51
|
Mesin L. Estimation of Complexity of Sampled Biomedical Continuous Time Signals Using Approximate Entropy. Front Physiol 2018; 9:710. [PMID: 29942263 PMCID: PMC6004374 DOI: 10.3389/fphys.2018.00710] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 05/22/2018] [Indexed: 11/13/2022] Open
Abstract
Non-linear analysis found many applications in biomedicine. Approximate entropy (ApEn) is a popular index of complexity often applied to biomedical data, as it provides quite stable indications when processing short and noisy epochs. However, ApEn strongly depends on parameters, which were chosen in the literature in wide ranges. This paper points out that ApEn depends on sampling rate of continuous time signals, embedding dimension, tolerance (under which a match is identified), epoch duration and low frequency trends. Moreover, contradicting results can be obtained changing parameters. This was found both in simulations and in experimental EEG. These limitations of ApEn suggest the introduction of an alternative index, here called modified ApEn, which is based on the following principles: oversampling is compensated, self-recurrences are ignored, a fixed percentage of recurrences is selected and low frequency trends are removed. The modified index allows to get more stable measurements of the complexity of the tested simulated data and EEG. The final conclusions are that, in order to get a reliable estimation of complexity using ApEn, parameters should be chosen within specific ranges, data must be sampled close to the Nyquist limit and low frequency trends should be removed. Following these indications, different studies could be more easily compared, interpreted and replicated. Moreover, the modified ApEn can be an interesting alternative, which extends the range of parameters for which stable indications can be achieved.
Collapse
Affiliation(s)
- Luca Mesin
- Mathematical Biology and Physiology, Dipartimento di Elettronica e Telecomunicazioni, Politecnico di Torino, Turin, Italy
| |
Collapse
|
52
|
Ibáñez-Molina AJ, Iglesias-Parro S, Escudero J. Differential Effects of Simulated Cortical Network Lesions on Synchrony and EEG Complexity. Int J Neural Syst 2018; 29:1850024. [PMID: 29938549 DOI: 10.1142/s0129065718500247] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Brain function has been proposed to arise as a result of the coordinated activity between distributed brain areas. An important issue in the study of brain activity is the characterization of the synchrony among these areas and the resulting complexity of the system. However, the variety of ways to define and, hence, measure brain synchrony and complexity has sometimes led to inconsistent results. Here, we study the relationship between synchrony and commonly used complexity estimators of electroencephalogram (EEG) activity and we explore how simulated lesions in anatomically based cortical networks would affect key functional measures of activity. We explored this question using different types of neural network lesions while the brain dynamics was modeled with a time-delayed set of 66 Kuramoto oscillators. Each oscillator modeled a region of the cortex (node), and the connectivity and spatial location between different areas informed the creation of a network structure (edges). Each type of lesion consisted on successive lesions of nodes or edges during the simulation of the neural dynamics. For each type of lesion, we measured the synchrony among oscillators and three complexity estimators (Higuchi's Fractal Dimension, Sample Entropy and Lempel-Ziv Complexity) of the simulated EEGs. We found a general negative correlation between EEG complexity metrics and synchrony but Sample Entropy and Lempel-Ziv showed a positive correlation with synchrony when the edges of the network were deleted. This suggests an intricate relationship between synchrony of the system and its estimated complexity. Hence, complexity seems to depend on the multiple states of interaction between the oscillators of the system. Our results can contribute to the interpretation of the functional meaning of EEG complexity.
Collapse
Affiliation(s)
| | - Sergio Iglesias-Parro
- 2 Department of Psychology, University of Jaén, Paraje las Lagunillas s/n, Jaén, 23071, Spain
| | - Javier Escudero
- 3 School of Engineering, Institute for Digital Communications, University of Edinburgh, Edinburgh, EH9 3FB, United Kingdom
| |
Collapse
|
53
|
Cerquera A, Vollebregt MA, Arns M. Nonlinear Recurrent Dynamics and Long-Term Nonstationarities in EEG Alpha Cortical Activity: Implications for Choosing Adequate Segment Length in Nonlinear EEG Analyses. Clin EEG Neurosci 2018; 49:71-78. [PMID: 28805079 DOI: 10.1177/1550059417724695] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nonlinear analysis of EEG recordings allows detection of characteristics that would probably be neglected by linear methods. This study aimed to determine a suitable epoch length for nonlinear analysis of EEG data based on its recurrence rate in EEG alpha activity (electrodes Fz, Oz, and Pz) from 28 healthy and 64 major depressive disorder subjects. Two nonlinear metrics, Lempel-Ziv complexity and scaling index, were applied in sliding windows of 20 seconds shifted every 1 second and in nonoverlapping windows of 1 minute. In addition, linear spectral analysis was carried out for comparison with the nonlinear results. The analysis with sliding windows showed that the cortical dynamics underlying alpha activity had a recurrence period of around 40 seconds in both groups. In the analysis with nonoverlapping windows, long-term nonstationarities entailed changes over time in the nonlinear dynamics that became significantly different between epochs across time, which was not detected with the linear spectral analysis. Findings suggest that epoch lengths shorter than 40 seconds neglect information in EEG nonlinear studies. In turn, linear analysis did not detect characteristics from long-term nonstationarities in EEG alpha waves of control subjects and patients with major depressive disorder patients. We recommend that application of nonlinear metrics in EEG time series, particularly of alpha activity, should be carried out with epochs around 60 seconds. In addition, this study aimed to demonstrate that long-term nonlinearities are inherent to the cortical brain dynamics regardless of the presence or absence of a mental disorder.
Collapse
Affiliation(s)
- Alexander Cerquera
- 1 School of Electronics and Biomedical Engineering, Research Group Complex Systems, Universidad Antonio Nariño, Bogota, Colombia.,2 J. Crayton Pruitt Family Department of Biomedical Engineering, Brain Mapping Lab, University of Florida, Gainesville, FL, USA
| | - Madelon A Vollebregt
- 3 Research Institute Brainclinics, Nijmegen, The Netherlands.,4 Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Nijmegen, The Netherlands
| | - Martijn Arns
- 3 Research Institute Brainclinics, Nijmegen, The Netherlands.,5 Department of Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
54
|
Mammone N, Ieracitano C, Adeli H, Bramanti A, Morabito FC. Permutation Jaccard Distance-Based Hierarchical Clustering to Estimate EEG Network Density Modifications in MCI Subjects. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2018; 29:5122-5135. [PMID: 29994428 DOI: 10.1109/tnnls.2018.2791644] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this paper, a novel electroencephalographic (EEG)-based method is introduced for the quantification of brain-electrical connectivity changes over a longitudinal evaluation of mild cognitive impaired (MCI) subjects. In the proposed method, a dissimilarity matrix is constructed by estimating the coupling strength between every pair of EEG signals, Hierarchical clustering is then applied to group the related electrodes according to the dissimilarity estimated on pairs of EEG recordings. Subsequently, the connectivity density of the electrodes network is calculated. The technique was tested over two different coupling strength descriptors: wavelet coherence (WC) and permutation Jaccard distance (PJD), a novel metric of coupling strength between time series introduced in this paper. Twenty-five MCI patients were enrolled within a follow-up program that consisted of two successive evaluations, at time T0 and at time T1, three months later. At T1, four subjects were diagnosed to have converted to Alzheimer's Disease (AD). When applying the PJD-based method, the converted patients exhibited a significantly increased PJD (p < 0.05), i.e., a reduced overall coupling strength, specifically in delta and θ bands and in the overall range (0.5-32 Hz). In addition, in contrast to stable MCI patients, converted patients exhibited a network density reduction in every subband (delta, θ, alpha, and beta). When WC was used as coupling strength descriptor, the method resulted in a less sensitive and specific outcome. The proposed method, mixing nonlinear analysis to a machine learning approach, appears to provide an objective evaluation of the connectivity density modifications associated to the MCI-AD conversion, just processing noninvasive EEG signals.
Collapse
|
55
|
Kostrubiec V, Huys R, Jas B, Kruck J. Age-dependent Relationship Between Socio-adaptability and Motor Coordination in High Functioning Children with Autism Spectrum Disorder. J Autism Dev Disord 2017; 48:209-224. [DOI: 10.1007/s10803-017-3326-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
56
|
Cuesta-Frau D, Miró-Martínez P, Jordán Núñez J, Oltra-Crespo S, Molina Picó A. Noisy EEG signals classification based on entropy metrics. Performance assessment using first and second generation statistics. Comput Biol Med 2017; 87:141-151. [PMID: 28595129 DOI: 10.1016/j.compbiomed.2017.05.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/05/2017] [Accepted: 05/28/2017] [Indexed: 11/19/2022]
Abstract
This paper evaluates the performance of first generation entropy metrics, featured by the well known and widely used Approximate Entropy (ApEn) and Sample Entropy (SampEn) metrics, and what can be considered an evolution from these, Fuzzy Entropy (FuzzyEn), in the Electroencephalogram (EEG) signal classification context. The study uses the commonest artifacts found in real EEGs, such as white noise, and muscular, cardiac, and ocular artifacts. Using two different sets of publicly available EEG records, and a realistic range of amplitudes for interfering artifacts, this work optimises and assesses the robustness of these metrics against artifacts in class segmentation terms probability. The results show that the qualitative behaviour of the two datasets is similar, with SampEn and FuzzyEn performing the best, and the noise and muscular artifacts are the most confounding factors. On the contrary, there is a wide variability as regards initialization parameters. The poor performance achieved by ApEn suggests that this metric should not be used in these contexts.
Collapse
Affiliation(s)
- David Cuesta-Frau
- Technological Institute of Informatics, Polytechnic University of Valencia, Alcoi Campus, Plaza Ferrandiz y Carbonell 2, Alcoi, Spain.
| | - Pau Miró-Martínez
- Department of Statistics, Polytechnic University of Valencia, Alcoi Campus, Alcoi, Spain
| | - Jorge Jordán Núñez
- Department of Statistics, Polytechnic University of Valencia, Alcoi Campus, Alcoi, Spain
| | - Sandra Oltra-Crespo
- Technological Institute of Informatics, Polytechnic University of Valencia, Alcoi Campus, Plaza Ferrandiz y Carbonell 2, Alcoi, Spain
| | - Antonio Molina Picó
- Technological Institute of Informatics, Polytechnic University of Valencia, Alcoi Campus, Plaza Ferrandiz y Carbonell 2, Alcoi, Spain
| |
Collapse
|
57
|
Yi GS, Wang J, Deng B, Wei XL. Complexity of resting-state EEG activity in the patients with early-stage Parkinson's disease. Cogn Neurodyn 2016; 11:147-160. [PMID: 28348646 DOI: 10.1007/s11571-016-9415-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/21/2016] [Accepted: 10/14/2016] [Indexed: 01/21/2023] Open
Abstract
To investigate the abnormal brain activities in the early stage of Parkinson's disease (PD), the electroencephalogram (EEG) signals were recorded with 20 channels from non-dementia PD patients (18 patients, 8 females) and age matched healthy controls (18 subjects, 8 females) during the resting state. Two methods based on the ordinal patterns of the recorded series, i.e., permutation entropy (PE) and order index (OI), were introduced to characterize the complexity of the cortical activities for two groups. It was observed that the resting-state EEG of PD patients showed lower PE and higher OI than healthy controls, which indicated that the early-stage PD caused the reduced complexity of EEG. We further applied two methods to determine the complexity of EEG rhythms in five sub-bands. The results showed that the gamma, beta and alpha rhythms of PD patients were characterized by lower PE and higher OI, i.e., reduced complexity, than healthy subjects. No significant differences were observed in theta or delta rhythms between two groups. The findings suggested that PE and OI were promising methods to detect the abnormal changes in the dynamics of EEG signals associated with early-stage PD. Further, such changes in EEG complexity may be the early markers of the cortical or subcortical dysfunction caused by PD.
Collapse
Affiliation(s)
- Guo-Sheng Yi
- School of Electrical Engineering and Automation, Tianjin University, Tianjin, 30072 China
| | - Jiang Wang
- School of Electrical Engineering and Automation, Tianjin University, Tianjin, 30072 China
| | - Bin Deng
- School of Electrical Engineering and Automation, Tianjin University, Tianjin, 30072 China
| | - Xi-Le Wei
- School of Electrical Engineering and Automation, Tianjin University, Tianjin, 30072 China
| |
Collapse
|