51
|
Dewhurst MR, Ow JR, Zafer G, van Hul NKM, Wollmann H, Bisteau X, Brough D, Choi H, Kaldis P. Loss of hepatocyte cell division leads to liver inflammation and fibrosis. PLoS Genet 2020; 16:e1009084. [PMID: 33147210 PMCID: PMC7641358 DOI: 10.1371/journal.pgen.1009084] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
The liver possesses a remarkable regenerative capacity based partly on the ability of hepatocytes to re-enter the cell cycle and divide to replace damaged cells. This capability is substantially reduced upon chronic damage, but it is not clear if this is a cause or consequence of liver disease. Here, we investigate whether blocking hepatocyte division using two different mouse models affects physiology as well as clinical liver manifestations like fibrosis and inflammation. We find that in P14 Cdk1Liv-/- mice, where the division of hepatocytes is abolished, polyploidy, DNA damage, and increased p53 signaling are prevalent. Cdk1Liv-/- mice display classical markers of liver damage two weeks after birth, including elevated ALT, ALP, and bilirubin levels, despite the lack of exogenous liver injury. Inflammation was further studied using cytokine arrays, unveiling elevated levels of CCL2, TIMP1, CXCL10, and IL1-Rn in Cdk1Liv-/- liver, which resulted in increased numbers of monocytes. Ablation of CDK2-dependent DNA re-replication and polyploidy in Cdk1Liv-/- mice reversed most of these phenotypes. Overall, our data indicate that blocking hepatocyte division induces biological processes driving the onset of the disease phenotype. It suggests that the decrease in hepatocyte division observed in liver disease may not only be a consequence of fibrosis and inflammation, but also a pathological cue.
Collapse
Affiliation(s)
- Matthew R. Dewhurst
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
- Lydia Becker Institute of Immunology and Inflammation; and Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Jin Rong Ow
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
| | - Gözde Zafer
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
- Department of Biochemistry, National University of Singapore (NUS), Singapore
| | - Noémi K. M. van Hul
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
| | - Heike Wollmann
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
| | - Xavier Bisteau
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
| | - David Brough
- Lydia Becker Institute of Immunology and Inflammation; and Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Hyungwon Choi
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Philipp Kaldis
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore
- Department of Biochemistry, National University of Singapore (NUS), Singapore
- Department of Clinical Sciences, Lund University, Clinical Research Centre (CRC), Sweden
- * E-mail:
| |
Collapse
|
52
|
Yamazoe T, Mori T, Yoshio S, Kanto T. Hepatocyte ploidy and pathological mutations in hepatocellular carcinoma: impact on oncogenesis and therapeutics. Glob Health Med 2020; 2:273-281. [PMID: 33330821 DOI: 10.35772/ghm.2020.01089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022]
Abstract
Hepatocellular carcinoma (HCC) occurs in the chronic liver inflammation such as viral hepatitis, alcoholic and non-alcoholic steatohepatitis. While anti-viral treatment has been significantly improved, the prevalence of HCC remains high and treatment is still challenging. The continuation of hepatocyte death, inflammation, and fibrosis leads to the accumulation of gene alterations, which may trigger carcinogenesis. Hepatocytes are a unique cell type having more than one complete set of 23 chromosomes, termed polyploidy. Due to gene redundancy, hepatocytes may tolerate lethal mutations. Next generation sequencing technology has revealed gene alterations in HCC related to telomere maintenance, Wnt/β-catenin pathway, p53 cell-cycle pathway, epigenetic modifiers, oxidative stress pathway, PI3K/AKT/mTOR, and RAS/RAF/MAPK pathway with or without a chromosomal instability. Some type of driver gene mutations accumulates in hepatocytes and breaks the orchestration of excessive copies of chromosomes, which may lead to unfavorable gene expressions and fuel tumorigenesis. Recently, molecular targeted drugs, developed with the aim of interfering with these signaling pathways, are being used for HCC patients in the clinics. Therefore, a deeper understanding of hepatocyte ploidy and genetic or epigenetic alterations is indispensable for the establishment of novel therapeutic strategies against HCC.
Collapse
Affiliation(s)
- Taiji Yamazoe
- Department of Liver Disease, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Taizo Mori
- Department of Liver Disease, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Sachiyo Yoshio
- Department of Liver Disease, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| | - Tatsuya Kanto
- Department of Liver Disease, Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Chiba, Japan
| |
Collapse
|
53
|
Herbein G, Nehme Z. Polyploid Giant Cancer Cells, a Hallmark of Oncoviruses and a New Therapeutic Challenge. Front Oncol 2020; 10:567116. [PMID: 33154944 PMCID: PMC7591763 DOI: 10.3389/fonc.2020.567116] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/11/2020] [Indexed: 12/19/2022] Open
Abstract
Tumors are renowned as intricate systems that harbor heterogeneous cancer cells with distinctly diverse molecular signatures, sizes and genomic contents. Among those various genomic clonal populations within the complex tumoral architecture are the polyploid giant cancer cells (PGCC). Although described for over a century, PGCC are increasingly being recognized for their prominent role in tumorigenesis, metastasis, therapy resistance and tumor repopulation after therapy. A shared characteristic among all tumors triggered by oncoviruses is the presence of polyploidy. Those include Human Papillomaviruses (HPV), Epstein Barr Virus (EBV), Hepatitis B and C viruses (HBV and HCV, respectively), Human T-cell lymphotropic virus-1 (HTLV-1), Kaposi's sarcoma herpesvirus (KSHV) and Merkel polyomavirus (MCPyV). Distinct viral proteins, for instance Tax for HTLV-1 or HBx for HBV have demonstrated their etiologic role in favoring the appearance of PGCC. Different intriguing biological mechanisms employed by oncogenic viruses, in addition to viruses with high oncogenic potential such as human cytomegalovirus, could support the generation of PGCC, including induction of endoreplication, inactivation of tumor suppressors, development of hypoxia, activation of cellular senescence and others. Interestingly, chemoresistance and radioresistance have been reported in the context of oncovirus-induced cancers, for example KSHV and EBV-associated lymphomas and high-risk HPV-related cervical cancer. This points toward a potential linkage between the previously mentioned players and highlights PGCC as keystone cancer cells in virally-induced tumors. Subsequently, although new therapeutic approaches are actively needed to fight PGCC, attention should also be drawn to reveal the relationship between PGCC and oncoviruses, with the ultimate goal of establishing effective therapeutic platforms for treatment of virus-associated cancers. This review discusses the presence of PGCCs in tumors induced by oncoviruses, biological mechanisms potentially favoring their appearance, as well as their consequent implication at the clinical and therapeutic level.
Collapse
Affiliation(s)
- Georges Herbein
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France.,Department of Virology, CHRU Besancon, Besançon, France
| | - Zeina Nehme
- Pathogens & Inflammation/EPILAB Laboratory, EA 4266, University of Franche-Comté, Université Bourgogne Franche-Comté (UBFC), Besançon, France.,Faculty of Sciences, Lebanese University, Beirut, Lebanon
| |
Collapse
|
54
|
Ali ES, Rychkov GY, Barritt GJ. Targeting Ca 2+ Signaling in the Initiation, Promotion and Progression of Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12102755. [PMID: 32987945 PMCID: PMC7600741 DOI: 10.3390/cancers12102755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Liver cancer (hepatocellular carcinoma) is a significant health burden worldwide. It is often not detected until at an advanced stage when there are few treatment options available. Changes in calcium concentrations within liver cancer cells are essential for regulating their growth, death, and migration (metastasis). Our aim was to review published papers which have identified proteins involved in calcium signaling as potential drug targets for the treatment of liver cancer. About twenty calcium signaling proteins were identified, including those involved in regulating calcium concentrations in the cytoplasm, endoplasmic reticulum and mitochondria. A few of these have turned out to be sites of action of natural products previously known to inhibit liver cancer. More systematic studies are now needed to determine which calcium signaling proteins might be used clinically for treatment of liver cancer, especially advanced stage cancers and those resistant to inhibition by current drugs. Abstract Hepatocellular carcinoma (HCC) is a considerable health burden worldwide and a major contributor to cancer-related deaths. HCC is often not noticed until at an advanced stage where treatment options are limited and current systemic drugs can usually only prolong survival for a short time. Understanding the biology and pathology of HCC is a challenge, due to the cellular and anatomic complexities of the liver. While not yet fully understood, liver cancer stem cells play a central role in the initiation and progression of HCC and in resistance to drugs. There are approximately twenty Ca2+-signaling proteins identified as potential targets for therapeutic treatment at different stages of HCC. These potential targets include inhibition of the self-renewal properties of liver cancer stem cells; HCC initiation and promotion by hepatitis B and C and non-alcoholic fatty liver disease (principally involving reduction of reactive oxygen species); and cell proliferation, tumor growth, migration and metastasis. A few of these Ca2+-signaling pathways have been identified as targets for natural products previously known to reduce HCC. Promising Ca2+-signaling targets include voltage-operated Ca2+ channel proteins (liver cancer stem cells), inositol trisphosphate receptors, store-operated Ca2+ entry, TRP channels, sarco/endoplasmic reticulum (Ca2++Mg2+) ATP-ase and Ca2+/calmodulin-dependent protein kinases. However, none of these Ca2+-signaling targets has been seriously studied any further than laboratory research experiments. The future application of more systematic studies, including genomics, gene expression (RNA-seq), and improved knowledge of the fundamental biology and pathology of HCC will likely reveal new Ca2+-signaling protein targets and consolidate priorities for those already identified.
Collapse
Affiliation(s)
- Eunus S. Ali
- Department of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide 5001, South Australia, Australia;
| | - Grigori Y. Rychkov
- School of Medicine, The University of Adelaide, Adelaide 5005, South Australia, Australia;
- South Australian Health and Medical Research Institute, Adelaide 5005, South Australia, Australia
| | - Greg J. Barritt
- Department of Medical Biochemistry, College of Medicine and Public Health, Flinders University, Adelaide 5001, South Australia, Australia;
- Correspondence: ; Tel.: +61-438-204-426
| |
Collapse
|
55
|
Bassaganyas L, Pinyol R, Esteban-Fabró R, Torrens L, Torrecilla S, Willoughby CE, Franch-Expósito S, Vila-Casadesús M, Salaverria I, Montal R, Mazzaferro V, Camps J, Sia D, Llovet JM. Copy-Number Alteration Burden Differentially Impacts Immune Profiles and Molecular Features of Hepatocellular Carcinoma. Clin Cancer Res 2020; 26:6350-6361. [PMID: 32873569 DOI: 10.1158/1078-0432.ccr-20-1497] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/08/2020] [Accepted: 08/28/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE Chromosomal instability is a hallmark of cancer that results in broad and focal copy-number alterations (CNAs), two events associated with distinct molecular, immunologic, and clinical features. In hepatocellular carcinoma (HCC), the role of CNAs has not been thoroughly assessed. Thus, we dissected the impact of CNA burdens on HCC molecular and immune features. EXPERIMENTAL DESIGN We analyzed SNP array data from 452 paired tumor/adjacent resected HCCs and 25 dysplastic nodules. For each sample, broad and focal CNA burdens were quantified using CNApp, and the resulting broad scores (BS) and focal scores (FS) were correlated with transcriptomic, mutational, and methylation profiles, tumor immune composition, and clinicopathologic data. RESULTS HCCs with low broad CNA burdens (defined as BS ≤ 4; 17%) presented high inflammation, active infiltrate signaling, high cytolytic activity, and enrichment of the "HCC immune class" and gene signatures related to antigen presentation. Conversely, tumors with chromosomal instability (high broad CNA loads, BS ≥ 11; 40%), displayed immune-excluded traits and were linked to proliferation, TP53 dysfunction, and DNA repair. Candidate determinants of the low cytotoxicity and immune exclusion features of high-BS tumors included alterations in antigen-presenting machinery (i.e., HLA), widespread hypomethylation, and decreased rates of observed/expected neoantigenic mutations. High FSs were independent of tumor immune features, but were related to proliferation, TP53 dysfunction, and progenitor cell traits. CONCLUSIONS HCCs with high chromosomal instability exhibit features of immune exclusion, whereas tumors displaying low burdens of broad CNAs present an immune active profile. These CNA scores can be tested to predict response to immunotherapies.
Collapse
Affiliation(s)
- Laia Bassaganyas
- Liver Cancer Translational Research Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Roser Pinyol
- Liver Cancer Translational Research Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Roger Esteban-Fabró
- Liver Cancer Translational Research Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Laura Torrens
- Liver Cancer Translational Research Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Sara Torrecilla
- Liver Cancer Translational Research Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Catherine E Willoughby
- Liver Cancer Translational Research Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Sebastià Franch-Expósito
- Gastrointestinal and Pancreatic Oncology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | | | - Itziar Salaverria
- Lymphoid Neoplasms Program, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Tumores Hematológicos, Centro de Investigación Biomédica en Red de Cáncer (CIBERonc), Madrid, Spain
| | - Robert Montal
- Liver Cancer Translational Research Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Vincenzo Mazzaferro
- Gastrointestinal Surgery and Liver Transplantation Unit, National Cancer Institute, Milan, Italy
| | - Jordi Camps
- Gastrointestinal and Pancreatic Oncology Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Daniela Sia
- Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Josep M Llovet
- Liver Cancer Translational Research Group, Liver Unit, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain. .,Mount Sinai Liver Cancer Program, Division of Liver Diseases, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
56
|
Zhu GQ, Yu L, Zhou YJ, Du JX, Dong SS, Wu YM, Shi YH, Zhou J, Fan J, Dai Z. Genetic Alterations and Transcriptional Expression of m 6A RNA Methylation Regulators Drive a Malignant Phenotype and Have Clinical Prognostic Impact in Hepatocellular Carcinoma. Front Oncol 2020; 10:900. [PMID: 32850303 PMCID: PMC7396691 DOI: 10.3389/fonc.2020.00900] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 05/07/2020] [Indexed: 01/14/2023] Open
Abstract
Background: N6-methyladenosine (m6A) RNA methylation, associated with cancer initiation and progression, is dynamically regulated by the m6A RNA regulators. However, its role in liver carcinogenesis is poorly understood. Methods: Three hundred seventy-one hepatocellular carcinoma (HCC) patients from The Cancer Genome Atlas database with sequencing and copy number variations/mutations data were included. Survival analysis was performed using Cox regression model. We performed gene set enrichment analysis to explore the functions associated with different HCC groups. Finally, we used a machine-learning model on selected regulators for developing a risk signature (m6Ascore) The prognostic value of m6Ascore was finally validated in another two GEO datasets. Results: We demonstrated that 11 m6A RNA regulators are significantly differentially expressed among 371 HCC patients stratified by clinicopathological features (P<0.001). We then identified two distinct HCC clusters by applying consensus clustering to m6A RNA regulators. Compared with the cluster2 subgroup, the cluster1 subgroup correlates with poorer prognosis (P < 0.001). Moreover, the cell cycle, splicesome and notch signaling pathway are significantly enriched in the cluster1 subgroup. We further derived m6Ascore, using four m6A regulators, predicting HCC prognosis well at three (AUC = 0.7) or 5 years (AUC=0.7) in validation. The prognostic value of m6Ascore also was validated successfully in two GEO datasets (P < 0.05). Finally, we discovered that mutations and copy number variations of m6A regulators, conferring worse survival, are strongly associated with TP53 mutations in HCC. Conclusions: We find a significant relationship between the alterations and different expressions causing increased m6A level and worse survival, especially in TP53-mutated HCC patients. Genetic alterations of m6A genes might cooperate with TP53 and its regulator targets in the HCC pathogenesis. Our m6Ascore may be applied in the clinical trials for patient stratification in HCC.
Collapse
Affiliation(s)
- Gui-Qi Zhu
- State Key Laboratory of Genetic Engineering, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Lei Yu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu-Jie Zhou
- Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai, China.,Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Institute of Digestive Disease, Shanghai Jiao Tong University, Shanghai, China
| | - Jun-Xian Du
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuang-Shuang Dong
- State Key Laboratory of Genetic Engineering, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Yi-Ming Wu
- Department of Urology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ying-Hong Shi
- State Key Laboratory of Genetic Engineering, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Jian Zhou
- State Key Laboratory of Genetic Engineering, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Jia Fan
- State Key Laboratory of Genetic Engineering, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| | - Zhi Dai
- State Key Laboratory of Genetic Engineering, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion, Fudan University, Ministry of Education, Shanghai, China
| |
Collapse
|
57
|
Di Mauro I, Ambrosetti D, Vignot L, Roussel JF, Dadone-Montaudie B, Peyron AC, Quintens H, Durand M, Amiel J, Pedeutour F. Detection of tetraploidization in chromophobe renal cell carcinoma: Insights and pitfalls. Genes Chromosomes Cancer 2020; 59:675-687. [PMID: 32658344 DOI: 10.1002/gcc.22886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/10/2020] [Accepted: 07/10/2020] [Indexed: 11/07/2022] Open
Abstract
Chromosomal losses resulting in a marked hypodiploidy are a specificity of chromophobe renal cell carcinoma (ChRCC), the third most frequent type of kidney cancer. Its detection is useful in challenging cases. However some ChRCC, especially the eosinophilic variant, do not exhibit hypodiploidy and deserve to be better explored. Using comparative genomic hybridization (array-CGH) we observed chromosomal gains in five cases of nonmetastatic ChRCC. Our objective was to determine whether these apparent chromosomal gains were instead losses within a near-polyploid genome. We performed a retrospective and prospective molecular study of 26 cases of ChRCC retrieved among 643 renal tumors (2012-2019). All tumors were analyzed using array-CGH (Agilent) and array-CGH (Affymetrix) coupled to single nucleotide polymorphism analysis (array-SNP). In silico manual centralization of the fluorescence ratio, fluorescence in situ hybridization (FISH) and next generation sequencing were made in the five cases suspected of polyploidy. Tetraploidization was observed in 19% of our series of ChRCC. None of the methods used individually could identify both chromosomal losses and tetraploidy. Only the combination of manual recentring of array-CGH and FISH provided relevant results. B-allele frequency results indicated that tetraploidization occurred secondarily to chromosomal losses in four cases while it preceded losses in one case. Tetraploidization is a frequent but underestimated phenomenon in ChRCC that may be overlooked using the individual standard genomic methods. Its potential clinical consequences are not identified yet. Whether the mechanisms that induce chromosomal losses in ChRCC are the same that generate tetraploidization is not known.
Collapse
Affiliation(s)
- Ilaria Di Mauro
- Laboratory of Solid Tumor Genetics, University Hospital of Nice-Côte d'Azur University, Nice, France
- Laboratory of Solid Tumor Genetics, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Damien Ambrosetti
- Laboratory of Solid Tumor Genetics, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
- Central Laboratory of Pathology, University Hospital of Nice-Côte d'Azur University, Nice, France
| | - Louis Vignot
- Laboratory of Solid Tumor Genetics, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
- Department of Urology, University Hospital of Nice-Côte d'Azur University, Nice, France
| | | | - Bérengère Dadone-Montaudie
- Laboratory of Solid Tumor Genetics, University Hospital of Nice-Côte d'Azur University, Nice, France
- Laboratory of Solid Tumor Genetics, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
- Central Laboratory of Pathology, University Hospital of Nice-Côte d'Azur University, Nice, France
| | - Annie-Claude Peyron
- Laboratory of Solid Tumor Genetics, University Hospital of Nice-Côte d'Azur University, Nice, France
- Laboratory of Solid Tumor Genetics, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| | - Hervé Quintens
- Department of Urology, Princess Grace Hospital, Monaco, Monaco
| | - Matthieu Durand
- Laboratory of Solid Tumor Genetics, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
- Department of Urology, University Hospital of Nice-Côte d'Azur University, Nice, France
| | - Jean Amiel
- Laboratory of Solid Tumor Genetics, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
- Department of Urology, University Hospital of Nice-Côte d'Azur University, Nice, France
| | - Florence Pedeutour
- Laboratory of Solid Tumor Genetics, University Hospital of Nice-Côte d'Azur University, Nice, France
- Laboratory of Solid Tumor Genetics, Institute for Research on Cancer and Aging of Nice (IRCAN), Nice, France
| |
Collapse
|
58
|
Xiao JX, Xu W, Fei X, Hao F, Wang N, Chen Y, Wang J. Anillin facilitates cell proliferation and induces tumor growth of hepatocellular carcinoma via miR-138/SOX4 axis regulation. Transl Oncol 2020; 13:100815. [PMID: 32645689 PMCID: PMC7341449 DOI: 10.1016/j.tranon.2020.100815] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 01/15/2023] Open
Abstract
Actin-binding protein Anillin plays a pivotal role in regulating cytokinesis during the cell cycle, and involves in tumorigenesis and progress. However, the exact regulation mechanism of Anillin in human hepatocellular carcinoma (HCC) remains largely unknown. In this study, we examined and verified the anomalous high expression of Anillin in both HCC patients' specimens and HCC cell lines. High expression of Anillin is associated with dismal clinicopathologic features of HCC patients and poor prognosis. We conducted loss-of and gain-of function studies in HCC Hep3B cells. Anillin presented a significantly facilitating effect on cell proliferation in vitro and induced remarkable tumor growth in vivo. We found that the over-expression of Anillin was driven by a potential axis of miR-138/SOX4. Transcription factor SOX4 presented a high expression profile positive correlated with Anillin, and ChIP assay validated the interaction between SOX4 and the specific sequence of the promoter region of Anillin gene. While, we verified miR-138 as an upstream regulator of SOX4, which is abrogated in HCC cells and exerts degenerating effect on SOX4 mRNA. In our conclusion, Anillin facilitates the cell proliferation and enhances tumor growth of HCC, and is modulated by miR-138/SOX4 axis which regulates the transcriptional activity of Anillin. Findings above demonstrate us a probable axis for HCC diagnosis and treatment. Summary of the main point Anillin facilitates the cell proliferation and enhances tumor growth in HCC. The transcriptional activity of Anillin is modulated by miR-138/SOX4 axis. Findings above demonstrate us a probable axis for HCC diagnosis and treatment.
Collapse
Affiliation(s)
- Joanna Xi Xiao
- Department of General Surgery, Hepatobiliary Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai 200025, People's Republic of China
| | - Wen Xu
- State Key Laboratory of Bioreactor Engineering and Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Xiaochun Fei
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai 200025, People's Republic of China
| | - Fengjie Hao
- Department of General Surgery, Hepatobiliary Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai 200025, People's Republic of China
| | - Nan Wang
- Department of General Surgery, Hepatobiliary Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai 200025, People's Republic of China
| | - Yongjun Chen
- Department of General Surgery, Hepatobiliary Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai 200025, People's Republic of China
| | - Junqing Wang
- Department of General Surgery, Hepatobiliary Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai 200025, People's Republic of China; Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197, Rui Jin Er Road, Shanghai 200025, People's Republic of China.
| |
Collapse
|
59
|
Abstract
Polyploidy (or whole-genome duplication) is the condition of having more than two basic sets of chromosomes. Polyploidization is well tolerated in many species and can lead to specific biological functions. In mammals, programmed polyploidization takes place during development in certain tissues, such as the heart and placenta, and is considered a feature of differentiation. However, unscheduled polyploidization can cause genomic instability and has been observed in pathological conditions, such as cancer. Polyploidy of the liver parenchyma was first described more than 100 years ago. The liver is one of the few mammalian organs that display changes in polyploidy during homeostasis, regeneration and in response to damage. In the human liver, approximately 30% of hepatocytes are polyploid. The polyploidy of hepatocytes results from both nuclear polyploidy (an increase in the amount of DNA per nucleus) and cellular polyploidy (an increase in the number of nuclei per cell). In this Review, we discuss the regulation of polyploidy in liver development and pathophysiology. We also provide an overview of current knowledge about the mechanisms of hepatocyte polyploidization, its biological importance and the fate of polyploid hepatocytes during liver tumorigenesis.
Collapse
|
60
|
Lin YH, Zhang S, Zhu M, Lu T, Chen K, Wen Z, Wang S, Xiao G, Luo D, Jia Y, Li L, MacConmara M, Hoshida Y, Singal A, Yopp A, Wang T, Zhu H. Mice With Increased Numbers of Polyploid Hepatocytes Maintain Regenerative Capacity But Develop Fewer Hepatocellular Carcinomas Following Chronic Liver Injury. Gastroenterology 2020; 158:1698-1712.e14. [PMID: 31972235 PMCID: PMC8902703 DOI: 10.1053/j.gastro.2020.01.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 12/24/2019] [Accepted: 01/02/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Thirty to 90% of hepatocytes contain whole-genome duplications, but little is known about the fates or functions of these polyploid cells or how they affect development of liver disease. We investigated the effects of continuous proliferative pressure, observed in chronically damaged liver tissues, on polyploid cells. METHODS We studied Rosa-rtTa mice (controls) and Rosa-rtTa;TRE-short hairpin RNA mice, which have reversible knockdown of anillin, actin binding protein (ANLN). Transient administration of doxycycline increases the frequency and degree of hepatocyte polyploidy without permanently altering levels of ANLN. Mice were then given diethylnitrosamine and carbon tetrachloride (CCl4) to induce mutations, chronic liver damage, and carcinogenesis. We performed partial hepatectomies to test liver regeneration and then RNA-sequencing to identify changes in gene expression. Lineage tracing was used to rule out repopulation from non-hepatocyte sources. We imaged dividing hepatocytes to estimate the frequency of mitotic errors during regeneration. We also performed whole-exome sequencing of 54 liver nodules from patients with cirrhosis to quantify aneuploidy, a possible outcome of polyploid cell divisions. RESULTS Liver tissues from control mice given CCl4 had significant increases in ploidy compared with livers from uninjured mice. Mice with knockdown of ANLN had hepatocyte ploidy above physiologic levels and developed significantly fewer liver tumors after administration of diethylnitrosamine and CCl4 compared with control mice. Increased hepatocyte polyploidy was not associated with altered regenerative capacity or tissue fitness, changes in gene expression, or more mitotic errors. Based on lineage-tracing experiments, non-hepatocytes did not contribute to liver regeneration in mice with increased polyploidy. Despite an equivalent rate of mitosis in hepatocytes of differing ploidies, we found no lagging chromosomes or micronuclei in mitotic polyploid cells. In nodules of human cirrhotic liver tissue, there was no evidence of chromosome-level copy number variations. CONCLUSIONS Mice with increased polyploid hepatocytes develop fewer liver tumors following chronic liver damage. Remarkably, polyploid hepatocytes maintain the ability to regenerate liver tissues during chronic damage without generating mitotic errors, and aneuploidy is not commonly observed in cirrhotic livers. Strategies to increase numbers of polypoid hepatocytes might be effective in preventing liver cancer.
Collapse
Affiliation(s)
- Yu-Hsuan Lin
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine
| | - Shuyuan Zhang
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine
| | - Min Zhu
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine
| | - Tianshi Lu
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine,Quantitative Biomedical Research Center, Department of Population and Data Sciences
| | - Kenian Chen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences
| | - Zhuoyu Wen
- Quantitative Biomedical Research Center, Department of Population and Data Sciences
| | - Shidan Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences
| | - Guanghua Xiao
- Quantitative Biomedical Research Center, Department of Population and Data Sciences
| | - Danni Luo
- Quantitative Biomedical Research Center, Department of Population and Data Sciences
| | - Yuemeng Jia
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine
| | - Lin Li
- Children’s Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine
| | | | | | | | | | - Tao Wang
- Quantitative Biomedical Research Center, Department of Population and Data Sciences,Kidney Cancer Program, Simmons Comprehensive Cancer Center,Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hao Zhu
- Children's Research Institute, Departments of Pediatrics and Internal Medicine, Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
61
|
Yan P, Zhou B, Ma Y, Wang A, Hu X, Luo Y, Yuan Y, Wei Y, Pang P, Mao J. Tracking the important role of JUNB in hepatocellular carcinoma by single-cell sequencing analysis. Oncol Lett 2019; 19:1478-1486. [PMID: 31966074 PMCID: PMC6956120 DOI: 10.3892/ol.2019.11235] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most commonly diagnosed liver cancer, accounting for ~90% of all primary malignancy of the liver. Although various medical treatments have been used as systemic therapies, patient survival time may be extended by only a few months. Moreover, the underlying mechanisms of HCC development and progression remain poorly understood. In the present study, the single-cell transcriptome of one in vivo HCC tumor sample, two in vitro HCC cell lines and normal peripheral blood mononuclear cells were analysed in order to identify the potential mechanism underlying the development and progression of HCC. Interestingly, JunB proto-oncogene was identified to serve a role in the immune response and in development and progression of HCC, potentially contributing to the development of novel therapeutics for HCC patients.
Collapse
Affiliation(s)
- Peng Yan
- Center of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Bin Zhou
- Center of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Yingdong Ma
- Center of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Ani Wang
- Department of Cardiovascular Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Xiaojun Hu
- Center of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Youli Luo
- Center of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Yajun Yuan
- Center of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Yajun Wei
- Center of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Pengfei Pang
- Center of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| | - Junjie Mao
- Center of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China.,Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, P.R. China
| |
Collapse
|
62
|
Katsuda T, Hosaka K, Matsuzaki J, Usuba W, Prieto-Vila M, Yamaguchi T, Tsuchiya A, Terai S, Ochiya T. Transcriptomic Dissection of Hepatocyte Heterogeneity: Linking Ploidy, Zonation, and Stem/Progenitor Cell Characteristics. Cell Mol Gastroenterol Hepatol 2019; 9:161-183. [PMID: 31493546 PMCID: PMC6909008 DOI: 10.1016/j.jcmgh.2019.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/06/2019] [Accepted: 08/22/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS There is a long-standing debate regarding the biological significance of polyploidy in hepatocytes. Recent studies have provided increasing evidence that hepatocytes with different ploidy statuses behave differently in a context-dependent manner (eg, susceptibility to oncogenesis, regenerative ability after injury, and in vitro proliferative capacity). However, their overall transcriptomic differences in a physiological context is not known. METHODS By using microarray transcriptome analysis, we investigated the heterogeneity of hepatocyte populations with different ploidy statuses. Moreover, by using single-cell quantitative reverse-transcription polymerase chain reaction (scPCR) analysis, we investigated the intrapopulational transcriptome heterogeneity of 2c and 4c hepatocytes. RESULTS Microarray analysis showed that cell cycle-related genes were enriched in 8c hepatocytes, which is in line with the established notion that polyploidy is formed via cell division failure. Surprisingly, in contrast to the general consensus that 2c hepatocytes reside in the periportal region, in our bulk transcriptome and scPCR analyses, the 2c hepatocytes consistently showed pericentral hepatocyte-enriched characteristics. In addition, scPCR analysis identified a subpopulation within the 2c hepatocytes that co-express the liver progenitor cell markers Axin2, Prom1, and Lgr5, implying the potential biological relevance of this subpopulation. CONCLUSIONS This study provides new insights into hepatocyte heterogeneity, namely 2c hepatocytes are preferentially localized to the pericentral region, and a subpopulation of 2c hepatocytes show liver progenitor cell-like features in terms of liver progenitor cell marker expression (Axin2, Prom1, and Lgr5).
Collapse
Affiliation(s)
- Takeshi Katsuda
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Kazunori Hosaka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Juntaro Matsuzaki
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Wataru Usuba
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Marta Prieto-Vila
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Institute of Medical Science, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Tomoko Yamaguchi
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Institute of Medical Science, Tokyo Medical University, Shinjuku, Tokyo, Japan
| | - Atsunori Tsuchiya
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Shuji Terai
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Aasahimachi-Dori, Chuo-Ku, Niigata, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan; Institute of Medical Science, Tokyo Medical University, Shinjuku, Tokyo, Japan.
| |
Collapse
|