; NaV1.1) channel family regulates the excitability of sensory nerve fibers that transmit a mechanical pain message to the spinal cord. Herein, we investigated whether this channel subtype also underlies the abdominal pain that occurs with CVH. We demonstrate that NaV1.1 is functionally upregulated under CVH conditions and that inhibiting channel function reduces mechanical pain in 3 mechanistically distinct mouse models of chronic pain. In particular, we use a small molecule to show that selective NaV1.1 inhibition (a) decreases sodium currents in colon-innervating dorsal root ganglion neurons, (b) reduces colonic nociceptor mechanical responses, and (c) normalizes the enhanced visceromotor response to distension observed in 2 mouse models of irritable bowel syndrome. These results provide support for a relationship between NaV1.1 and chronic abdominal pain associated with functional bowel disorders.
Collapse
Affiliation(s)
- Juan Salvatierra
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joel Castro
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andelain Erickson
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Qian Li
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joao Braz
- Department of Anatomy, UCSF, California, USA
| | - John Gilchrist
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Luke Grundy
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Grigori Y Rychkov
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Annemie Deiteren
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Rana Rais
- Johns Hopkins Drug Discovery and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Glenn F King
- Institute for Molecular Bioscience, the University of Queensland, Brisbane, Australia
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Pankaj J Pasricha
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stuart M Brierley
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Frank Bosmans
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
52
|
|
53
|
Contribution of membrane receptor signalling to chronic visceral pain. Int J Biochem Cell Biol 2018; 98:10-23. [DOI: 10.1016/j.biocel.2018.02.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 12/18/2022]
|
54
|
Erickson A, Deiteren A, Harrington AM, Garcia‐Caraballo S, Castro J, Caldwell A, Grundy L, Brierley SM. Voltage-gated sodium channels: (Na V )igating the field to determine their contribution to visceral nociception. J Physiol 2018; 596:785-807. [PMID: 29318638 PMCID: PMC5830430 DOI: 10.1113/jp273461] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/02/2018] [Indexed: 12/19/2022] Open
Abstract
Chronic visceral pain, altered motility and bladder dysfunction are common, yet poorly managed symptoms of functional and inflammatory disorders of the gastrointestinal and urinary tracts. Recently, numerous human channelopathies of the voltage-gated sodium (NaV ) channel family have been identified, which induce either painful neuropathies, an insensitivity to pain, or alterations in smooth muscle function. The identification of these disorders, in addition to the recent utilisation of genetically modified NaV mice and specific NaV channel modulators, has shed new light on how NaV channels contribute to the function of neuronal and non-neuronal tissues within the gastrointestinal tract and bladder. Here we review the current pre-clinical and clinical evidence to reveal how the nine NaV channel family members (NaV 1.1-NaV 1.9) contribute to abdominal visceral function in normal and disease states.
Collapse
Affiliation(s)
- Andelain Erickson
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Annemie Deiteren
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Andrea M. Harrington
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Sonia Garcia‐Caraballo
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Joel Castro
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Ashlee Caldwell
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Luke Grundy
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| | - Stuart M. Brierley
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public HealthFlinders UniversityBedford ParkSouth Australia5042Australia
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of AdelaideSouth Australian Health and Medical Research Institute (SAHMRI)North TerraceAdelaideSouth Australia 5000Australia
| |
Collapse
|
55
|
Grundy L, Brierley SM. Cross-organ sensitization between the colon and bladder: to pee or not to pee? Am J Physiol Gastrointest Liver Physiol 2018; 314:G301-G308. [PMID: 29146678 DOI: 10.1152/ajpgi.00272.2017] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chronic abdominal and pelvic pain are common debilitating clinical conditions experienced by millions of patients around the globe. The origin of such pain commonly arises from the intestine and bladder, which share common primary roles (the collection, storage, and expulsion of waste). These visceral organs are located in close proximity to one another and also share common innervation from spinal afferent pathways. Chronic abdominal pain, constipation, or diarrhea are primary symptoms for patients with irritable bowel syndrome or inflammatory bowel disease. Chronic pelvic pain and urinary urgency and frequency are primary symptoms experienced by patients with lower urinary tract disorders such as interstitial cystitis/painful bladder syndrome. It is becoming clear that these symptoms and clinical entities do not occur in isolation, with considerable overlap in symptom profiles across patient cohorts. Here we review recent clinical and experimental evidence documenting the existence of "cross-organ sensitization" between the colon and bladder. In such circumstances, colonic inflammation may result in profound changes to the sensory pathways innervating the bladder, resulting in severe bladder dysfunction.
Collapse
Affiliation(s)
- Luke Grundy
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University , Bedford Park, South Australia , Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia , Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University , Bedford Park, South Australia , Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia , Australia
| |
Collapse
|
56
|
Castro J, Grundy L, Deiteren A, Harrington AM, O'Donnell T, Maddern J, Moore J, Garcia-Caraballo S, Rychkov GY, Yu R, Kaas Q, Craik DJ, Adams DJ, Brierley SM. Cyclic analogues of α-conotoxin Vc1.1 inhibit colonic nociceptors and provide analgesia in a mouse model of chronic abdominal pain. Br J Pharmacol 2018; 175:2384-2398. [PMID: 29194563 DOI: 10.1111/bph.14115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 11/16/2017] [Accepted: 11/23/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Patients with irritable bowel syndrome suffer from chronic visceral pain (CVP) and limited analgesic therapeutic options are currently available. We have shown that α-conotoxin Vc1.1 induced activation of GABAB receptors on the peripheral endings of colonic afferents and reduced nociceptive signalling from the viscera. However, the analgesic efficacy of more stable, cyclized versions of Vc1.1 on CVP remains to be determined. EXPERIMENTAL APPROACH Using ex vivo colonic afferent preparations from mice, we determined the inhibitory actions of cyclized Vc1.1 (cVc1.1) and two cVc1.1 analogues on mouse colonic nociceptors in healthy and chronic visceral hypersensitivity (CVH) states. Using whole-cell patch clamp recordings, we also assessed the inhibitory actions of these peptides on the neuronal excitability of colonic innervating dorsal root ganglion neurons. In vivo, the analgesic efficacy of these analogues was assessed by determining the visceromotor response to colorectal distension in healthy and CVH mice. KEY RESULTS cVc1.1 and the cVc1.1 analogues, [C2H,C8F]cVc1.1 and [N9W]cVc1.1, all caused concentration-dependent inhibition of colonic nociceptors from healthy mice. Inhibition by these peptides was greater than those evoked by linear Vc1.1 and was substantially greater in colonic nociceptors from CVH mice. cVc1.1 also reduced excitability of colonic dorsal root ganglion neurons, with greater effect in CVH neurons. CVH mice treated with cVc1.1 intra-colonically displayed reduced pain responses to noxious colorectal distension compared with vehicle-treated CVH mice. CONCLUSIONS AND IMPLICATIONS Cyclic versions of Vc1.1 evoked significant anti-nociceptive actions in CVH states, suggesting that they could be novel candidates for treatment of CVP. LINKED ARTICLES This article is part of a themed section on Recent Advances in Targeting Ion Channels to Treat Chronic Pain. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.12/issuetoc.
Collapse
Affiliation(s)
- Joel Castro
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Luke Grundy
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Annemie Deiteren
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Andrea M Harrington
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Tracey O'Donnell
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Jessica Maddern
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Jessi Moore
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Sonia Garcia-Caraballo
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Grigori Y Rychkov
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| | - Rilei Yu
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Quentin Kaas
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Stuart M Brierley
- Visceral Pain Research Group, Human Physiology, Centre for Neuroscience, College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, 5042, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, 5000, Australia
| |
Collapse
|
57
|
Greenwood-Van Meerveld B, Johnson AC. Stress-Induced Chronic Visceral Pain of Gastrointestinal Origin. Front Syst Neurosci 2017; 11:86. [PMID: 29213232 PMCID: PMC5702626 DOI: 10.3389/fnsys.2017.00086] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/10/2017] [Indexed: 12/12/2022] Open
Abstract
Visceral pain is generally poorly localized and characterized by hypersensitivity to a stimulus such as organ distension. In concert with chronic visceral pain, there is a high comorbidity with stress-related psychiatric disorders including anxiety and depression. The mechanisms linking visceral pain with these overlapping comorbidities remain to be elucidated. Evidence suggests that long term stress facilitates pain perception and sensitizes pain pathways, leading to a feed-forward cycle promoting chronic visceral pain disorders such as irritable bowel syndrome (IBS). Early life stress (ELS) is a risk-factor for the development of IBS, however the mechanisms responsible for the persistent effects of ELS on visceral perception in adulthood remain incompletely understood. In rodent models, stress in adult animals induced by restraint and water avoidance has been employed to investigate the mechanisms of stress-induce pain. ELS models such as maternal separation, limited nesting, or odor-shock conditioning, which attempt to model early childhood experiences such as neglect, poverty, or an abusive caregiver, can produce chronic, sexually dimorphic increases in visceral sensitivity in adulthood. Chronic visceral pain is a classic example of gene × environment interaction which results from maladaptive changes in neuronal circuitry leading to neuroplasticity and aberrant neuronal activity-induced signaling. One potential mechanism underlying the persistent effects of stress on visceral sensitivity could be epigenetic modulation of gene expression. While there are relatively few studies examining epigenetically mediated mechanisms involved in visceral nociception, stress-induced visceral pain has been linked to alterations in DNA methylation and histone acetylation patterns within the brain, leading to increased expression of pro-nociceptive neurotransmitters. This review will discuss the potential neuronal pathways and mechanisms responsible for stress-induced exacerbation of chronic visceral pain. Additionally, we will review the importance of specific experimental models of adult stress and ELS in enhancing our understanding of the basic molecular mechanisms of pain processing.
Collapse
Affiliation(s)
- Beverley Greenwood-Van Meerveld
- Oklahoma Center for Neuroscience, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- Department of Physiology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- VA Medical Center, Oklahoma City, OK, United States
| | | |
Collapse
|
58
|
G-Protein Coupled Receptors Targeted by Analgesic Venom Peptides. Toxins (Basel) 2017; 9:toxins9110372. [PMID: 29144441 PMCID: PMC5705987 DOI: 10.3390/toxins9110372] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/13/2017] [Accepted: 11/13/2017] [Indexed: 12/14/2022] Open
Abstract
Chronic pain is a complex and debilitating condition associated with a large personal and socioeconomic burden. Current pharmacological approaches to treating chronic pain such as opioids, antidepressants and anticonvulsants exhibit limited efficacy in many patients and are associated with dose-limiting side effects that hinder their clinical use. Therefore, improved strategies for the pharmacological treatment of pathological pain are urgently needed. G-protein coupled receptors (GPCRs) are ubiquitously expressed on the surface of cells and act to transduce extracellular signals and regulate physiological processes. In the context of pain, numerous and diverse families of GPCRs expressed in pain pathways regulate most aspects of physiological and pathological pain and are thus implicated as potential targets for therapy of chronic pain. In the search for novel compounds that produce analgesia via GPCR modulation, animal venoms offer an enormous and virtually untapped source of potent and selective peptide molecules. While many venom peptides target voltage-gated and ligand-gated ion channels to inhibit neuronal excitability and blunt synaptic transmission of pain signals, only a small proportion are known to interact with GPCRs. Of these, only a few have shown analgesic potential in vivo. Here we review the current state of knowledge regarding venom peptides that target GPCRs to produce analgesia, and their development as therapeutic compounds.
Collapse
|
59
|
Hoggard MF, Rodriguez AM, Cano H, Clark E, Tae HS, Adams DJ, Godenschwege TA, Marí F. In vivo and in vitro testing of native α-conotoxins from the injected venom of Conus purpurascens. Neuropharmacology 2017; 127:253-259. [PMID: 28917942 DOI: 10.1016/j.neuropharm.2017.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 08/08/2017] [Accepted: 09/11/2017] [Indexed: 11/17/2022]
Abstract
α-Conotoxins inhibit nicotinic acetylcholine receptors (nAChRs) and are used as probes to study cholinergic pathways in vertebrates. Model organisms, such as Drosophila melanogaster, express nAChRs in their CNS that are suitable to investigate the neuropharmacology of α-conotoxins in vivo. Here we report the paired nanoinjection of native α-conotoxin PIA and two novel α-conotoxins, PIC and PIC[O7], from the injected venom of Conus purpurascens and electrophysiological recordings of their effects on the giant fiber system (GFS) of D. melanogaster and heterologously expressed nAChRs in Xenopus oocytes. α-PIA caused disruption of the function of giant fiber dorsal longitudinal muscle (GF-DLM) pathway by inhibiting the Dα7 nAChR a homolog to the vertebrate α7 nAChR, whereas PIC and PIC[O7] did not. PIC and PIC[O7] reversibly inhibited ACh-evoked currents mediated by vertebrate rodent (r)α1β1δγ, rα1β1δε and human (h)α3β2, but not hα7 nAChR subtypes expressed in Xenopus oocytes with the following selectivity: rα1β1δε > rα1β1δγ ≈ hα3β2 >> hα7. Our study emphasizes the importance of loop size and α-conotoxin sequence specificity for receptor binding. These studies can be used for the evaluation of the neuropharmacology of novel α-conotoxins that can be utilized as molecular probes for diseases such as, Alzheimer's, Parkinson's, and cancer. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Mickelene F Hoggard
- Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, SC 29412, USA; Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA
| | - Alena M Rodriguez
- Department of Biomedical Science, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA
| | - Herminsul Cano
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA
| | - Evan Clark
- Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA
| | - Han-Shen Tae
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW 2522, Australia
| | - Tanja A Godenschwege
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA
| | - Frank Marí
- Marine Biochemical Sciences, Chemical Sciences Division, National Institute of Standards and Technology, 331 Fort Johnson Road, Charleston, SC 29412, USA; Department of Chemistry and Biochemistry, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431-0991, USA.
| |
Collapse
|
60
|
Hone AJ, Servent D, McIntosh JM. α9-containing nicotinic acetylcholine receptors and the modulation of pain. Br J Pharmacol 2017; 175:1915-1927. [PMID: 28662295 DOI: 10.1111/bph.13931] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 06/09/2017] [Accepted: 06/13/2017] [Indexed: 01/01/2023] Open
Abstract
Neuropathic pain is a complex and debilitating syndrome for which there are few effective pharmacological treatments. Opioid-based medications are initially effective for acute pain, but tolerance to their analgesic effects quickly develops, and long-term use often leads to physical dependence and addiction. Furthermore, neuropathic pain is generally resistant to non-steroidal anti-inflammatory drugs. Other classes of medications including antidepressants, antiepileptics and voltage-gated calcium channel inhibitors are only partially effective in most patients, may be associated with significant side effects and have few disease-modifying effects on the underlying pathology. Medications that act through new mechanisms of action, and particularly ones that have disease-modifying properties, would be highly desirable. In the last decade, a potential new target for the treatment of neuropathic pain has emerged: the α9-containing nicotinic acetylcholine receptor (nAChR). Recent studies indicate that antagonists of α9-containing nAChRs are analgesic in animal models of neuropathic pain. These nerve injury models include chronic constriction injury, partial sciatic nerve ligation, streptozotocin-induced diabetic neuropathy and chemotherapeutic-induced neuropathy. This review details the history and state of the field regarding the role that α9-containing nAChRs may play in neuropathic pain. An alternative hypothesis that α-conotoxins exert their therapeutic effect through blocking N-type calcium channels via activation of GABAB receptors is also reviewed. Understanding how antagonists of α9-containing nAChRs exert their therapeutic effects may ultimately result in the development of medications that not only treat but also prevent the development of neuropathic pain states. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
Affiliation(s)
- Arik J Hone
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Denis Servent
- Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), IBITECS, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - J Michael McIntosh
- Department of Biology, University of Utah, Salt Lake City, UT, USA.,George E. Whalen Veterans Affairs Medical Center, Salt Lake City, UT, USA.,Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
61
|
Christensen SB, Hone AJ, Roux I, Kniazeff J, Pin JP, Upert G, Servent D, Glowatzki E, McIntosh JM. RgIA4 Potently Blocks Mouse α9α10 nAChRs and Provides Long Lasting Protection against Oxaliplatin-Induced Cold Allodynia. Front Cell Neurosci 2017; 11:219. [PMID: 28785206 PMCID: PMC5519620 DOI: 10.3389/fncel.2017.00219] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/06/2017] [Indexed: 01/12/2023] Open
Abstract
Transcripts for α9 and α10 nicotinic acetylcholine receptor (nAChR) subunits are found in diverse tissues. The function of α9α10 nAChRs is best known in mechanosensory cochlear hair cells, but elsewhere their roles are less well-understood. α9α10 nAChRs have been implicated as analgesic targets and α-conotoxins that block α9α10 nAChRs produce analgesia. However, some of these peptides show large potency differences between species. Additionally several studies have indicated that these conotoxins may also activate GABAB receptors (GABABRs). To further address these issues, we cloned the cDNAs of mouse α9 and α10 nAChR subunits. When heterologously expressed in Xenopus oocytes, the resulting α9α10 nAChRs had the expected pharmacology of being activated by acetylcholine and choline but not by nicotine. A conotoxin analog, RgIA4, potently, and selectively blocked mouse α9α10 nAChRs with low nanomolar affinity indicating that RgIA4 may be effectively used to study murine α9α10 nAChR function. Previous reports indicated that RgIA4 attenuates chemotherapy-induced cold allodynia. Here we demonstrate that RgIA4 analgesic effects following oxaliplatin treatment are sustained for 21 days after last RgIA4 administration indicating that RgIA4 may provide enduring protection against nerve damage. RgIA4 lacks activity at GABAB receptors; a bioluminescence resonance energy transfer assay was used to demonstrate that two other analgesic α-conotoxins, Vc1.1 and AuIB, also do not activate GABABRs expressed in HEK cells. Together these findings further support the targeting of α9α10 nAChRs in the treatment of pain.
Collapse
Affiliation(s)
- Sean B Christensen
- Department of Biology, University of UtahSalt Lake City, UT, United States
| | - Arik J Hone
- Department of Biology, University of UtahSalt Lake City, UT, United States
| | - Isabelle Roux
- Department of Otolaryngology, Head and Neck Surgery, The Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of MedicineBaltimore, MD, United States
| | - Julie Kniazeff
- IGF, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université MontpellierMontpellier, France
| | - Jean-Philippe Pin
- IGF, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Université MontpellierMontpellier, France
| | - Grégory Upert
- Service d'Ingénierie Moléculaire des Protéines, CEA, Université Paris-SaclayGif-sur-Yvette, France
| | - Denis Servent
- Service d'Ingénierie Moléculaire des Protéines, CEA, Université Paris-SaclayGif-sur-Yvette, France
| | - Elisabeth Glowatzki
- Department of Otolaryngology, Head and Neck Surgery, The Center for Hearing and Balance and the Center for Sensory Biology, The Johns Hopkins University School of MedicineBaltimore, MD, United States.,Department of Neuroscience, The Johns Hopkins University School of MedicineBaltimore, MD, United States
| | - J Michael McIntosh
- Department of Biology, University of UtahSalt Lake City, UT, United States.,George E. Whalen Veterans Affairs Medical CenterSalt Lake City, UT, United States.,Department of Psychiatry, University of UtahSalt Lake City, UT, United States
| |
Collapse
|
62
|
Dutertre S, Nicke A, Tsetlin VI. Nicotinic acetylcholine receptor inhibitors derived from snake and snail venoms. Neuropharmacology 2017. [PMID: 28623170 DOI: 10.1016/j.neuropharm.2017.06.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nicotinic acetylcholine receptor (nAChR) represents the prototype of ligand-gated ion channels. It is vital for neuromuscular transmission and an important regulator of neurotransmission. A variety of toxic compounds derived from diverse species target this receptor and have been of elemental importance in basic and applied research. They enabled milestone discoveries in pharmacology and biochemistry ranging from the original formulation of the receptor concept, the first isolation and structural analysis of a receptor protein (the nAChR) to the identification, localization, and differentiation of its diverse subtypes and their validation as a target for therapeutic intervention. Among the venom-derived compounds, α-neurotoxins and α-conotoxins provide the largest families and still represent indispensable pharmacological tools. Application of modified α-neurotoxins provided substantial structural and functional details of the nAChR long before high resolution structures were available. α-bungarotoxin represents not only a standard pharmacological tool and label in nAChR research but also for unrelated proteins tagged with a minimal α-bungarotoxin binding motif. A major advantage of α-conotoxins is their smaller size, as well as superior selectivity for diverse nAChR subtypes that allows their development into ligands with optimized pharmacological and chemical properties and potentially novel drugs. In the following, these two groups of nAChR antagonists will be described focusing on their respective roles in the structural and functional characterization of nAChRs and their development into research tools. In addition, we provide a comparative overview of the diverse α-conotoxin selectivities that can serve as a practical guide for both structure activity studies and subtype classification. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Sébastien Dutertre
- Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier - CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Annette Nicke
- Walther Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Nußbaumstr. 26, 80336 Munich, Germany.
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str.16/10, Moscow 117999, Russian Federation
| |
Collapse
|
63
|
Sadeghi M, McArthur JR, Finol-Urdaneta RK, Adams DJ. Analgesic conopeptides targeting G protein-coupled receptors reduce excitability of sensory neurons. Neuropharmacology 2017; 127:116-123. [PMID: 28533165 DOI: 10.1016/j.neuropharm.2017.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/16/2017] [Accepted: 05/18/2017] [Indexed: 01/28/2023]
Abstract
Conotoxins (conopeptides) are a diverse group of peptides isolated from the venom of marine cone snails. Conus peptides modulate pain by interacting with voltage-gated ion channels and G protein-coupled receptors (GPCRs). Opiate drugs targeting GPCRs have long been used, nonetheless, many undesirable side effects associated with opiates have been observed including addiction. Consequently, alternative avenues to pain management are a largely unmet need. It has been shown that various voltage-gated calcium channels (VGCCs) respond to GPCR modulation. Thus, regulation of VGCCs by GPCRs has become a valuable alternative in the management of pain. In this review, we focus on analgesic conotoxins that exert their effects via GPCR-mediated inhibition of ion channels involved in nociception and pain transmission. Specifically, α-conotoxin Vc1.1 activation of GABAB receptors and inhibition of voltage-gated calcium channels as a novel mechanism for reducing the excitability of dorsal root ganglion neurons is described. Vc1.1 and other α-conotoxins have been shown to be analgesic in different animal models of chronic pain. This review will outline the functional effects of conopeptide modulation of GPCRs and how their signalling is translated to downstream components of the pain pathways. Where available we present the proposed signalling mechanisms that couples metabotropic receptor activation to their downstream effectors to produce analgesia. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Mahsa Sadeghi
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Jeffrey R McArthur
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Rocio K Finol-Urdaneta
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - David J Adams
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, New South Wales, 2522, Australia.
| |
Collapse
|
64
|
Lee MC, McCubbin JA, Christensen AD, Poole DP, Rajasekhar P, Lieu T, Bunnett NW, Garcia-Caraballo S, Erickson A, Brierley SM, Saleh R, Achuthan A, Fleetwood AJ, Anderson RL, Hamilton JA, Cook AD. G-CSF Receptor Blockade Ameliorates Arthritic Pain and Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:3565-3575. [PMID: 28320832 PMCID: PMC10069442 DOI: 10.4049/jimmunol.1602127] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/20/2017] [Indexed: 01/08/2023]
Abstract
G-CSF or CSF-3, originally defined as a regulator of granulocyte lineage development via its cell surface receptor (G-CSFR), can play a role in inflammation, and hence in many pathologies, due to its effects on mature lineage populations. Given this, and because pain is an extremely important arthritis symptom, the efficacy of an anti-G-CSFR mAb for arthritic pain and disease was compared with that of a neutrophil-depleting mAb, anti-Ly6G, in both adaptive and innate immune-mediated murine models. Pain and disease were ameliorated in Ag-induced arthritis, zymosan-induced arthritis, and methylated BSA/IL-1 arthritis by both prophylactic and therapeutic anti-G-CSFR mAb treatment, whereas only prophylactic anti-Ly6G mAb treatment was effective. Efficacy for pain and disease correlated with reduced joint neutrophil numbers and, importantly, benefits were noted without necessarily the concomitant reduction in circulating neutrophils. Anti-G-CSFR mAb also suppressed zymosan-induced inflammatory pain. A new G-CSF-driven (methylated BSA/G-CSF) arthritis model was established enabling us to demonstrate that pain was blocked by a cyclooxygenase-2 inhibitor, suggesting an indirect effect on neurons. Correspondingly, dorsal root ganglion neurons cultured in G-CSF failed to respond to G-CSF in vitro, and Csf3r gene expression could not be detected in dorsal root ganglion neurons by single-cell RT-PCR. These data suggest that G-CSFR/G-CSF targeting may be a safe therapeutic strategy for arthritis and other inflammatory conditions, particularly those in which pain is important, as well as for inflammatory pain per se.
Collapse
Affiliation(s)
- Ming-Chin Lee
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - James A McCubbin
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Anne D Christensen
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Daniel P Poole
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Pradeep Rajasekhar
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - TinaMarie Lieu
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Nigel W Bunnett
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Department of Surgery, Columbia University, New York, NY 10032
| | - Sonia Garcia-Caraballo
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia.,Visceral Pain Group, Department of Human Physiology, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Andelain Erickson
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia.,Visceral Pain Group, Department of Human Physiology, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Stuart M Brierley
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia.,South Australian Health and Medical Research Institute, Adelaide, South Australia 5000, Australia.,Visceral Pain Group, Department of Human Physiology, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Reem Saleh
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Adrian Achuthan
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Andrew J Fleetwood
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Robin L Anderson
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria 3084, Australia; and.,School of Cancer Medicine, La Trobe University, Heidelberg, Victoria 3084, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia;
| | - Andrew D Cook
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
65
|
|
66
|
Reed DE, Vanner SJ. Emerging studies of human visceral nociceptors. Am J Physiol Gastrointest Liver Physiol 2017; 312:G201-G207. [PMID: 28007748 DOI: 10.1152/ajpgi.00391.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 01/31/2023]
Abstract
Animal studies have led to significant advances in our understanding of pain mechanisms in the intestine that could lead to altered signaling in disorders such as irritable bowel syndrome. However, how these translate to the human afferent nervous system is unclear. Recent studies have demonstrated that it is possible to use a variety of techniques, including electrophysiological recordings, to begin to examine these concepts in humans. This mini-review examines these studies to explore how well animal studies translate to humans suffering from irritable bowel syndrome, highlights some of the advantages and technical limitations of these approaches, and identifies some priorities for future studies using human tissues.
Collapse
Affiliation(s)
- David E Reed
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| | - Stephen J Vanner
- Gastrointestinal Diseases Research Unit, Kingston General Hospital, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
67
|
Inserra MC, Israel MR, Caldwell A, Castro J, Deuis JR, Harrington AM, Keramidas A, Garcia-Caraballo S, Maddern J, Erickson A, Grundy L, Rychkov GY, Zimmermann K, Lewis RJ, Brierley SM, Vetter I. Multiple sodium channel isoforms mediate the pathological effects of Pacific ciguatoxin-1. Sci Rep 2017; 7:42810. [PMID: 28225079 PMCID: PMC5320492 DOI: 10.1038/srep42810] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/13/2017] [Indexed: 01/04/2023] Open
Abstract
Human intoxication with the seafood poison ciguatoxin, a dinoflagellate polyether that activates voltage-gated sodium channels (NaV), causes ciguatera, a disease characterised by gastrointestinal and neurological disturbances. We assessed the activity of the most potent congener, Pacific ciguatoxin-1 (P-CTX-1), on NaV1.1–1.9 using imaging and electrophysiological approaches. Although P-CTX-1 is essentially a non-selective NaV toxin and shifted the voltage-dependence of activation to more hyperpolarising potentials at all NaV subtypes, an increase in the inactivation time constant was observed only at NaV1.8, while the slope factor of the conductance-voltage curves was significantly increased for NaV1.7 and peak current was significantly increased for NaV1.6. Accordingly, P-CTX-1-induced visceral and cutaneous pain behaviours were significantly decreased after pharmacological inhibition of NaV1.8 and the tetrodotoxin-sensitive isoforms NaV1.7 and NaV1.6, respectively. The contribution of these isoforms to excitability of peripheral C- and A-fibre sensory neurons, confirmed using murine skin and visceral single-fibre recordings, reflects the expression pattern of NaV isoforms in peripheral sensory neurons and their contribution to membrane depolarisation, action potential initiation and propagation.
Collapse
Affiliation(s)
- Marco C Inserra
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, Queensland 4072, Australia
| | - Mathilde R Israel
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, Queensland 4072, Australia
| | - Ashlee Caldwell
- Visceral Pain Group, South Australian Health and Medical Research Institute (SAHMRI), School of Medicine, Flinders University, Adelaide, South Australia 5000, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Joel Castro
- Visceral Pain Group, South Australian Health and Medical Research Institute (SAHMRI), School of Medicine, Flinders University, Adelaide, South Australia 5000, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Jennifer R Deuis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, Queensland 4072, Australia
| | - Andrea M Harrington
- Visceral Pain Group, South Australian Health and Medical Research Institute (SAHMRI), School of Medicine, Flinders University, Adelaide, South Australia 5000, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Angelo Keramidas
- Queensland Brain Institute, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Sonia Garcia-Caraballo
- Visceral Pain Group, South Australian Health and Medical Research Institute (SAHMRI), School of Medicine, Flinders University, Adelaide, South Australia 5000, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Jessica Maddern
- Visceral Pain Group, South Australian Health and Medical Research Institute (SAHMRI), School of Medicine, Flinders University, Adelaide, South Australia 5000, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Andelain Erickson
- Visceral Pain Group, South Australian Health and Medical Research Institute (SAHMRI), School of Medicine, Flinders University, Adelaide, South Australia 5000, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Luke Grundy
- Visceral Pain Group, South Australian Health and Medical Research Institute (SAHMRI), School of Medicine, Flinders University, Adelaide, South Australia 5000, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Grigori Y Rychkov
- Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Katharina Zimmermann
- Klinik für Anästhesiologie am Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Richard J Lewis
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, Queensland 4072, Australia
| | - Stuart M Brierley
- Visceral Pain Group, South Australian Health and Medical Research Institute (SAHMRI), School of Medicine, Flinders University, Adelaide, South Australia 5000, Australia.,Centre for Nutrition and Gastrointestinal Diseases, Discipline of Medicine, University of Adelaide, South Australian Health and Medical Research Institute (SAHMRI), North Terrace, Adelaide, South Australia 5000, Australia
| | - Irina Vetter
- Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Rd, St Lucia, Queensland 4072, Australia.,School of Pharmacy, The University of Queensland, 20 Cornwall St, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
68
|
Inhibition of α9α10 nicotinic acetylcholine receptors prevents chemotherapy-induced neuropathic pain. Proc Natl Acad Sci U S A 2017; 114:E1825-E1832. [PMID: 28223528 DOI: 10.1073/pnas.1621433114] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Opioids are first-line drugs for moderate to severe acute pain and cancer pain. However, these medications are associated with severe side effects, and whether they are efficacious in treatment of chronic nonmalignant pain remains controversial. Medications that act through alternative molecular mechanisms are critically needed. Antagonists of α9α10 nicotinic acetylcholine receptors (nAChRs) have been proposed as an important nonopioid mechanism based on studies demonstrating prevention of neuropathology after trauma-induced nerve injury. However, the key α9α10 ligands characterized to date are at least two orders of magnitude less potent on human vs. rodent nAChRs, limiting their translational application. Furthermore, an alternative proposal that these ligands achieve their beneficial effects by acting as agonists of GABAB receptors has caused confusion over whether blockade of α9α10 nAChRs is the fundamental underlying mechanism. To address these issues definitively, we developed RgIA4, a peptide that exhibits high potency for both human and rodent α9α10 nAChRs, and was at least 1,000-fold more selective for α9α10 nAChRs vs. all other molecular targets tested, including opioid and GABAB receptors. A daily s.c. dose of RgIA4 prevented chemotherapy-induced neuropathic pain in rats. In wild-type mice, oxaliplatin treatment produced cold allodynia that could be prevented by RgIA4. Additionally, in α9 KO mice, chemotherapy-induced development of cold allodynia was attenuated and the milder, temporary cold allodynia was not relieved by RgIA4. These findings establish blockade of α9-containing nAChRs as the basis for the efficacy of RgIA4, and that α9-containing nAChRs are a critical target for prevention of chronic cancer chemotherapy-induced neuropathic pain.
Collapse
|
69
|
Chen L, Ilham SJ, Feng B. Pharmacological Approach for Managing Pain in Irritable Bowel Syndrome: A Review Article. Anesth Pain Med 2017; 7:e42747. [PMID: 28824858 PMCID: PMC5556397 DOI: 10.5812/aapm.42747] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/02/2016] [Accepted: 12/24/2016] [Indexed: 12/13/2022] Open
Abstract
Context Visceral pain is a leading symptom for patients with irritable bowel syndrome (IBS) that affects 10% - 20 % of the world population. Conventional pharmacological treatments to manage IBS-related visceral pain is unsatisfactory. Recently, medications have emerged to treat IBS patients by targeting the gastrointestinal (GI) tract and peripheral nerves to alleviate visceral pain while avoiding adverse effects on the central nervous system (CNS). Several investigational drugs for IBS also target the periphery with minimal CNS effects. Evidence of Acquisition In this paper, reputable internet databases from 1960 - 2016 were searched including Pubmed and ClinicalTrials.org, and 97 original articles analyzed. Search was performed based on the following keywords and combinations: irritable bowel syndrome, clinical trial, pain, visceral pain, narcotics, opioid, chloride channel, neuropathy, primary afferent, intestine, microbiota, gut barrier, inflammation, diarrhea, constipation, serotonin, visceral hypersensitivity, nociceptor, sensitization, hyperalgesia. Results Certain conventional pain managing drugs do not effectively improve IBS symptoms, including NSAIDs, acetaminophen, aspirin, and various narcotics. Anxiolytic and antidepressant drugs (Benzodiazepines, TCAs, SSRI and SNRI) can attenuate pain in IBS patients with relevant comorbidities. Clonidine, gabapentin and pregabalin can moderately improve IBS symptoms. Lubiprostone relieves constipation predominant IBS (IBS-C) while loperamide improves diarrhea predominant IBS (IBS-D). Alosetron, granisetron and ondansetron can generally treat pain in IBS-D patients, of which alosetron needs to be used with caution due to cardiovascular toxicity. The optimal drugs for managing pain in IBS-D and IBS-C appear to be eluxadoline and linaclotide, respectively, both of which target peripheral GI tract. Conclusions Conventional pain managing drugs are in general not suitable for treating IBS pain. Medications that target the GI tract and peripheral nerves have better therapeutic profiles by limiting adverse CNS effects.
Collapse
Affiliation(s)
- Longtu Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Sheikh J. Ilham
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Corresponding author: Bin Feng, Ph.D., Department of Biomedical Engineering, University of Connecticut, 260 Glenbrook Road, Unit 3247, Storrs, CT 06269-3247, USA. Tel: +1-8604866435, Fax: +1-8604862500, E-mail:
| |
Collapse
|
70
|
|
71
|
Carstens BB, Berecki G, Daniel JT, Lee HS, Jackson KAV, Tae H, Sadeghi M, Castro J, O'Donnell T, Deiteren A, Brierley SM, Craik DJ, Adams DJ, Clark RJ. Structure–Activity Studies of Cysteine‐Rich α‐Conotoxins that Inhibit High‐Voltage‐Activated Calcium Channels via GABA
B
Receptor Activation Reveal a Minimal Functional Motif. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201600297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bodil B. Carstens
- Institute for Molecular Biosciences The University of Queensland Brisbane Qld 4072 Australia
| | - Géza Berecki
- Health Innovations Research Institute RMIT University Melbourne Vic 3083 Australia
| | - James T. Daniel
- School of Biomedical Science The University of Queensland Brisbane Qld 4072 Australia
| | - Han Siean Lee
- School of Biomedical Science The University of Queensland Brisbane Qld 4072 Australia
| | - Kathryn A. V. Jackson
- School of Biomedical Science The University of Queensland Brisbane Qld 4072 Australia
| | - Han‐Shen Tae
- Health Innovations Research Institute RMIT University Melbourne Vic 3083 Australia
- Illawarra Health and Medical Research Institute (IHMRI) University of Wollongong Wollongong NSW 2522 Australia
| | - Mahsa Sadeghi
- Health Innovations Research Institute RMIT University Melbourne Vic 3083 Australia
- Illawarra Health and Medical Research Institute (IHMRI) University of Wollongong Wollongong NSW 2522 Australia
| | - Joel Castro
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases Discipline of Medicine The University of Adelaide South Australian Health and Medical Research Institute (SAHMRI) Adelaide SA 5000 Australia
| | - Tracy O'Donnell
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases Discipline of Medicine The University of Adelaide South Australian Health and Medical Research Institute (SAHMRI) Adelaide SA 5000 Australia
| | - Annemie Deiteren
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases Discipline of Medicine The University of Adelaide South Australian Health and Medical Research Institute (SAHMRI) Adelaide SA 5000 Australia
| | - Stuart M. Brierley
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases Discipline of Medicine The University of Adelaide South Australian Health and Medical Research Institute (SAHMRI) Adelaide SA 5000 Australia
| | - David J. Craik
- Institute for Molecular Biosciences The University of Queensland Brisbane Qld 4072 Australia
| | - David J. Adams
- Health Innovations Research Institute RMIT University Melbourne Vic 3083 Australia
- Illawarra Health and Medical Research Institute (IHMRI) University of Wollongong Wollongong NSW 2522 Australia
| | - Richard J. Clark
- School of Biomedical Science The University of Queensland Brisbane Qld 4072 Australia
| |
Collapse
|
72
|
Carstens BB, Berecki G, Daniel JT, Lee HS, Jackson KAV, Tae H, Sadeghi M, Castro J, O'Donnell T, Deiteren A, Brierley SM, Craik DJ, Adams DJ, Clark RJ. Structure–Activity Studies of Cysteine‐Rich α‐Conotoxins that Inhibit High‐Voltage‐Activated Calcium Channels via GABA
B
Receptor Activation Reveal a Minimal Functional Motif. Angew Chem Int Ed Engl 2016; 55:4692-6. [DOI: 10.1002/anie.201600297] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Indexed: 01/29/2023]
Affiliation(s)
- Bodil B. Carstens
- Institute for Molecular Biosciences The University of Queensland Brisbane Qld 4072 Australia
| | - Géza Berecki
- Health Innovations Research Institute RMIT University Melbourne Vic 3083 Australia
| | - James T. Daniel
- School of Biomedical Science The University of Queensland Brisbane Qld 4072 Australia
| | - Han Siean Lee
- School of Biomedical Science The University of Queensland Brisbane Qld 4072 Australia
| | - Kathryn A. V. Jackson
- School of Biomedical Science The University of Queensland Brisbane Qld 4072 Australia
| | - Han‐Shen Tae
- Health Innovations Research Institute RMIT University Melbourne Vic 3083 Australia
- Illawarra Health and Medical Research Institute (IHMRI) University of Wollongong Wollongong NSW 2522 Australia
| | - Mahsa Sadeghi
- Health Innovations Research Institute RMIT University Melbourne Vic 3083 Australia
- Illawarra Health and Medical Research Institute (IHMRI) University of Wollongong Wollongong NSW 2522 Australia
| | - Joel Castro
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases Discipline of Medicine The University of Adelaide South Australian Health and Medical Research Institute (SAHMRI) Adelaide SA 5000 Australia
| | - Tracy O'Donnell
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases Discipline of Medicine The University of Adelaide South Australian Health and Medical Research Institute (SAHMRI) Adelaide SA 5000 Australia
| | - Annemie Deiteren
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases Discipline of Medicine The University of Adelaide South Australian Health and Medical Research Institute (SAHMRI) Adelaide SA 5000 Australia
| | - Stuart M. Brierley
- Visceral Pain Group, Centre for Nutrition and Gastrointestinal Diseases Discipline of Medicine The University of Adelaide South Australian Health and Medical Research Institute (SAHMRI) Adelaide SA 5000 Australia
| | - David J. Craik
- Institute for Molecular Biosciences The University of Queensland Brisbane Qld 4072 Australia
| | - David J. Adams
- Health Innovations Research Institute RMIT University Melbourne Vic 3083 Australia
- Illawarra Health and Medical Research Institute (IHMRI) University of Wollongong Wollongong NSW 2522 Australia
| | - Richard J. Clark
- School of Biomedical Science The University of Queensland Brisbane Qld 4072 Australia
| |
Collapse
|