51
|
Godfrey RK, Gronenberg W. Linking Colony Size with Foraging Behavior and Brain Investment in Odorous Ants (Formicidae: Dolichoderinae). BRAIN, BEHAVIOR AND EVOLUTION 2019; 95:15-24. [PMID: 31865324 DOI: 10.1159/000504643] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/07/2019] [Indexed: 11/19/2022]
Abstract
Superorganisms represent a unique level of biological organization in which the phenotype of the reproductive unit, the colony, results from traits expressed at the level of individual workers. Because body size scaling has important consequences for cell diversity and system complexity in solitary organisms, colony size is a trait of particular interest in superorganism evolution. In some instances, division of labor and worker polymorphism scale with colony size, but in general little is known about how colony size drives differences in individual-level behavior or neural traits. Ants represent the greatest diversity of superorganisms and provide a manner of natural experiment to test trends in trait evolution across multiple instances of colony size expansion. In this study, we control for environmental differences and worker size polymorphism to test if colony size correlates with measures of foraging behavior and brain size in dolichoderine ants. We present data from 3 species ranked by colony size. Our results suggest colony size correlates with measures of exploratory behavior and brain investment, with small-colony ants showing higher exploratory drive and faster exploration rate than the larger colony species, and greater relative investment in the primary olfactory brain region, the antennal lobe, than the larger colony species.
Collapse
Affiliation(s)
- R Keating Godfrey
- Department of Neuroscience, University of Arizona, Tucson, Arizona, USA, .,Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, Arizona, USA,
| | | |
Collapse
|
52
|
Doering GN, Sheehy KA, Barnett JB, Pruitt JN. Colony size and initial conditions combine to shape colony reunification dynamics. Behav Processes 2019; 170:103994. [PMID: 31689459 DOI: 10.1016/j.beproc.2019.103994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/24/2019] [Accepted: 10/28/2019] [Indexed: 11/20/2022]
Abstract
Group cohesion and collective decision-making are important for many social animals, like social insects, whose societies depend on the coordinated action of individuals to complete collective tasks. A useful model for understanding collective, consensus-driven decision-making is the fluid nest selection dynamics of ant colonies. Certain ant species oscillate between occupying multiple nests simultaneously (polydomy) and reuniting at a single location (monodomy), but little is known about how colonies achieve a consensus around these dynamics. To investigate the factors underpinning the splitting-reunification dynamics of ants, we manipulated the availability and quality of nest sites for the ant Temnothorax rugatulus and measured the likelihood and speed of reunification from contrasting starting conditions. We found that pursuing reunification was more likely for smaller colonies, that rates of initial splitting were lower when colonies could coordinate their activity from a central hub, and that diluting colonies among additional sites did not impair reaching consensus on a single nest. We further found mixed support for a specific threshold of social density that prevents reunification (i.e., prolonged polydomy) and no evidence that nest quality influences reunification behavior. Together our data reveal that consensus driven decisions can be influenced by both external and intrinsic group-level factors and are in no way simple stereotyped processes.
Collapse
Affiliation(s)
- Grant Navid Doering
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, L8S 4K1, Canada.
| | - Kirsten A Sheehy
- Department of Ecology, Evolution & Marine Biology, University of California - Santa Barbara, Santa Barbara, CA, 93106, USA
| | - James B Barnett
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Jonathan N Pruitt
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
53
|
Doering GN, Sheehy KA, Lichtenstein JLL, Drawert B, Petzold LR, Pruitt JN. Sources of intraspecific variation in the collective tempo and synchrony of ant societies. Behav Ecol 2019; 30:1682-1690. [PMID: 31723317 PMCID: PMC6838655 DOI: 10.1093/beheco/arz135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/03/2019] [Accepted: 07/17/2019] [Indexed: 11/13/2022] Open
Abstract
Populations of independently oscillating agents can sometimes synchronize. In the context of animal societies, conspicuous synchronization of activity is known in some social insects. However, the causes of variation in synchrony within and between species have received little attention. We repeatedly assessed the short-term activity cycle of ant colonies (Temnothorax rugatulus) and monitored the movements of individual workers and queens within nests. We detected persistent differences between colonies in the waveform properties of their collective activity oscillations, with some colonies consistently oscillating much more erratically than others. We further demonstrate that colony crowding reduces the rhythmicity (i.e., the consistent timing) of oscillations. Workers in both erratic and rhythmic colonies spend less time active than completely isolated workers, but workers in erratic colonies oscillate out of phase with one another. We further show that the queen's absence can impair the ability of colonies to synchronize worker activity and that behavioral differences between queens are linked with the waveform properties of their societies.
Collapse
Affiliation(s)
- Grant Navid Doering
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Kirsten A Sheehy
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - James L L Lichtenstein
- Department of Ecology, Evolution, and Marine Biology, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Brian Drawert
- Department of Computer Science, University of North Carolina at Asheville, Asheville, NC, USA
| | - Linda R Petzold
- Department of Computer Science, University of California Santa Barbara, Santa Barbara, CA, USA
- Department of Mechanical Engineering, Engineering II Room 2355, University of California Santa Barbara, Santa Barbara, CA, USA
| | - Jonathan N Pruitt
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
54
|
Wright CM, Lichtenstein JLL, Doering GN, Pretorius J, Meunier J, Pruitt JN. Collective personalities: present knowledge and new frontiers. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2639-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
55
|
Gössinger E. Chemistry of the Secondary Metabolites of Termites. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2019; 109:1-384. [PMID: 31637529 DOI: 10.1007/978-3-030-12858-6_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Isolation, structure determination, synthesis, and biochemistry of the low-molecular-weight compounds of the secretion of exocrine glands of termites are described, with an emphasis on pheromones and defensive compounds.
Collapse
Affiliation(s)
- Edda Gössinger
- Institute of Chemistry, University of Vienna, Vienna, Austria.
- , Mistelbach, Austria.
| |
Collapse
|
56
|
Abstract
A holistic understanding of superorganism biology requires study of colony sociometry, or the quantitative relationships among growth, nest architecture, morphology, and behavior. For ant colonies that obligately nest within plant hosts, their sociometry is likely intertwined with the plant, which has implications for the evolution, strength, and stability of the mutualism. In the Azteca-Cecropia mutualism, plants provide ants with food rewards and hollow stems for nesting in return for protection from herbivores. Several interesting questions arise when considering ant-plant sociometry: are colony growth and plant growth synchronized? How do colonies distribute themselves within the stem of their host plant? How do plant traits influence worker morphology? How is collective personality related to tree structure, nest organization, and worker morphology? To address these questions, we investigated patterns within and relationships among five major sociometric categories of colonies in the field - plant traits, colony size, nest organization, worker morphology, and collective personality. We found that colony sociometry was intimately intertwined with host plant traits. Colony and plant growth rates were synchronized, suggesting that positive feedback between plant and colony growth stabilizes the mutualism. The colony's distribution inside the host tree tended to follow leaf growth, with most workers, brood, and the queen in the top half of the tree. Worker morphology correlated with plant size instead of colony size or age, which suggests that plant traits influence worker development. Colony personality was independent of colony distribution and tree structure but may correlate with worker size such that colonies with smaller, less variable workers had more aggressive personalities. This study provides insights into how ant-plant structural relationships may contribute to plant protection and the strength of mutualisms.
Collapse
|
57
|
Garrison LK, Kleineidam CJ, Weidenmüller A. Behavioral flexibility promotes collective consistency in a social insect. Sci Rep 2018; 8:15836. [PMID: 30367093 PMCID: PMC6203754 DOI: 10.1038/s41598-018-33917-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/05/2018] [Indexed: 01/14/2023] Open
Abstract
Deciphering the mechanisms that integrate individuals and their behavior into a functional unit is crucial for our understanding of collective behaviors. We here present empirical evidence for the impressive strength of social processes in this integration. We investigated collective temperature homeostasis in bumblebee (Bombus terrestris) colonies and found that bees are less likely to engage in thermoregulatory fanning and do so with less time investment when confronted with heat stress in a group setting than when facing the same challenge alone and that this down-regulation of individual stimulus-response behavior resulted in a consistent proportion of workers in a group engaged in the task of fanning. Furthermore, the bees that comprised the subset of fanning individuals changed from trial to trial and participation in the task was predominately unpredictable based on previous response behavior. Our results challenge basic assumptions in the most commonly used class of models for task allocation and contrast numerous collective behavior studies that emphasize the importance of fixed inter-individual variation for the functioning of animal groups. We demonstrate that bumblebee colonies maintain within-group behavioral heterogeneity and a consistent collective response pattern based on social responsiveness and behavioral flexibility at the individual level.
Collapse
Affiliation(s)
- Linda Karen Garrison
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | | | - Anja Weidenmüller
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany.
| |
Collapse
|
58
|
Buffin A, Sasaki T, Pratt SC. Scaling of speed with group size in cooperative transport by the ant Novomessor cockerelli. PLoS One 2018; 13:e0205400. [PMID: 30300423 PMCID: PMC6177163 DOI: 10.1371/journal.pone.0205400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 09/25/2018] [Indexed: 11/18/2022] Open
Abstract
Working together allows social animals to accomplish tasks beyond the abilities of solitary individuals, but the benefits of cooperation must be balanced with the costs of coordination. Many ant species form cooperative groups to transport items too large for a single ant. However, transport by groups is often slower and less efficient than that of lone ants, for reasons that remain poorly understood. We tested the hypothesis that groups are slower when porters must encircle the load to carry it, because this arrangement places ants in a variety of postures relative to the load and the direction of travel. Porters may therefore have difficulty maximizing individual forces and aligning them with those of other group members. Experiments on the desert ant Novomessor cockerelli, an adept cooperative transporter, did not support this hypothesis. Groups ranging in size from one to four ants were induced to carry loads such that all porters were aligned with one another. Load weight was adjusted so that all porters pulled the same per capita weight, but lone porters were nonetheless faster than groups of any size. As group size increased, porters persisted in carrying the load for longer periods before letting go. We used simulations to explore a scenario in which ants vary in their intrinsic speed and the group's speed is limited by that of its slowest member. This proposed mechanism is analogous to other social groups where group efficiency is determined by the weakest link. We discuss how interactions among porters, mediated by the load itself, might explain such a constraint.
Collapse
Affiliation(s)
- Aurélie Buffin
- Mesa Community College, Mesa, Arizona, United States of America
| | - Takao Sasaki
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
| | - Stephen C. Pratt
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| |
Collapse
|
59
|
Fitness benefits and emergent division of labour at the onset of group living. Nature 2018; 560:635-638. [PMID: 30135576 PMCID: PMC6121774 DOI: 10.1038/s41586-018-0422-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 06/27/2018] [Indexed: 02/05/2023]
Abstract
The initial fitness benefits of group-living are considered the greatest hurdle to the evolution of sociality1, and theory predicts that they need to arise at very small group sizes2. Such benefits are thought to emerge partly from scaling effects that increase efficiency as group size increases3–5. In social insects and other taxa, they have been proposed to stem from division of labor (DOL)5–8, which is characterized by between-individual variability and within-individual consistency (specialization) in task performance. At the onset of sociality, however, groups were likely small and composed of similar individuals with potentially redundant rather than complementary function1. Theory suggests that DOL can emerge even in relatively small, simple groups9,10. However, empirical data on the effects of group size on DOL and fitness remain equivocal6. Here, we use long-term automated behavioral tracking in clonal ant colonies, combined with mathematical modeling, to show that increases in social-group size can generate DOL among extremely similar workers, in groups as small as six individuals. These early effects on behavior were associated with large increases in homeostasis—the maintenance of stable conditions in the colony11— and per capita fitness. Our model suggests that increases in homeostasis are primarily driven by increases in group size itself, and, to a smaller extent, by higher DOL. Overall, our results indicate that DOL, increased homeostasis, and higher fitness can naturally emerge in small, homogeneous social groups, and that scaling effects associated with increasing group size can thus promote social cohesion at incipient stages of group-living.
Collapse
|
60
|
Camarota F, Vasconcelos HL, Koch EBA, Powell S. Discovery and defense define the social foraging strategy of Neotropical arboreal ants. Behav Ecol Sociobiol 2018. [DOI: 10.1007/s00265-018-2519-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
61
|
Ferral N, Holloway K, Li M, Yin Z, Hou C. Heterogeneous activity causes a nonlinear increase in the group energy use of ant workers isolated from queen and brood. INSECT SCIENCE 2018; 25:487-498. [PMID: 28019084 DOI: 10.1111/1744-7917.12433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
Increasing evidence has shown that the energy use of ant colonies increases sublinearly with colony size so that large colonies consume less per capita energy than small colonies. It has been postulated that social environment (e.g., in the presence of queen and brood) is critical for the sublinear group energetics, and a few studies of ant workers isolated from queens and brood observed linear relationships between group energetics and size. In this paper, we hypothesize that the sublinear energetics arise from the heterogeneity of activity in ant groups, that is, large groups have relatively more inactive members than small groups. We further hypothesize that the energy use of ant worker groups that are allowed to move freely increases more slowly than the group size even if they are isolated from queen and brood. Previous studies only provided indirect evidence for these hypotheses due to technical difficulties. In this study, we applied the automated behavioral monitoring and respirometry simultaneously on isolated worker groups for long time periods, and analyzed the image with the state-of-the-art algorithms. Our results show that when activity was not confined, large groups had lower per capita energy use, a lower percentage of active members, and lower average walking speed than small groups; while locomotion was confined, however, the per capita energy use was a constant regardless of the group size. The quantitative analysis shows a direct link between variation in group energy use and the activity level of ant workers when isolated from queen and brood.
Collapse
Affiliation(s)
- Nolan Ferral
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, Missouri, USA
| | - Kyara Holloway
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, Missouri, USA
| | - Mingzhong Li
- Department of Computer Sciences, Missouri University of Science and Technology, Rolla, Missouri, USA
| | - Zhaozheng Yin
- Department of Computer Sciences, Missouri University of Science and Technology, Rolla, Missouri, USA
| | - Chen Hou
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, Missouri, USA
| |
Collapse
|
62
|
Waters JS, Ochs A, Fewell JH, Harrison JF. Differentiating causality and correlation in allometric scaling: ant colony size drives metabolic hypometry. Proc Biol Sci 2018; 284:rspb.2016.2582. [PMID: 28228514 DOI: 10.1098/rspb.2016.2582] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/01/2017] [Indexed: 11/12/2022] Open
Abstract
Metabolic rates of individual animals and social insect colonies generally scale hypometrically, with mass-specific metabolic rates decreasing with increasing size. Although this allometry has wide ranging effects on social behaviour, ecology and evolution, its causes remain controversial. Because it is difficult to experimentally manipulate body size of organisms, most studies of metabolic scaling depend on correlative data, limiting their ability to determine causation. To overcome this limitation, we experimentally reduced the size of harvester ant colonies (Pogonomyrmex californicus) and quantified the consequent increase in mass-specific metabolic rates. Our results clearly demonstrate a causal relationship between colony size and hypometric changes in metabolic rate that could not be explained by changes in physical density. These findings provide evidence against prominent models arguing that the hypometric scaling of metabolic rate is primarily driven by constraints on resource delivery or surface area/volume ratios, because colonies were provided with excess food and colony size does not affect individual oxygen or nutrient transport. We found that larger colonies had lower median walking speeds and relatively more stationary ants and including walking speed as a variable in the mass-scaling allometry greatly reduced the amount of residual variation in the model, reinforcing the role of behaviour in metabolic allometry. Following the experimental size reduction, however, the proportion of stationary ants increased, demonstrating that variation in locomotory activity cannot solely explain hypometric scaling of metabolic rates in these colonies. Based on prior studies of this species, the increase in metabolic rate in size-reduced colonies could be due to increased anabolic processes associated with brood care and colony growth.
Collapse
Affiliation(s)
- James S Waters
- Department of Biology, Providence College, Providence, RI 02918, USA
| | - Alison Ochs
- Mount Holyoke College, South Hadley, MA 01075, USA
| | - Jennifer H Fewell
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4601, USA
| | - Jon F Harrison
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-4601, USA
| |
Collapse
|
63
|
Wills BD, Powell S, Rivera MD, Suarez AV. Correlates and Consequences of Worker Polymorphism in Ants. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:575-598. [PMID: 29068707 DOI: 10.1146/annurev-ento-020117-043357] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Body size is a key life-history trait influencing all aspects of an organism's biology. Ants provide an interesting model for examining body-size variation because of the high degree of worker polymorphism seen in many taxa. We review worker-size variation in ants from the perspective of factors internal and external to the colony that may influence body-size distributions. We also discuss proximate and ultimate causes of size variation and how variation in worker size can promote worker efficiency and colony fitness. Our review focuses on two questions: What is our current understanding of factors influencing worker-size variation? And how does variation in body size benefit the colony? We conclude with recommendations for future work aimed at addressing current limitations and ask, How can we better understand the contribution of worker body-size variation to colony success? And, what research is needed to address gaps in our knowledge?
Collapse
Affiliation(s)
- Bill D Wills
- Department of Entomology, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Scott Powell
- Department of Biological Sciences, George Washington University, Washington, DC 20052, USA;
| | - Michael D Rivera
- Program in Ecology, Evolution and Conservation Biology, University of Illinois, Urbana, Illinois 61801, USA;
| | - Andrew V Suarez
- Program in Ecology, Evolution and Conservation Biology, University of Illinois, Urbana, Illinois 61801, USA;
- Department of Entomology, University of Illinois, Urbana, Illinois 61801, USA;
- Department of Animal Biology, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
64
|
Radeva T, Dornhaus A, Lynch N, Nagpal R, Su HH. Costs of task allocation with local feedback: Effects of colony size and extra workers in social insects and other multi-agent systems. PLoS Comput Biol 2017; 13:e1005904. [PMID: 29240763 PMCID: PMC5746283 DOI: 10.1371/journal.pcbi.1005904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 12/28/2017] [Accepted: 11/28/2017] [Indexed: 11/19/2022] Open
Abstract
Adaptive collective systems are common in biology and beyond. Typically, such systems require a task allocation algorithm: a mechanism or rule-set by which individuals select particular roles. Here we study the performance of such task allocation mechanisms measured in terms of the time for individuals to allocate to tasks. We ask: (1) Is task allocation fundamentally difficult, and thus costly? (2) Does the performance of task allocation mechanisms depend on the number of individuals? And (3) what other parameters may affect their efficiency? We use techniques from distributed computing theory to develop a model of a social insect colony, where workers have to be allocated to a set of tasks; however, our model is generalizable to other systems. We show, first, that the ability of workers to quickly assess demand for work in tasks they are not currently engaged in crucially affects whether task allocation is quickly achieved or not. This indicates that in social insect tasks such as thermoregulation, where temperature may provide a global and near instantaneous stimulus to measure the need for cooling, for example, it should be easy to match the number of workers to the need for work. In other tasks, such as nest repair, it may be impossible for workers not directly at the work site to know that this task needs more workers. We argue that this affects whether task allocation mechanisms are under strong selection. Second, we show that colony size does not affect task allocation performance under our assumptions. This implies that when effects of colony size are found, they are not inherent in the process of task allocation itself, but due to processes not modeled here, such as higher variation in task demand for smaller colonies, benefits of specialized workers, or constant overhead costs. Third, we show that the ratio of the number of available workers to the workload crucially affects performance. Thus, workers in excess of those needed to complete all tasks improve task allocation performance. This provides a potential explanation for the phenomenon that social insect colonies commonly contain inactive workers: these may be a 'surplus' set of workers that improves colony function by speeding up optimal allocation of workers to tasks. Overall our study shows how limitations at the individual level can affect group level outcomes, and suggests new hypotheses that can be explored empirically.
Collapse
Affiliation(s)
- Tsvetomira Radeva
- Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna Dornhaus
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ, USA
| | - Nancy Lynch
- Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Radhika Nagpal
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Hsin-Hao Su
- Electrical Engineering and Computer Science Department, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
65
|
Behavior, brain, and morphology in a complex insect society: trait integration and social evolution in the exceptionally polymorphic ant Pheidole rhea. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2396-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
66
|
Pequeno PACL. What drives patrolling behaviour by nasute termites? A model and an empirical assessment. Ethology 2017. [DOI: 10.1111/eth.12610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
67
|
Grüter C, Segers FHID, Menezes C, Vollet-Neto A, Falcón T, von Zuben L, Bitondi MMG, Nascimento FS, Almeida EAB. Repeated evolution of soldier sub-castes suggests parasitism drives social complexity in stingless bees. Nat Commun 2017; 8:4. [PMID: 28232746 PMCID: PMC5431902 DOI: 10.1038/s41467-016-0012-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/16/2016] [Indexed: 12/20/2022] Open
Abstract
The differentiation of workers into morphological castes represents an important evolutionary innovation that is thought to improve division of labor in insect societies. Given the potential benefits of task-related worker differentiation, it is puzzling that physical worker castes, such as soldiers, are extremely rare in social bees and absent in wasps. Following the recent discovery of soldiers in a stingless bee, we studied the occurrence of worker differentiation in 28 stingless bee species from Brazil and found that several species have specialized soldiers for colony defence. Our results reveal that worker differentiation evolved repeatedly during the last ~ 25 million years and coincided with the emergence of parasitic robber bees, a major threat to many stingless bee species. Furthermore, our data suggest that these robbers are a driving force behind the evolution of worker differentiation as targets of robber bees are four times more likely to have nest guards of increased size than non-targets. These findings reveal unexpected diversity in the social organization of stingless bees.Although common in ants and termites, worker differentiation into physical castes is rare in social bees and unknown in wasps. Here, Grüter and colleagues find a guard caste in ten species of stingless bees and show that the evolution of the guard caste is associated with parasitization by robber bees.
Collapse
Affiliation(s)
- Christoph Grüter
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, CEP 14040-901, Ribeirão Preto, São Paulo, Brazil.
- Institute of Zoology, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55099, Mainz, Germany.
| | - Francisca H I D Segers
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, CEP 14040-901, Ribeirão Preto, São Paulo, Brazil
- Institute of Zoology, Johannes Gutenberg University Mainz, Johannes von Müller Weg 6, 55099, Mainz, Germany
| | | | - Ayrton Vollet-Neto
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, CEP 14040-901, Ribeirão Preto, São Paulo, Brazil
| | - Tiago Falcón
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, CEP: 14049-900, Ribeirão Preto, São Paulo, Brazil
| | - Lucas von Zuben
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, CEP 14040-901, Ribeirão Preto, São Paulo, Brazil
| | - Márcia M G Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, CEP 14040-901, Ribeirão Preto, São Paulo, Brazil
| | - Fabio S Nascimento
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, CEP 14040-901, Ribeirão Preto, São Paulo, Brazil
| | - Eduardo A B Almeida
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, CEP 14040-901, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
68
|
Jiménez-Arcos VH, Sanabria-Urbán S, Cueva Del Castillo R. The interplay between natural and sexual selection in the evolution of sexual size dimorphism in Sceloporus lizards (Squamata: Phrynosomatidae). Ecol Evol 2017; 7:905-917. [PMID: 28168027 PMCID: PMC5288261 DOI: 10.1002/ece3.2572] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 09/09/2016] [Accepted: 09/30/2016] [Indexed: 11/12/2022] Open
Abstract
Sexual size dimorphism (SSD) evolves because body size is usually related to reproductive success through different pathways in females and males. Female body size is strongly correlated with fecundity, while in males, body size is correlated with mating success. In many lizard species, males are larger than females, whereas in others, females are the larger sex, suggesting that selection on fecundity has been stronger than sexual selection on males. As placental development or egg retention requires more space within the abdominal cavity, it has been suggested that females of viviparous lizards have larger abdomens or body size than their oviparous relatives. Thus, it would be expected that females of viviparous species attain larger sizes than their oviparous relatives, generating more biased patterns of SSD. We test these predictions using lizards of the genus Sceloporus. After controlling for phylogenetic effects, our results confirm a strong relationship between female body size and fecundity, suggesting that selection for higher fecundity has had a main role in the evolution of female body size. However, oviparous and viviparous females exhibit similar sizes and allometric relationships. Even though there is a strong effect of body size on female fecundity, once phylogenetic effects are considered, we find that the slope of male on female body size is significantly larger than one, providing evidence of greater evolutionary divergence of male body size. These results suggest that the relative impact of sexual selection acting on males has been stronger than fecundity selection acting on females within Sceloporus lizards.
Collapse
Affiliation(s)
- Víctor H Jiménez-Arcos
- UBIPRO Laboratorio de Ecología Universidad Nacional Autónoma de México, FES Iztacala Mexico City Mexico
| | - Salomón Sanabria-Urbán
- UBIPRO Laboratorio de Ecología Universidad Nacional Autónoma de México, FES Iztacala Mexico City Mexico
| | - Raúl Cueva Del Castillo
- UBIPRO Laboratorio de Ecología Universidad Nacional Autónoma de México, FES Iztacala Mexico City Mexico
| |
Collapse
|
69
|
Leighton GM, Charbonneau D, Dornhaus A. Task switching is associated with temporal delays in Temnothorax rugatulus ants. Behav Ecol 2016; 28:319-327. [PMID: 28127225 DOI: 10.1093/beheco/arw162] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 09/09/2016] [Accepted: 10/21/2016] [Indexed: 01/29/2023] Open
Abstract
The major evolutionary transitions often result in reorganization of biological systems, and a component of such reorganization is that individuals within the system specialize on performing certain tasks, resulting in a division of labor. Although the traditional benefit of division of labor is thought to be a gain in work efficiency, one alternative benefit of specialization is avoiding temporal delays associated with switching tasks. While models have demonstrated that costs of task switching can drive the evolution of division of labor, little empirical support exists for this hypothesis. We tested whether there were task-switching costs in Temnothorax rugatulus. We recorded the behavior of every individual in 44 colonies and used this dataset to identify each instance where an individual performed a task, spent time in the interval (i.e., inactive, wandering inside, and self-grooming), and then performed a task again. We compared the interval time where an individual switched task type between that first and second bout of work to instances where an individual performed the same type of work in both bouts. In certain cases, we find that the interval time was significantly shorter if individuals repeated the same task. We find this time cost for switching to a new behavior in all active worker groups, that is, independently of worker specialization. These results suggest that task-switching costs may select for behavioral specialization.
Collapse
Affiliation(s)
- Gavin M Leighton
- Department of Neurobiology and Behavior, Cornell University , Corson-Mudd Hall, 215 Tower Road, Ithaca, NY 14850 , USA and
| | - Daniel Charbonneau
- Department of Entomology and Insect Science, Forbes 410, University of Arizona , Tucson, AZ 85721 , USA
| | - Anna Dornhaus
- Department of Neurobiology and Behavior, Cornell University , Corson-Mudd Hall, 215 Tower Road, Ithaca, NY 14850 , USA and
| |
Collapse
|
70
|
Blanchard BD, Moreau CS. Defensive traits exhibit an evolutionary trade‐off and drive diversification in ants. Evolution 2016; 71:315-328. [DOI: 10.1111/evo.13117] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 10/30/2016] [Accepted: 11/01/2016] [Indexed: 02/05/2023]
Affiliation(s)
- Benjamin D. Blanchard
- Committee on Evolutionary Biology University of Chicago Chicago Illinois 60637
- Department of Science and Education, Integrative Research Center Field Museum of Natural History Chicago Illinois 60605
| | - Corrie S. Moreau
- Department of Science and Education, Integrative Research Center Field Museum of Natural History Chicago Illinois 60605
| |
Collapse
|
71
|
Jongepier E, Foitzik S. Fitness costs of worker specialization for ant societies. Proc Biol Sci 2016; 283:rspb.2015.2572. [PMID: 26763706 DOI: 10.1098/rspb.2015.2572] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Division of labour is of fundamental importance for the success of societies, yet little is known about how individual specialization affects the fitness of the group as a whole. While specialized workers may be more efficient in the tasks they perform than generalists, they may also lack the flexibility to respond to rapid shifts in task needs. Such rigidity could impose fitness costs when societies face dynamic and unpredictable events, such as an attack by socially parasitic slavemakers. Here, we experimentally assess the colony-level fitness consequences of behavioural specialization in Temnothorax longispinosus ants that are attacked by the slavemaker ant T. americanus. We manipulated the social organization of 102 T. longispinosus colonies, based on the behavioural responses of all 3842 workers. We find that strict specialization is disadvantageous for a colony's annual reproduction and growth during slave raids. These fitness costs may favour generalist strategies in dynamic environments, as we also demonstrate that societies exposed to slavemakers in the field show a lower degree of specialization than those originating from slavemaker-free populations. Our findings provide an explanation for the ubiquity of generalists and highlight their importance for the flexibility and functional robustness of entire societies.
Collapse
Affiliation(s)
- Evelien Jongepier
- Department of Evolutionary Biology, Johannes Gutenberg University, Johannes von Mueller Weg 6, Mainz 55099, Germany
| | - Susanne Foitzik
- Department of Evolutionary Biology, Johannes Gutenberg University, Johannes von Mueller Weg 6, Mainz 55099, Germany
| |
Collapse
|
72
|
Norman VC, Pamminger T, Hughes WOH. The effects of disturbance threat on leaf-cutting ant colonies: a laboratory study. INSECTES SOCIAUX 2016; 64:75-85. [PMID: 28255181 PMCID: PMC5310565 DOI: 10.1007/s00040-016-0513-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/26/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
The flexibility of organisms to respond plastically to their environment is fundamental to their fitness and evolutionary success. Social insects provide some of the most impressive examples of plasticity, with individuals exhibiting behavioral and sometimes morphological adaptations for their specific roles in the colony, such as large soldiers for nest defense. However, with the exception of the honey bee model organism, there has been little investigation of the nature and effects of environmental stimuli thought to instigate alternative phenotypes in social insects. Here, we investigate the effect of repeated threat disturbance over a prolonged (17 month) period on both behavioral and morphological phenotypes, using phenotypically plastic leaf-cutting ants (Atta colombica) as a model system. We found a rapid impact of threat disturbance on the behavioral phenotype of individuals within threat-disturbed colonies becoming more aggressive, threat responsive, and phototactic within as little as 2 weeks. We found no effect of threat disturbance on morphological phenotypes, potentially, because constraints such as resource limitation outweighed the benefit for colonies of producing larger individuals. The results suggest that plasticity in behavioral phenotypes can enable insect societies to respond to threats even when constraints prevent alteration of morphological phenotypes.
Collapse
Affiliation(s)
- V. C. Norman
- School of Life Sciences, University of Sussex, Brighton, East Sussex BN1 9QG UK
| | - T. Pamminger
- School of Life Sciences, University of Sussex, Brighton, East Sussex BN1 9QG UK
| | - W. O. H. Hughes
- School of Life Sciences, University of Sussex, Brighton, East Sussex BN1 9QG UK
| |
Collapse
|
73
|
Negroni MA, Jongepier E, Feldmeyer B, Kramer BH, Foitzik S. Life history evolution in social insects: a female perspective. CURRENT OPINION IN INSECT SCIENCE 2016; 16:51-57. [PMID: 27720050 DOI: 10.1016/j.cois.2016.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/11/2016] [Accepted: 05/11/2016] [Indexed: 06/06/2023]
Abstract
Social insects are known for their unusual life histories with fecund, long-lived queens and sterile, short-lived workers. We review ultimate factors underlying variation in life history strategies in female social insects, whose social life reshapes common trade-offs, such as the one between fecundity and longevity. Interspecific life history variation is associated with colony size, mediated by changes in division of labour and extrinsic mortality. In addition to the ratio of juvenile to adult mortality, social factors such as queen number influence life history trajectories. We discuss two hypotheses explaining why queen fecundity and lifespan is higher in single-queen societies and suggest further research directions on the evolution of life history variation in social insects.
Collapse
Affiliation(s)
- Matteo Antoine Negroni
- Institute of Zoology, Johannes Gutenberg University Mainz, Johannes-von-Müller-Weg 6, 55128 Mainz, Germany
| | - Evelien Jongepier
- Institute of Zoology, Johannes Gutenberg University Mainz, Johannes-von-Müller-Weg 6, 55128 Mainz, Germany
| | - Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Molecular Ecology, Senckenberganlage 25, Frankfurt am Main 60325, Germany
| | - Boris H Kramer
- Theoretical Research in Evolutionary Life Sciences (TRES), University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Susanne Foitzik
- Institute of Zoology, Johannes Gutenberg University Mainz, Johannes-von-Müller-Weg 6, 55128 Mainz, Germany.
| |
Collapse
|
74
|
Cronin AL. Group size advantages to decision making are environmentally contingent in house-hunting Myrmecina ants. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
75
|
Ulrich Y, Burns D, Libbrecht R, Kronauer DJC. Ant larvae regulate worker foraging behavior and ovarian activity in a dose-dependent manner. Behav Ecol Sociobiol 2016; 70:1011-1018. [PMID: 27616809 PMCID: PMC5015688 DOI: 10.1007/s00265-015-2046-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/09/2015] [Accepted: 11/18/2015] [Indexed: 12/18/2022]
Abstract
Division of labor in insect societies relies on simple behavioral rules, whereby individual colony members respond to dynamic signals indicating the need for certain tasks to be performed. This in turn gives rise to colony-level phenotypes. However, empirical studies quantifying colony-level signal-response dynamics are lacking. Here, we make use of the unusual biology and experimental amenability of the queenless clonal raider ant Cerapachys biroi, to jointly quantify the behavioral and physiological responses of workers to a social signal emitted by larvae. Using automated behavioral quantification and oocyte size measurements in colonies of different sizes and with different worker to larvae ratios, we show that the workers in a colony respond to larvae by increasing foraging activity and inhibiting ovarian activation in a progressive manner, and that these responses are stronger in smaller colonies. This work adds to our knowledge of the processes that link plastic individual behavioral/physiological responses to colony-level phenotypes in social insect colonies.
Collapse
Affiliation(s)
- Yuko Ulrich
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| | - Dominic Burns
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA; Ant Lab, School of Biological Sciences, University of Bristol, UK
| | - Romain Libbrecht
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA; Department of Ecology and Evolution, University of Lausanne, Switzerland
| | - Daniel J C Kronauer
- Laboratory of Social Evolution and Behavior, The Rockefeller University, New York, NY, USA
| |
Collapse
|
76
|
Armitage SAO, Fernández-Marín H, Boomsma JJ, Wcislo WT. Slowing them down will make them lose: a role for attine ant crop fungus in defending pupae against infections? J Anim Ecol 2016; 85:1210-21. [PMID: 27136600 PMCID: PMC6084299 DOI: 10.1111/1365-2656.12543] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/12/2016] [Indexed: 02/05/2023]
Abstract
Fungus-growing ants (Attini) have evolved an obligate dependency upon a basidiomycete fungus that they cultivate as their food. Less well known is that the crop fungus is also used by many attine species to cover their eggs, larvae and pupae. The adaptive functional significance of this brood covering is poorly understood. One hypothesis to account for this behaviour is that it is part of the pathogen protection portfolio when many thousands of sister workers live in close proximity and larvae and pupae are not protected by cells, as in bees and wasps, and are immobile. We performed behavioural observations on brood covering in the leaf-cutting ant Acromyrmex echinatior, and we experimentally manipulated mycelial cover on pupae and exposed them to the entomopathogenic fungus Metarhizium brunneum to test for a role in pathogen resistance. Our results show that active mycelial brood covering by workers is a behaviourally plastic trait that varies temporally, and across life stages and castes. The presence of a fungal cover on the pupae reduced the rate at which conidia appeared and the percentage of pupal surface that produced pathogen spores, compared to pupae that had fungal cover experimentally removed or naturally had no mycelial cover. Infected pupae with mycelium had higher survival rates than infected pupae without the cover, although this depended upon the time at which adult sister workers were allowed to interact with pupae. Finally, workers employed higher rates of metapleural gland grooming to infected pupae without mycelium than to infected pupae with mycelium. Our results imply that mycelial brood covering may play a significant role in suppressing the growth and subsequent spread of disease, thus adding a novel layer of protection to their defence portfolio.
Collapse
Affiliation(s)
- Sophie A O Armitage
- Department of Biology, Centre for Social Evolution, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - Hermógenes Fernández-Marín
- Department of Biology, Centre for Social Evolution, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.,Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Edificio 219, Ciudad del Saber, Clayton, Panamá City, Panamá,Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panamá
| | - Jacobus J Boomsma
- Department of Biology, Centre for Social Evolution, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark
| | - William T Wcislo
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panamá
| |
Collapse
|
77
|
Tranter C, Hughes WOH. A preliminary study of nest structure and composition of the weaver antPolyrhachis(Cyrtomyrma)delecta(Hymenoptera: Formicidae). J NAT HIST 2015. [DOI: 10.1080/00222933.2015.1103912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
78
|
Social complexity, diet, and brain evolution: modeling the effects of colony size, worker size, brain size, and foraging behavior on colony fitness in ants. Behav Ecol Sociobiol 2015. [DOI: 10.1007/s00265-015-2035-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
79
|
Modlmeier AP, Laskowski KL, Brittingham HA, Coleman A, Knutson KA, Kuo C, McGuirk M, Zhao K, Keiser CN, Pruitt JN. Adult presence augments juvenile collective foraging in social spiders. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2015.07.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
80
|
Broly P, Mullier R, Devigne C, Deneubourg JL. Evidence of self-organization in a gregarious land-dwelling crustacean (Isopoda: Oniscidea). Anim Cogn 2015; 19:181-92. [PMID: 26391028 DOI: 10.1007/s10071-015-0925-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/14/2015] [Accepted: 09/14/2015] [Indexed: 11/26/2022]
Abstract
How individuals modulate their behavior according to social context is a major issue in the understanding of group initiation, group stability and the distribution of individuals. Herein, we investigated the mechanisms of aggregation behavior in Porcellio scaber, a terrestrial isopod member of the Oniscidea, a unique and common group of terrestrial crustaceans. We performed binary choice tests using shelters with a wide range of population densities (from 10 to 150 individuals). First, the observed collective choices of shelters strengthen the demonstration of a social inter-attraction in terrestrial isopods; especially, in less than 10 min, the aggregation reaches its maximal value, and in less than 100 s, the collective choice is made, i.e., one shelter is selected. In addition, the distribution of individuals shows the existence of (1) quorum rules, by which an aggregate cannot emerge under a threshold value of individuals, and (2) a maximum population size, which leads to a splitting of the populations. These collective results are in agreement with the individual's probability of joining and leaving an aggregate attesting to a greater attractiveness of the group to migrants and greater retention of conspecifics with group size. In this respect, we show that the emergence of aggregation in terrestrial isopods is based on amplification mechanisms. And lastly, our results indicate how local cues about the spatial organization of individuals may favor this emergence and how individuals spatiotemporally reorganize toward a compact form reducing the exchange with the environment. This study provides the first evidence of self-organization in a gregarious crustacean, similar as has been widely emphasized in gregarious insects and eusocial insects.
Collapse
Affiliation(s)
- Pierre Broly
- Unité d'Ecologie Sociale, Université Libre de Bruxelles, Campus de la Plaine, Brussels, Belgium.
| | - Romain Mullier
- Laboratoire Ecologie & Biodiversité, Faculté de Gestion, Economie & Sciences, UCLILLE, Lille, France
| | - Cédric Devigne
- Laboratoire Ecologie & Biodiversité, Faculté de Gestion, Economie & Sciences, UCLILLE, Lille, France
| | - Jean-Louis Deneubourg
- Unité d'Ecologie Sociale, Université Libre de Bruxelles, Campus de la Plaine, Brussels, Belgium
| |
Collapse
|
81
|
Cueva del Castillo R, Sanabria‐Urbán S, Serrano‐Meneses MA. Trade-offs in the evolution of bumblebee colony and body size: a comparative analysis. Ecol Evol 2015; 5:3914-26. [PMID: 26445652 PMCID: PMC4588658 DOI: 10.1002/ece3.1659] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 07/16/2015] [Accepted: 07/22/2015] [Indexed: 11/26/2022] Open
Abstract
Trade-offs between life-history traits - such as fecundity and survival - have been demonstrated in several studies. In eusocial insects, the number of organisms and their body sizes can affect the fitness of the colony. Large-than-average body sizes as well as more individuals can improve a colony's thermoregulation, foraging efficiency, and fecundity. However, in bumblebees, large colonies and large body sizes depend largely on high temperatures and a large amount of food resources. Bumblebee taxa can be found in temperate and tropical regions of the world and differ markedly in their colony sizes and body sizes. Variation in colony size and body size may be explained by the costs and benefits associated with the evolutionary history of each species in a particular environment. In this study, we explored the effect of temperature and precipitation (the latter was used as an indirect indicator of food availability) on the colony and body size of twenty-one bumblebee taxa. A comparative analysis controlling for phylogenetic effects as well as for the body size of queens, workers, and males in bumblebee taxa from temperate and tropical regions indicated that both temperature and precipitation affect colony and body size. We found a negative association between colony size and the rainiest trimester, and a positive association between the colony size and the warmest month of the year. In addition, male bumblebees tend to evolve larger body sizes in places where the rain occurs mostly in the summer and the overall temperature is warmer. Moreover, we found a negative relationship between colony size and body sizes of queens, workers, and males, suggesting potential trade-offs in the evolution of bumblebee colony and body size.
Collapse
Affiliation(s)
- Raúl Cueva del Castillo
- Lab. de Ecología; UBIPROUniversidad Nacional Autónoma de MéxicoFES Iztacala. A. P. 31454090Edo. MéxicoMéxico
| | - Salomón Sanabria‐Urbán
- Lab. de Ecología; UBIPROUniversidad Nacional Autónoma de MéxicoFES Iztacala. A. P. 31454090Edo. MéxicoMéxico
| | - Martín Alejandro Serrano‐Meneses
- Laboratorio de Biología EvolutivaCentro Tlaxcala de Biología de la ConductaUniversidad Autónoma de TlaxcalaCarretera Tlaxcala‐Puebla Km. 1.590062TlaxcalaMéxico
| |
Collapse
|
82
|
When doing nothing is something. How task allocation strategies compromise between flexibility, efficiency, and inactive agents. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s10818-015-9205-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
83
|
Evolutionary transitions of complex labile traits: Silk weaving and arboreal nesting in Polyrhachis ants. Behav Ecol Sociobiol 2015. [DOI: 10.1007/s00265-014-1857-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
84
|
Bengston SE, Jandt JM. The development of collective personality: the ontogenetic drivers of behavioral variation across groups. Front Ecol Evol 2014. [DOI: 10.3389/fevo.2014.00081] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
85
|
Keiser CN, Pruitt JN. Personality composition is more important than group size in determining collective foraging behaviour in the wild. Proc Biol Sci 2014; 281:20141424. [PMID: 25320170 PMCID: PMC4213636 DOI: 10.1098/rspb.2014.1424] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/19/2014] [Indexed: 12/26/2022] Open
Abstract
Describing the factors that shape collective behaviour is central to our understanding of animal societies. Countless studies have demonstrated an effect of group size in the emergence of collective behaviours, but comparatively few have accounted for the composition/diversity of behavioural phenotypes, which is often conflated with group size. Here, we simultaneously examine the effect of personality composition and group size on nest architecture and collective foraging aggressiveness in the social spider Stegodyphus dumicola. We created colonies of two different sizes (10 or 30 individuals) and four compositions of boldness (all bold, all shy, mixed bold and shy, or average individuals) in the field and then measured their collective behaviour. Larger colonies produced bigger capture webs, while colonies containing a higher proportion of bold individuals responded to and attacked prey more rapidly. The number of attackers during collective foraging was determined jointly by composition and size, although composition had an effect size more than twice that of colony size: our results suggest that colonies of just 10 bold spiders would attack prey with as many attackers as colonies of 110 'average' spiders. Thus, personality composition is a more potent (albeit more cryptic) determinant of collective foraging in these societies.
Collapse
Affiliation(s)
- Carl N Keiser
- Department of Biological Sciences, University of Pittsburgh, 182 Crawford Hall, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Jonathan N Pruitt
- Department of Biological Sciences, University of Pittsburgh, 182 Crawford Hall, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
86
|
Abstract
Senescence, the decline in physiological and behavioral function with increasing age, has been the focus of significant theoretical and empirical research in a broad array of animal taxa. Preeminent among invertebrate social models of aging are ants, a diverse and ecologically dominant clade of eusocial insects characterized by reproductive and sterile phenotypes. In this review, we critically examine selection for worker lifespan in ants and discuss the relationship between functional senescence, longevity, task performance, and colony fitness. We did not find strong or consistent support for the hypothesis that demographic senescence in ants is programmed, or its corollary prediction that workers that do not experience extrinsic mortality die at an age approximating their lifespan in nature. We present seven hypotheses concerning how selection could favor extended worker lifespan through its positive relationship to colony size and predict that large colony size, under some conditions, should confer multiple and significant fitness advantages. Fitness benefits derived from long worker lifespan could be mediated by increased resource acquisition, efficient division of labor, accuracy of collective decision-making, enhanced allomaternal care and colony defense, lower infection risk, and decreased energetic costs of workforce maintenance. We suggest future avenues of research to examine the evolution of worker lifespan and its relationship to colony fitness, and conclude that an innovative fusion of sociobiology, senescence theory, and mechanistic studies of aging can improve our understanding of the adaptive nature of worker lifespan in ants.
Collapse
Affiliation(s)
| | - James F A Traniello
- Department of Biology, Boston University, 5 Cummington Mall, Boston MA, 02215
| |
Collapse
|
87
|
LeBoeuf AC, Grozinger CM. Me and we: the interplay between individual and group behavioral variation in social collectives. CURRENT OPINION IN INSECT SCIENCE 2014; 5:16-24. [PMID: 32846737 DOI: 10.1016/j.cois.2014.09.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 06/11/2023]
Abstract
In social insects, substantial behavioral variation exists among individuals and across colonies. Here, we discuss the role of individual variation in shaping behavioral tendencies of social groups, and highlight gaps in our knowledge about the role of the social group in modulating individual behavioral tendencies. We summarize our knowledge of the genetic mechanisms underpinning these processes, and describe the use of genomic tools to better understand the influence of social context on individuals. We discuss rapid collective phasic transitions, in which a group of individuals engages in a common novel behavior together, as a potentially highly informative model system in which to comprehensively investigate the interplay between individual and group variation.
Collapse
Affiliation(s)
- Adria C LeBoeuf
- Department of Ecology and Evolution, Center for Integrative Genomics, University of Lausanne, UNIL-Sorge, Batiment Biophore, CH-1015 Lausanne, Switzerland
| | - Christina M Grozinger
- Department of Entomology, Center for Pollinator Research, Center for Chemical Ecology, The Pennsylvania State University, 1 Chemical Ecology Lab, Orchard Road, University Park, PA 16802, USA.
| |
Collapse
|
88
|
Ferguson-Gow H, Sumner S, Bourke AFG, Jones KE. Colony size predicts division of labour in attine ants. Proc Biol Sci 2014; 281:20141411. [PMID: 25165765 PMCID: PMC4173680 DOI: 10.1098/rspb.2014.1411] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/01/2014] [Indexed: 01/11/2023] Open
Abstract
Division of labour is central to the ecological success of eusocial insects, yet the evolutionary factors driving increases in complexity in division of labour are little known. The size-complexity hypothesis proposes that, as larger colonies evolve, both non-reproductive and reproductive division of labour become more complex as workers and queens act to maximize inclusive fitness. Using a statistically robust phylogenetic comparative analysis of social and environmental traits of species within the ant tribe Attini, we show that colony size is positively related to both non-reproductive (worker size variation) and reproductive (queen-worker dimorphism) division of labour. The results also suggested that colony size acts on non-reproductive and reproductive division of labour in different ways. Environmental factors, including measures of variation in temperature and precipitation, had no significant effects on any division of labour measure or colony size. Overall, these results support the size-complexity hypothesis for the evolution of social complexity and division of labour in eusocial insects. Determining the evolutionary drivers of colony size may help contribute to our understanding of the evolution of social complexity.
Collapse
Affiliation(s)
- Henry Ferguson-Gow
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | - Seirian Sumner
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK
| | - Andrew F G Bourke
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, UK
| | - Kate E Jones
- Institute of Zoology, Zoological Society of London, Regent's Park, London NW1 4RY, UK Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, Gower St., London WC1E 6BT, UK
| |
Collapse
|
89
|
Cronin AL, Stumpe MC. Ants work harder during consensus decision-making in small groups. J R Soc Interface 2014; 11:20140641. [PMID: 25030387 DOI: 10.1098/rsif.2014.0641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Individuals derive many benefits from being social, one of which is improved accuracy of decision-making, the so-called 'wisdom of the crowds' effect. This advantage arises because larger groups can pool information from more individuals. At present, limited empirical data indicate that larger groups outperform smaller ones during consensus decision-making in human and non-human animals. Inaccurate decisions can lead to significant costs, and we might therefore expect individuals in small groups to employ mechanisms to compensate for the lack of numbers. Small groups may be able to maintain decision accuracy if individuals are better informed than those in larger groups and/or by increasing the proportion of the group involved in collective decision-making relative to larger groups. In this study, we use interactive computer vision software to investigate individual contributions to consensus decision-making during house-hunting in different sized groups of the ant Myrmecina nipponica. We show that individuals in small colonies invest greater effort in the consensus decision process than those in large colonies and should be better informed as a result. This may act to ameliorate the limitations of group size, but could leave smaller groups more susceptible to additional stresses.
Collapse
Affiliation(s)
- Adam L Cronin
- United Graduate School of Agricultural Sciences, Iwate University, 3-18-8 Ueda, Morioka 020-8550, Japan
| | | |
Collapse
|
90
|
Rocha FH, Lachaud JP, Valle-Mora J, Pérez-Lachaud G. Fine Individual Specialization and Elitism among Workers of the AntEctatomma tuberculatumfor a Highly Specific Task: Intruder Removal. Ethology 2014. [DOI: 10.1111/eth.12291] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Franklin H. Rocha
- Conservación de la Biodiversidad; El Colegio de la Frontera Sur; Chetumal Quintana Roo Mexico
| | - Jean-Paul Lachaud
- Conservación de la Biodiversidad; El Colegio de la Frontera Sur; Chetumal Quintana Roo Mexico
- Centre de Recherches sur la Cognition Animale; CNRS-UMR 5169; Université de Toulouse UPS; Toulouse Cedex 09 France
| | | | - Gabriela Pérez-Lachaud
- Conservación de la Biodiversidad; El Colegio de la Frontera Sur; Chetumal Quintana Roo Mexico
| |
Collapse
|
91
|
Preece K, Beekman M. Honeybee waggle dance error: adaption or constraint? Unravelling the complex dance language of honeybees. Anim Behav 2014. [DOI: 10.1016/j.anbehav.2014.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
92
|
Muratori FB, Rouyar A, Hance T. Clonal variation in aggregation and defensive behavior in pea aphids. Behav Ecol 2014. [DOI: 10.1093/beheco/aru064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
93
|
Geographic variation in caste ratio of trematode colonies with a division of labour reflect local adaptation. Parasitol Res 2014; 113:2593-602. [DOI: 10.1007/s00436-014-3913-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/09/2014] [Indexed: 10/25/2022]
|
94
|
Abstract
Social organisms can surmount many ecological challenges by working collectively. An impressive example of such collective behavior occurs when ants physically link together into floating ‘rafts’ to escape from flooded habitat. However, raft formation may represent a social dilemma, with some positions posing greater individual risks than others. Here, we investigate the position and function of different colony members, and the costs and benefits of this functional geometry in rafts of the floodplain-dwelling ant Formica selysi. By causing groups of ants to raft in the laboratory, we observe that workers are distributed throughout the raft, queens are always in the center, and 100% of brood items are placed on the base. Through a series of experiments, we show that workers and brood are extremely resistant to submersion. Both workers and brood exhibit high survival rates after they have rafted, suggesting that occupying the base of the raft is not as costly as expected. The placement of all brood on the base of one cohesive raft confers several benefits: it preserves colony integrity, takes advantage of brood buoyancy, and increases the proportion of workers that immediately recover after rafting.
Collapse
|
95
|
Phylogenetic relationships of yellowjackets inferred from nine loci (Hymenoptera: Vespidae, Vespinae, Vespula and Dolichovespula). Mol Phylogenet Evol 2014; 73:190-201. [PMID: 24462637 DOI: 10.1016/j.ympev.2014.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/20/2013] [Accepted: 01/10/2014] [Indexed: 11/23/2022]
Abstract
Eusociality has arisen repeatedly and independently in the history of insects, often leading to evolutionary success and ecological dominance. Eusocial wasps of the genera Vespula and Dolichovespula, or yellowjackets, have developed advanced social traits in a relatively small number of species. The origin of traits such as effective paternity and colony size has been interpreted with reference to an established phylogenetic hypothesis that is based on phenotypic data, while the application of molecular evidence to phylogenetic analysis within yellowjackets has been limited. Here, we investigate the evolutionary history of yellowjackets on the basis of mitochondrial and nuclear markers (nuclear: 28S, EF1α, Pol II, and wg; mitochondrial: 12S, 16S, COI, COII, and Cytb). We use these data to test the monophyly of yellowjackets and species groups, and resolve species-level relationships within each genus using parsimony and Bayesian inference. Our results indicate that a yellowjacket clade is either weakly supported (parsimony) or rejected (Bayesian inference). However, the monophyly of each yellowjacket genus as well as species groups are strongly supported and concordant between methods. Our results agree with previous studies regarding the monophyly of the Vespula vulgaris group and the sister relationship between the V. rufa and V. squamosa groups. This suggests convergence of large colony size and high effective paternity in the vulgaris group and V. squamosa, or a single origin of both traits in the most recent common ancestor of all Vespula species and their evolutionary reversal in the rufa group.
Collapse
|
96
|
Jeanson R, Weidenmüller A. Interindividual variability in social insects - proximate causes and ultimate consequences. Biol Rev Camb Philos Soc 2013; 89:671-87. [PMID: 24341677 DOI: 10.1111/brv.12074] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 11/15/2013] [Accepted: 11/19/2013] [Indexed: 12/20/2022]
Abstract
Individuals within social groups often show consistent differences in behaviour across time and context. Such interindividual differences and the evolutionary challenge they present have recently generated considerable interest. Social insects provide some of the most familiar and spectacular examples of social groups with large interindividual differences. Investigating these within-group differences has a long research tradition, and behavioural variability among the workers of a colony is increasingly regarded as fundamental for a key feature of social insects: division of labour. The goal of this review is to illustrate what we know about both the proximate mechanisms underlying behavioural variability among the workers of a colony and its ultimate consequences; and to highlight the many open questions in this research field. We begin by reviewing the literature on mechanisms that potentially introduce, maintain, and adjust the behavioural differentiation among workers. We highlight the fact that so far, most studies have focused on behavioural variability based on genetic variability, provided by e.g. multiple mating of the queen, while other mechanisms that may be responsible for the behavioural differentiation among workers have been largely neglected. These include maturational, nutritional and environmental influences. We further discuss how feedback provided by the social environment and learning and experience of adult workers provides potent and little-explored sources of differentiation. In a second part, we address what is known about the potential benefits and costs of increased behavioural variability within the workers of a colony. We argue that all studies documenting a benefit of variability so far have done so by manipulating genetic variability, and that a direct test of the effect of behavioural variability on colony productivity has yet to be provided. We emphasize that the costs associated with interindividual variability have been largely overlooked, and that a better knowledge of the cost/benefit balance of behavioural variability is crucial for our understanding of the evolution of the mechanisms underlying the social organization of insect societies. We conclude by highlighting what we believe to be promising but little-explored avenues for future research on how within-colony variability has evolved and is maintained. We emphasize the need for comparative studies and point out that, so far, most studies on interindividual variability have focused on variability in individual response thresholds, while the significance of variability in other parameters of individual response, such as probability and intensity of the response, has been largely overlooked. We propose that these parameters have important consequences for the colony response. Much more research is needed to understand if and how interindividual variability is modulated in order to benefit division of labour, homeostasis and ultimately colony fitness in social insects.
Collapse
Affiliation(s)
- Raphaël Jeanson
- Centre National de la Recherche Scientifique, Centre de Recherches sur la Cognition Animale, 118 Route de Narbonne, 31062 Cedex 9, Toulouse, France; Centre de Recherches sur la Cognition Animale, Université Paul Sabatier, 118 Route de Narbonne, 31062 Cedex 9, Toulouse, France
| | | |
Collapse
|
97
|
Sanitizing the fortress: protection of ant brood and nest material by worker antibiotics. Behav Ecol Sociobiol 2013. [DOI: 10.1007/s00265-013-1664-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
98
|
|
99
|
Clark RM, Fewell JH. Transitioning from unstable to stable colony growth in the desert leafcutter ant Acromyrmex versicolor. Behav Ecol Sociobiol 2013. [DOI: 10.1007/s00265-013-1632-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
100
|
Kramer BH, Schaible R. Colony size explains the lifespan differences between queens and workers in eusocial Hymenoptera. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12072] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Boris H. Kramer
- Max Planck Institute for Demographic Research; Rostock; Germany
| | - Ralf Schaible
- Max Planck Institute for Demographic Research; Rostock; Germany
| |
Collapse
|