51
|
Su SC, Hung SI, Fan WL, Dao RL, Chung WH. Severe Cutaneous Adverse Reactions: The Pharmacogenomics from Research to Clinical Implementation. Int J Mol Sci 2016; 17:ijms17111890. [PMID: 27854302 PMCID: PMC5133889 DOI: 10.3390/ijms17111890] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/07/2016] [Accepted: 11/07/2016] [Indexed: 01/11/2023] Open
Abstract
Severe cutaneous adverse reactions (SCARs), previously thought to be idiosyncratic or unpredictable, are a deadly form of adverse drug reactions with skin manifestations. Current pharmacogenomic studies of SCARs have made important strides, as the prevention of SCARs, to some extent, appears attainable with the identification of genetic variants for genes encoding drug-metabolizing enzymes and human leukocyte antigens (HLAs). Despite the improvement of incidence, a treatment guideline for this devastating condition is still unavailable, highlighting the inadequacy of contemporary accepted therapeutic interventions. As such, prompt withdrawal of causative drugs is believed to be a priority of patient management. In this review, we discuss recent cutting-edge findings concerning the discovery of biomarkers for SCARs and their clinical utilities in the better prediction and early diagnosis of this disease. The knowledge compiled herein provides clues for future investigations on deciphering additional genetic markers for SCARs and the design of clinical trials for the prospective identification of subjects at genetic risk for this condition, ultimately personalizing the medicine.
Collapse
Affiliation(s)
- Shih-Chi Su
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 204, Taiwan.
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei, Linkou and Keelung 105, Taiwan.
| | - Shuen-Iu Hung
- Institute of Pharmacology, School of Medicine, Infection and Immunity Research Center, National Yang-Ming University, Taipei 112, Taiwan.
| | - Wen-Lang Fan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 204, Taiwan.
| | - Ro-Lan Dao
- Institute of Pharmacology, School of Medicine, Infection and Immunity Research Center, National Yang-Ming University, Taipei 112, Taiwan.
| | - Wen-Hung Chung
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 204, Taiwan.
- Institute of Pharmacology, School of Medicine, Infection and Immunity Research Center, National Yang-Ming University, Taipei 112, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan.
| |
Collapse
|
52
|
Illing PT, Mifsud NA, Purcell AW. Allotype specific interactions of drugs and HLA molecules in hypersensitivity reactions. Curr Opin Immunol 2016; 42:31-40. [PMID: 27261882 DOI: 10.1016/j.coi.2016.05.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 12/30/2022]
Abstract
It is hypothesised that associations between adverse drug reactions and specific alleles of the human leukocyte antigens arise due to specific interactions between the human leukocyte antigen molecules and the causative drug that stimulate immune responses targeting drug exposed tissues. To date this has only been definitively demonstrated for abacavir, an antiretroviral that causes a systemic adverse drug reaction, abacavir hypersensitivity syndrome, solely in HLA-B*57:01+ individuals. Whilst this has informed the modification of abacavir to remove immunogenicity, there remains an imperative to define other interactions between drugs and specific HLA in order to understand the scope of interactions that can drive T cell mediated drug hypersensitivity. Here we review the current state of understanding of these interactions.
Collapse
Affiliation(s)
- Patricia T Illing
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Victoria, Australia.
| | - Nicole A Mifsud
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Victoria, Australia
| | - Anthony W Purcell
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
53
|
Candidate HLA genes for prediction of co-trimoxazole-induced severe cutaneous reactions. Pharmacogenet Genomics 2016; 25:402-11. [PMID: 26086150 DOI: 10.1097/fpc.0000000000000153] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Co-trimoxazole is a sulfonamide-containing antibiotic that is effective in the treatment of several infections and for prophylaxis of Pneumocystis jiroveci pneumonia. This drug has been reported as a common culprit drug for the Stevens-Johnson syndrome (SJS) and for toxic epidermal necrolysis (TEN). Human leukocyte antigens (HLAs) play a key role in the immunopathogenesis of severe cutaneous reactions induced by several drugs. This study investigated the association between the HLA class I and HLA-DRB1 polymorphisms and co-trimoxazole-induced SJS/TEN in a Thai population. METHODS Forty-three patients with co-trimoxazole-induced SJS/TEN and 91 co-trimoxazole-tolerant patients were enrolled in the study. HLA class I and HLA-DRB1 were genotyped using the reverse sequence-specific oligonucleotide probe method. RESULTS The frequencies of three alleles of HLA, namely HLA-B*15:02, HLA-C*06:02, and HLA-C*08:01, were significantly higher in the co-trimoxazole-induced SJS/TEN group compared with controls. The risks for co-trimoxazole-induced SJS/TEN in patients with the HLA-B*15:02, HLA-C*06:02, or HLA-C*08:01 allele were about 3-11-fold higher when compared with those who did not carry one of these alleles. Individuals who carried the HLA-B*15:02-C*08:01 haplotype had a 14-fold higher risk for co-trimoxazole-induced SJS/TEN. CONCLUSION Evidence of associations between co-trimoxazole-induced SJS/TEN and HLA alleles including HLA-B*15:02, HLA-C*06:02, and HLA-C*08:01 were found in the study population. These findings may suggest that apart from the HLA molecules, other molecules involved in the molecular pathogenesis of these severe cutaneous adverse drug reactions may play an important role in the susceptibility of individuals to SJS/TEN caused by co-trimoxazole.
Collapse
|
54
|
Burkhart KK, Abernethy D, Jackson D. Data Mining FAERS to Analyze Molecular Targets of Drugs Highly Associated with Stevens-Johnson Syndrome. J Med Toxicol 2016; 11:265-73. [PMID: 25876064 DOI: 10.1007/s13181-015-0472-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Drug features that are associated with Stevens-Johnson syndrome (SJS) have not been fully characterized. A molecular target analysis of the drugs associated with SJS in the FDA Adverse Event Reporting System (FAERS) may contribute to mechanistic insights into SJS pathophysiology. The publicly available version of FAERS was analyzed to identify disproportionality among the molecular targets, metabolizing enzymes, and transporters for drugs associated with SJS. The FAERS in-house version was also analyzed for an internal comparison of the drugs most highly associated with SJS. Cyclooxygenases 1 and 2, carbonic anhydrase 2, and sodium channel 2 alpha were identified as disproportionately associated with SJS. Cytochrome P450 (CYPs) 3A4 and 2C9 are disproportionately represented as metabolizing enzymes of the drugs associated with SJS adverse event reports. Multidrug resistance protein 1 (MRP-1), organic anion transporter 1 (OAT1), and PEPT2 were also identified and are highly associated with the transport of these drugs. A detailed review of the molecular targets identifies important roles for these targets in immune response. The association with CYP metabolizing enzymes suggests that reactive metabolites and oxidative stress may have a contributory role. Drug transporters may enhance intracellular tissue concentrations and also have vital physiologic roles that impact keratinocyte proliferation and survival. Data mining FAERS may be used to hypothesize mechanisms for adverse drug events by identifying molecular targets that are highly associated with drug-induced adverse events. The information gained may contribute to systems biology disease models.
Collapse
Affiliation(s)
- Keith K Burkhart
- Medical Informatics Team, Office of Clinical Pharmacology, Office of Translational Science, Division of Applied Regulatory Science, Center for Drug Evaluation and Research, Food and Drug Administration, Bldg 64, Rm 2012, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA,
| | | | | |
Collapse
|
55
|
Mosaad YM. Clinical Role of Human Leukocyte Antigen in Health and Disease. Scand J Immunol 2015; 82:283-306. [PMID: 26099424 DOI: 10.1111/sji.12329] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/02/2015] [Accepted: 06/12/2015] [Indexed: 12/19/2022]
Abstract
Most of the genes in the major histocompatibility complex (MHC) region express high polymorphism that is fundamental for their function. The most important function of human leukocyte antigen (HLA) molecule is in the induction, regulation of immune responses and the selection of the T cell repertoire. A clinician's attention is normally drawn to a system only when it malfunctions. The HLA system is no exception in this regard, but in contrast to other systems, it also arouses interest when it functions well - too well, in fact. Population studies carried out over the last several decades have identified a long list of human diseases that are significantly more common among individuals that carry particular HLA alleles including inflammatory, autoimmune and malignant disorders. HLA-disease association is the name of this phenomenon, and the mechanism underlying is still a subject of hot debate. Social behaviours are affected by HLA genes and preference for HLA disparate mates may provide 'good genes' for an individual's offspring. Also, certain HLA genes may be associated with shorter life and others with longer lifespan, but the effects depend both on the genetic background and on the environmental conditions. The following is a general overview of the important functional aspects of HLA in health and diseases.
Collapse
Affiliation(s)
- Y M Mosaad
- Clinical Immunology Unit, Clinical Pathology Department & Mansoura Research Center for Cord Stem Cell (MARC_CSC), Mansoura Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
56
|
Zhou P, Zhang S, Wang Y, Yang C, Huang J. Structural modeling of HLA-B*1502/peptide/carbamazepine/T-cell receptor complex architecture: implication for the molecular mechanism of carbamazepine-induced Stevens-Johnson syndrome/toxic epidermal necrolysis. J Biomol Struct Dyn 2015; 34:1806-17. [DOI: 10.1080/07391102.2015.1092476] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Peng Zhou
- Center of Bioinformatics (COBI), Key Laboratory for Neuroinformation of the Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Shilei Zhang
- Center of Bioinformatics (COBI), Key Laboratory for Neuroinformation of the Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Yewang Wang
- Center of Bioinformatics (COBI), Key Laboratory for Neuroinformation of the Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Chao Yang
- Center of Bioinformatics (COBI), Key Laboratory for Neuroinformation of the Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Jian Huang
- Center of Bioinformatics (COBI), Key Laboratory for Neuroinformation of the Ministry of Education, Center for Information in BioMedicine, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| |
Collapse
|
57
|
Du T, Yang L, Luo H, Zhou P, Mei H, Xuan J, Xing Q, Ning B, Mendrick DL, Shi L. HLADR: a database system for enhancing the discovery of biomarkers for predicting human leukocyte antigen-mediated idiosyncratic adverse drug reactions. Biomark Med 2015; 9:1079-93. [DOI: 10.2217/bmm.15.98] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: To establish a database for the associations between idiosyncratic drug reactions (IDRs) and human leukocyte antigens (HLAs) and to systematically assess the characteristics of the drug–HLA associations. Materials & methods: Electronic databases were searched to extensively identify drug–HLA association studies from 1966 to present. Results: A drug-HLA-IDR database, HLADR, was created. The drug–HLA relationship network clearly reflected an ethnicity dependency of the associations. The positive predictive values and the negative predictive values demonstrated that other potential factors may also regulate the occurrence of HLA-specific IDRs. Conclusions: Constructing studies with samples from homogeneous ethnic groups and identifying cofactors that affect negative predictive values and positive predictive values will become necessary to enhance the predictability of HLA biomarkers for future research on IDRs.
Collapse
Affiliation(s)
- Tingting Du
- Center for Pharmacogenomics & State Key Laboratory of Genetic Engineering, School of Life Sciences & School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Lun Yang
- National Center for Toxicological Research, US Food & Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Heng Luo
- National Center for Toxicological Research, US Food & Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
- University of Arkansas at Little Rock/University of Arkansas for Medical Sciences Joint Bioinformatics Graduate Program, 2801 South University Avenue, Little Rock, AR 72204, USA
| | - Peng Zhou
- National Center for Toxicological Research, US Food & Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Hu Mei
- National Center for Toxicological Research, US Food & Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Jiekun Xuan
- Center for Pharmacogenomics & State Key Laboratory of Genetic Engineering, School of Life Sciences & School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- National Center for Toxicological Research, US Food & Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Qinghe Xing
- Institutes of Biomedical Science, Fudan University, 138 Shanghai Medical School Road, Shanghai 200032, China
| | - Baitang Ning
- National Center for Toxicological Research, US Food & Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Donna L Mendrick
- National Center for Toxicological Research, US Food & Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
| | - Leming Shi
- Center for Pharmacogenomics & State Key Laboratory of Genetic Engineering, School of Life Sciences & School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
- National Center for Toxicological Research, US Food & Drug Administration, 3900 NCTR Road, Jefferson, AR 72079, USA
- University of Arkansas at Little Rock/University of Arkansas for Medical Sciences Joint Bioinformatics Graduate Program, 2801 South University Avenue, Little Rock, AR 72204, USA
| |
Collapse
|
58
|
New approaches for predicting T cell-mediated drug reactions: A role for inducible and potentially preventable autoimmunity. J Allergy Clin Immunol 2015; 136:252-7. [PMID: 26254052 DOI: 10.1016/j.jaci.2015.06.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/23/2015] [Accepted: 06/25/2015] [Indexed: 12/20/2022]
Abstract
Adverse drug reactions (ADRs) are commonplace and occur when a drug binds to its intended pharmacologic target (type A ADR) or an unintended target (type B ADR). Immunologically mediated type B ADRs, such as drug hypersensitivity syndrome, drug reaction with eosinophilia and systemic symptoms syndrome, and Stevens-Johnson syndrome/toxic epidermal necrolysis, can be severe and result in a diverse set of clinical manifestations that include fever and rash, as well as multiple organ failure (liver, kidney, lungs, and/or heart) in the case of drug hypersensitivity syndrome. There is increasing evidence that specific HLA alleles influence the risk of drug reactions. Several features of T cell-mediated ADRs are strikingly similar to those displayed by patients with autoimmune diseases like type I diabetes, such as strong HLA association, organ-specific adaptive immune responses, viral involvement, and activation of innate immunity. There is a need to better predict patient populations at risk for immunologically mediated type B ADRs. Because methods to predict type 1 diabetes by using genetic and immunologic biomarkers have been developed to a high level of accuracy (predicting 100% of subjects likely to progress), new research strategies based on these methods might also improve the ability to predict drug hypersensitivity.
Collapse
|
59
|
White KD, Chung WH, Hung SI, Mallal S, Phillips EJ. Evolving models of the immunopathogenesis of T cell-mediated drug allergy: The role of host, pathogens, and drug response. J Allergy Clin Immunol 2015; 136:219-34; quiz 235. [PMID: 26254049 DOI: 10.1016/j.jaci.2015.05.050] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 12/12/2022]
Abstract
Immune-mediated (IM) adverse drug reactions (ADRs) are an underrecognized source of preventable morbidity, mortality, and cost. Increasingly, genetic variation in the HLA loci is associated with risk of severe reactions, highlighting the importance of T-cell immune responses in the mechanisms of both B cell-mediated and primary T cell-mediated IM-ADRs. In this review we summarize the role of host genetics, microbes, and drugs in IM-ADR development; expand on the existing models of IM-ADR pathogenesis to address multiple unexplained observations; discuss the implications of this work in clinical practice today; and describe future applications for preclinical drug toxicity screening, drug design, and development.
Collapse
Affiliation(s)
- Katie D White
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn
| | - Wen-Hung Chung
- Department of Dermatology, Chang Gung Memorial Hospital, Keelung, Taiwan; Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan; College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shuen-Iu Hung
- Program in Molecular Medicine, Institute of Pharmacology, School of Medicine, Infection and Immunity Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Simon Mallal
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn; Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Elizabeth J Phillips
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn; Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia.
| |
Collapse
|
60
|
Yang F, Gu B, Zhang L, Xuan J, Luo H, Zhou P, Zhu Q, Yan S, Chen SA, Cao Z, Xu J, Xing Q, Luo X. HLA-B*13:01 is associated with salazosulfapyridine-induced drug rash with eosinophilia and systemic symptoms in Chinese Han population. Pharmacogenomics 2015; 15:1461-9. [PMID: 25303297 DOI: 10.2217/pgs.14.69] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Salazosulfapyridine (SASP) frequently causes several adverse reactions, such as drug rash with eosinophilia and systemic symptoms (DRESS). This study aims to assess whether there is an association between SASP-induced DRESS and HLA-A, -B and -C alleles in the Chinese Han population. SUBJECTS & METHODS We performed an association study of six subjects with SASP-induced DRESS, 30 SASP-tolerant patients and 283 general subjects from the human MHC database, all of whom are Han Chinese. RESULTS The frequency of the SASP-induced DRESS patients carrying the HLA-B*13:01 allele is 66.67% (4/6). It is significantly higher compared with the general Chinese Han population (15.19%, 43/283; odds ratio: 11.16; p = 0.007) or with the SASP-tolerant patients (13.33%, 4/30; odds ratio: 13.00; p = 0.004). CONCLUSION These findings show for the first time that in the Chinese Han population, HLA-B*13:01 is associated with SASP-induced DRESS. HLA-B*13:01 might serve as a potential genetic marker for reducing the prevalence of SASP-induced DRESS.
Collapse
Affiliation(s)
- Fanping Yang
- Huashan Hospital, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Luo H, Ye H, Ng HW, Shi L, Tong W, Mendrick DL, Hong H. Machine Learning Methods for Predicting HLA-Peptide Binding Activity. Bioinform Biol Insights 2015; 9:21-9. [PMID: 26512199 PMCID: PMC4603527 DOI: 10.4137/bbi.s29466] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/30/2015] [Accepted: 08/02/2015] [Indexed: 11/23/2022] Open
Abstract
As major histocompatibility complexes in humans, the human leukocyte antigens (HLAs) have important functions to present antigen peptides onto T-cell receptors for immunological recognition and responses. Interpreting and predicting HLA–peptide binding are important to study T-cell epitopes, immune reactions, and the mechanisms of adverse drug reactions. We review different types of machine learning methods and tools that have been used for HLA–peptide binding prediction. We also summarize the descriptors based on which the HLA–peptide binding prediction models have been constructed and discuss the limitation and challenges of the current methods. Lastly, we give a future perspective on the HLA–peptide binding prediction method based on network analysis.
Collapse
Affiliation(s)
- Heng Luo
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA. ; University of Arkansas at Little Rock/University of Arkansas for Medical Sciences Bioinformatics Graduate Program, Little Rock, AR, USA
| | - Hao Ye
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Hui Wen Ng
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Leming Shi
- Center for Pharmacogenomics, School of Pharmacy, Fudan University, Shanghai, China
| | - Weida Tong
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Donna L Mendrick
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Huixiao Hong
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
62
|
Luo H, Ye H, Ng H, Shi L, Tong W, Mattes W, Mendrick D, Hong H. Understanding and predicting binding between human leukocyte antigens (HLAs) and peptides by network analysis. BMC Bioinformatics 2015; 16 Suppl 13:S9. [PMID: 26424483 PMCID: PMC4597169 DOI: 10.1186/1471-2105-16-s13-s9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND As the major histocompatibility complex (MHC), human leukocyte antigens (HLAs) are one of the most polymorphic genes in humans. Patients carrying certain HLA alleles may develop adverse drug reactions (ADRs) after taking specific drugs. Peptides play an important role in HLA related ADRs as they are the necessary co-binders of HLAs with drugs. Many experimental data have been generated for understanding HLA-peptide binding. However, efficiently utilizing the data for understanding and accurately predicting HLA-peptide binding is challenging. Therefore, we developed a network analysis based method to understand and predict HLA-peptide binding. METHODS Qualitative Class I HLA-peptide binding data were harvested and prepared from four major databases. An HLA-peptide binding network was constructed from this dataset and modules were identified by the fast greedy modularity optimization algorithm. To examine the significance of signals in the yielded models, the modularity was compared with the modularity values generated from 1,000 random networks. The peptides and HLAs in the modules were characterized by similarity analysis. The neighbor-edges based and unbiased leverage algorithm (Nebula) was developed for predicting HLA-peptide binding. Leave-one-out (LOO) validations and two-fold cross-validations were conducted to evaluate the performance of Nebula using the constructed HLA-peptide binding network. RESULTS Nine modules were identified from analyzing the HLA-peptide binding network with a highest modularity compared to all the random networks. Peptide length and functional side chains of amino acids at certain positions of the peptides were different among the modules. HLA sequences were module dependent to some extent. Nebula archived an overall prediction accuracy of 0.816 in the LOO validations and average accuracy of 0.795 in the two-fold cross-validations and outperformed the method reported in the literature. CONCLUSIONS Network analysis is a useful approach for analyzing large and sparse datasets such as the HLA-peptide binding dataset. The modules identified from the network analysis clustered peptides and HLAs with similar sequences and properties of amino acids. Nebula performed well in the predictions of HLA-peptide binding. We demonstrated that network analysis coupled with Nebula is an efficient approach to understand and predict HLA-peptide binding interactions and thus, could further our understanding of ADRs.
Collapse
|
63
|
Schrijvers R, Gilissen L, Chiriac AM, Demoly P. Pathogenesis and diagnosis of delayed-type drug hypersensitivity reactions, from bedside to bench and back. Clin Transl Allergy 2015; 5:31. [PMID: 26339470 PMCID: PMC4558726 DOI: 10.1186/s13601-015-0073-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 07/29/2015] [Indexed: 01/11/2023] Open
Abstract
Drug hypersensitivity reactions (DHR) have been present since the advent of drugs. In particular T-cell mediated delayed-type hypersensitivity reactions represent a heterogeneous clinical entity with a diverse pathogenesis and result in a considerable burden of morbidity and mortality not only driven by the reactions themselves but also by the use of alternatives which are sometimes less effective or even more dangerous. Diagnostic procedures rely on clinical history, skin testing and potential provocation testing, whereas validated in vitro diagnostic procedures are still lacking for most of them. Recent work in the field of pharmacogenomics combined with basic scientific research has provided insights in the pathogenesis of abacavir and carbamazepine hypersensitivities linked with certain human leucocyte antigen risk alleles. Nevertheless, important scientific questions on how other DHR arise and how host-drug interactions occur, remain unanswered. Recent work indicates an intricate relation between host, drug and pathogens in severe cutaneous and systemic reactions and provides more insights in the role of regulatory T-cells and viral reactivation in these reactions. In this review we focus on type IV delayed-type DHR, and address recent advances in the pathogenesis, pharmacogenomics, and diagnosis of these reactions with an emphasis on the understandings arising from basic research.
Collapse
Affiliation(s)
- Rik Schrijvers
- Laboratory of Clinical Immunology, KU Leuven, Leuven, Belgium ; Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Liesbeth Gilissen
- Department of Dermatology, University Hospitals Leuven, Leuven, Belgium
| | - Anca Mirela Chiriac
- Exploration des Allergies, Département de Pneumologie et Addictologie, Hôpital Arnaud de Villeneuve, University Hospital of Montpellier, Paris, France ; Sorbonne Universités, UPMC Paris 06, UMR-S 1136, IPLESP, Equipe EPAR, 75013 Paris, France
| | - Pascal Demoly
- Exploration des Allergies, Département de Pneumologie et Addictologie, Hôpital Arnaud de Villeneuve, University Hospital of Montpellier, Paris, France ; Sorbonne Universités, UPMC Paris 06, UMR-S 1136, IPLESP, Equipe EPAR, 75013 Paris, France
| |
Collapse
|
64
|
Parham LR, Briley LP, King KS, Byrne J, Rappold E, Goss PE, Spraggs CF. Rash in lapatinib-treated patients is not associated with human leukocyte antigen polymorphisms. Pharmacogenomics 2015; 16:1227-9. [PMID: 26265235 DOI: 10.2217/pgs.15.69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rash is a common side effect of lapatinib treatment. Since human leukocyte antigen (HLA) alleles have been implicated in multiple drug-induced cutaneous reactions, this study investigated the association of HLA alleles with lapatinib-induced rash. 1191 participants from a large lapatinib monotherapy trial underwent HLA genotyping, and allele carriage frequencies between rash cases and controls were compared. This analysis had adequate power to detect an association of common HLA alleles with rash, similar to those reported previously. No HLA alleles were significantly associated with lapatinib-induced rash, including the previously identified lapatinib hepatotoxicity biomarker HLA-DRB1*07:01 (p = 0.87). The present study is consistent with the view that lapatinib-induced rash is not the consequence of HLA-restricted, immune-mediated mechanisms.
Collapse
Affiliation(s)
- Laura R Parham
- PAREXEL International, Research Triangle Park, NC, USA (previously employed by GlaxoSmithKline; work performed on this publication done while employed by GlaxoSmithKline)
| | - Linda P Briley
- PAREXEL International, Research Triangle Park, NC, USA (previously employed by GlaxoSmithKline; work performed on this publication done while employed by GlaxoSmithKline)
| | - Karen S King
- PAREXEL International, Research Triangle Park, NC, USA (previously employed by GlaxoSmithKline; work performed on this publication done while employed by GlaxoSmithKline)
| | - Julie Byrne
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA (previously employed by GlaxoSmithKline; work performed on this publication done while employed by GlaxoSmithKline)
| | - Erica Rappold
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA (previously employed by GlaxoSmithKline; work performed on this publication done while employed by GlaxoSmithKline)
| | - Paul E Goss
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Colin F Spraggs
- GlaxoSmithKline Research & Development, Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| |
Collapse
|
65
|
Kim SH, Naisbitt DJ. Update on Advances in Research on Idiosyncratic Drug-Induced Liver Injury. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 8:3-11. [PMID: 26540496 PMCID: PMC4695405 DOI: 10.4168/aair.2016.8.1.3] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 04/13/2015] [Indexed: 12/12/2022]
Abstract
Drug-induced liver injury (DILI) is a major concern for public health, as well as for drug development in the pharmaceutical industry, since it can cause liver failure and lead to drug withdrawal from the market and black box warnings. Thus, it is important to identify biomarkers for early prediction to increase our understanding of mechanisms underlying DILI that will ultimately aid in the exploration of novel therapeutic strategies to prevent or manage DILI. DILI can be subdivided into 'intrinsic' and 'idiosyncratic' categories, although the validity of this classification remains controversial. Idiosyncratic DILI occurs in a minority of susceptible individuals with a prolonged latency, while intrinsic DILI results from drug-induced direct hepatotoxicity over the course of a few days. The rare occurrence of idiosyncratic DILI requires multicenter collaborative investigations and phenotype standardization. Recent progress in research on idiosyncratic DILI is based on key developments in 3 areas: (1) newly developed high-throughput genotyping across the whole genome allowing for the identification of genetic susceptibility markers, (2) new mechanistic concepts on the pathogenesis of DILI revealing a key role of drug-responsive T lymphocytes in the immunological response, and (3) broad multidisciplinary approaches using different platform "-omics" technologies that have identified novel biomarkers for the prediction of DILI. An association of a specific human leukocyte antigen (HLA) allele with DILI has been reported for several drugs. HLA-restricted T-cell immune responses have also been investigated using lymphocytes and T-cell clones isolated from patients. A microRNA, miR-122, has been discovered as a promising biomarker for the early prediction of DILI. In this review, we summarize recent advances in research on idiosyncratic DILI with an understanding of the key role of adaptive immune systems.
Collapse
Affiliation(s)
- Seung Hyun Kim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Dean J Naisbitt
- MRC Centre for Drug Safety Science, Department of Clinical and Molecular Pharmacology, Sherrington Building, Ashton Street, The University of Liverpool, Liverpool, L69 3 GE, England.
| |
Collapse
|
66
|
Khoury T, Rmeileh AA, Yosha L, Benson AA, Daher S, Mizrahi M. Drug Induced Liver Injury: Review with a Focus on Genetic Factors, Tissue Diagnosis, and Treatment Options. J Clin Transl Hepatol 2015; 3:99-108. [PMID: 26356634 PMCID: PMC4548351 DOI: 10.14218/jcth.2015.00007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 04/25/2015] [Accepted: 04/28/2015] [Indexed: 12/11/2022] Open
Abstract
Drug-induced liver injury (DILI) is a rare but potentially life threatening adverse drug reaction. DILI may mimic any morphologic characteristic of acute or chronic liver disease, and the histopathologic features of DILI may be indistinguishable from those of other causes of liver injury, such as acute viral hepatitis. In this review article, we provide an update on causative agents, clinical features, pathogenesis, diagnosis modalities, and outcomes of DILI. In addition, we review results of recently reported genetic studies and updates on pharmacological and invasive treatments.
Collapse
Affiliation(s)
- Tawfik Khoury
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- These authors contributed equally to this work
| | - Ayman Abu Rmeileh
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
- These authors contributed equally to this work
| | - Liron Yosha
- Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ariel A. Benson
- Department of Gastroenterology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Saleh Daher
- Department of Gastroenterology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Meir Mizrahi
- Center for Advanced Endoscopy, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Correspondence to: Meir Mizrahi, Center for Advanced Endoscopy, Harvard Medical School, Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA 02215, USA. Tel: +1-617-6672135, Fax: +1-617-6671728, E-mail:
| |
Collapse
|
67
|
Keller DA, Brennan RJ, Leach KL. Clinical and Nonclinical Adverse Effects of Kinase Inhibitors. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2015. [DOI: 10.1002/9783527673643.ch16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
68
|
He Y, Hoskins JM, Clark S, Campbell NH, Wagner K, Motsinger-Reif AA, McLeod HL. Accuracy of SNPs to predict risk of HLA alleles associated with drug-induced hypersensitivity events across racial groups. Pharmacogenomics 2015; 16:817-24. [PMID: 26083016 DOI: 10.2217/pgs.15.41] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To evaluate the potential usefulness of selected SNPs to predict specific HLA alleles that are associated with drug-induced hypersensitivity reactions (HSR) in different ethnic groups. METHODS & RESULTS Five specific HLA alleles known to predict HSR were tagged by seven SNPs (rs1061235-HLA-A*31:01; rs2395029-HLA-B*57:01; rs3909184-HLA-B*15:02; rs9469003-HLA-B*58:01; rs3117583-HLA-B*58:01; rs9270986-HLA-DQA1*01:02 and rs3129900-HLA-DQA1*01:02). DNA from 24 African-Americans, 56 Asian, 44 Caucasians and 36 Hispanics of known high resolution HLA-A, B and DQA1 status were genotyped for tagSNPs using TaqMan. Sensitivity and specificity were considered the primary end points and were 100% across the four populations for rs2395029-HLA-B*57:01. SNP prediction of HLA-A*31:01 had 100% sensitivity and 84% specificity. CONCLUSION This study demonstrates the utility of SNP tagging as a 'real time' approach to predict or exclude the presence of specific HLA alleles of known importance to HSR across diverse ethnic groups. Original submitted 24 April 2014; Revision submitted 2 April 2015.
Collapse
Affiliation(s)
- Yijing He
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, PR China.,UNC Institute for Pharmacogenomics & Individualized Therapy, University of North Carolina, Chapel Hill, NC, USA.,Pharmacogenetics for Every Nation Initiative, Chapel Hill, NC, USA.,Moffitt Cancer Center, DeBartolo Family Personalized Medicine Institute, Tampa, FL, USA
| | | | - Scott Clark
- Gentris Corporation, 133 Southcenter Ct, Morrisville, NC 27560, USA
| | | | - Kim Wagner
- Gentris Corporation, 133 Southcenter Ct, Morrisville, NC 27560, USA
| | - Alison A Motsinger-Reif
- UNC Institute for Pharmacogenomics & Individualized Therapy, University of North Carolina, Chapel Hill, NC, USA.,Pharmacogenetics for Every Nation Initiative, Chapel Hill, NC, USA.,Bioinformatics Research Center, Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA
| | - Howard L McLeod
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, PR China.,UNC Institute for Pharmacogenomics & Individualized Therapy, University of North Carolina, Chapel Hill, NC, USA.,Pharmacogenetics for Every Nation Initiative, Chapel Hill, NC, USA.,Moffitt Cancer Center, DeBartolo Family Personalized Medicine Institute, Tampa, FL, USA
| |
Collapse
|
69
|
Parham LR, Briley LP, Li L, Shen J, Newcombe PJ, King KS, Slater AJ, Dilthey A, Iqbal Z, McVean G, Cox CJ, Nelson MR, Spraggs CF. Comprehensive genome-wide evaluation of lapatinib-induced liver injury yields a single genetic signal centered on known risk allele HLA-DRB1*07:01. THE PHARMACOGENOMICS JOURNAL 2015; 16:180-5. [PMID: 25987243 PMCID: PMC4819766 DOI: 10.1038/tpj.2015.40] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/13/2015] [Accepted: 03/26/2015] [Indexed: 01/11/2023]
Abstract
Lapatinib is associated with a low incidence of serious liver injury. Previous investigations have identified and confirmed the Class II allele HLA-DRB1*07:01 to be strongly associated with lapatinib-induced liver injury; however, the moderate positive predictive value limits its clinical utility. To assess whether additional genetic variants located within the major histocompatibility complex locus or elsewhere in the genome may influence lapatinib-induced liver injury risk, and potentially lead to a genetic association with improved predictive qualities, we have taken two approaches: a genome-wide association study and a whole-genome sequencing study. This evaluation did not reveal additional associations other than the previously identified association for HLA-DRB1*07:01. The present study represents the most comprehensive genetic evaluation of drug-induced liver injury (DILI) or hypersensitivity, and suggests that investigation of possible human leukocyte antigen associations with DILI and other hypersensitivities represents an important first step in understanding the mechanism of these events.
Collapse
Affiliation(s)
- L R Parham
- GlaxoSmithKline Research & Development, Research Triangle Park, NC, USA
| | - L P Briley
- GlaxoSmithKline Research & Development, Research Triangle Park, NC, USA
| | - L Li
- GlaxoSmithKline Research & Development, Research Triangle Park, NC, USA
| | - J Shen
- GlaxoSmithKline Research & Development, Research Triangle Park, NC, USA
| | - P J Newcombe
- GlaxoSmithKline Research & Development, Stevenage, UK
| | - K S King
- GlaxoSmithKline Research & Development, Research Triangle Park, NC, USA
| | - A J Slater
- GlaxoSmithKline Research & Development, Research Triangle Park, NC, USA
| | - A Dilthey
- Department of Statistics, University of Oxford, Oxford, UK
| | - Z Iqbal
- Department of Statistics, University of Oxford, Oxford, UK
| | - G McVean
- Department of Statistics, University of Oxford, Oxford, UK
| | - C J Cox
- GlaxoSmithKline Research & Development, Stevenage, UK
| | - M R Nelson
- GlaxoSmithKline Research & Development, Research Triangle Park, NC, USA
| | - C F Spraggs
- GlaxoSmithKline Research & Development, Stevenage, UK
| |
Collapse
|
70
|
Oxypurinol-Specific T Cells Possess Preferential TCR Clonotypes and Express Granulysin in Allopurinol-Induced Severe Cutaneous Adverse Reactions. J Invest Dermatol 2015; 135:2237-2248. [PMID: 25946710 DOI: 10.1038/jid.2015.165] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 04/15/2015] [Accepted: 04/20/2015] [Indexed: 12/22/2022]
Abstract
Allopurinol, a first-line drug for treating gout and hyperuricemia, is one of the leading causes of severe cutaneous adverse reactions (SCARs). To investigate the molecular mechanism of allopurinol-induced SCAR, we enrolled 21 patients (13 Stevens-Johnson syndrome (SJS)/toxic epidermal necrolysis (TEN) and 8 drug reaction with eosinophilia and systemic symptoms (DRESS)), 11 tolerant controls, and 23 healthy donors. We performed in vitro T-cell activation assays by culturing peripheral blood mononuclear cells (PBMCs) with allopurinol, oxypurinol, or febuxostat and measuring the expression of granulysin and IFN-γ in the supernatants of cultures. TCR repertoire was investigated by next-generation sequencing. Oxypurinol stimulation resulted in a significant increase in granulysin in the cultures of blood samples from SCAR patients (n=14) but not tolerant controls (n=11) or healthy donors (n=23). Oxypurinol induced T-cell response in a concentration- and time-dependent manner, whereas allopurinol or febuxostat did not. T cells from patients with allopurinol-SCAR showed no crossreactivity with febuxostat. Preferential TCR-V-β usage and clonal expansion of specific CDR3 (third complementarity-determining region) were found in the blister cells from skin lesions (n=8) and oxypurinol-activated T-cell cultures (n=4) from patients with allopurinol-SCAR. These data suggest that, in addition to HLA-B*58:01, clonotype-specific T cells expressing granulysin upon oxypurinol induction participate in the pathogenesis of allopurinol-induced SCAR.
Collapse
|
71
|
da Silva FP, Preuhs Filho G, Finger E, Barbeiro HV, Zampieri FG, Goulart AC, Torggler Filho F, Panajotopoulos N, Velasco IT, Kalil J, de Souza HP, da Cruz Neto LM, Rodrigues H. HLA-A*31 as a marker of genetic susceptibility to sepsis. Rev Bras Ter Intensiva 2015; 25:284-9. [PMID: 24553509 PMCID: PMC4031872 DOI: 10.5935/0103-507x.20130049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 10/31/2013] [Indexed: 12/04/2022] Open
Abstract
Objective The HLA haplotype has been associated with many autoimmune diseases, but no
associations have been described in sepsis. This study aims to investigate the HLA
system as a possible marker of genetic sepsis susceptibility. Methods This is a prospective cohort study including patients admitted to an intensive
care unit and healthy controls from a list of renal transplant donors. Patients
with less 18 years of age; pregnant or HIV positive patients; those with
metastatic malignancies or receiving chemotherapy; or with advanced liver disease;
or with end-of-life conditions were excluded. The DNA was extracted from the whole
blood and HLA haplotypes determined using MiliPlex®
technology. Results From October 2010 to October 2012, 1,121 patients were included (1,078 kidney
donors, 20 patients admitted with severe sepsis and 23 with septic shock).
HLA-A*31 positive subjects had increased risk of developing sepsis (OR 2.36, 95%CI
1.26-5.35). Considering a p value <0.01, no other significant association was
identified. Conclusion HLA-A*31 expression is associated to risk of developing sepsis.
Collapse
Affiliation(s)
- Fabiano Pinheiro da Silva
- Universidade de São Paulo, Departamento de Emergências Clínicas, São PauloSP, Brasil, Departamento de Emergências Clínicas, Universidade de São Paulo - USP - São Paulo (SP), Brasil
| | - Germano Preuhs Filho
- Universidade de São Paulo, Instituto do Coração, Departamento de Imunologia, São PauloSP, Brasil, Departamento de Imunologia, Instituto do Coração, Universidade de São Paulo - USP - São Paulo (SP), Brasil
| | - Eduardo Finger
- Laboratórios Salomão Zoppi, São PauloSP, Brasil, Laboratórios Salomão Zoppi - São Paulo (SP), Brasil
| | - Hermes Vieira Barbeiro
- Universidade de São Paulo, Departamento de Emergências Clínicas, São PauloSP, Brasil, Departamento de Emergências Clínicas, Universidade de São Paulo - USP - São Paulo (SP), Brasil
| | - Fernando Godinho Zampieri
- Universidade de São Paulo, Departamento de Emergências Clínicas, São PauloSP, Brasil, Departamento de Emergências Clínicas, Universidade de São Paulo - USP - São Paulo (SP), Brasil
| | - Alessandra Carvalho Goulart
- Universidade de São Paulo, Departamento de Emergências Clínicas, São PauloSP, Brasil, Departamento de Emergências Clínicas, Universidade de São Paulo - USP - São Paulo (SP), Brasil
| | - Francisco Torggler Filho
- Universidade de São Paulo, Departamento de Emergências Clínicas, São PauloSP, Brasil, Departamento de Emergências Clínicas, Universidade de São Paulo - USP - São Paulo (SP), Brasil
| | - Nicolas Panajotopoulos
- Universidade de São Paulo, Instituto do Coração, Departamento de Imunologia, São PauloSP, Brasil, Departamento de Imunologia, Instituto do Coração, Universidade de São Paulo - USP - São Paulo (SP), Brasil
| | - Irineu Tadeu Velasco
- Universidade de São Paulo, Departamento de Emergências Clínicas, São PauloSP, Brasil, Departamento de Emergências Clínicas, Universidade de São Paulo - USP - São Paulo (SP), Brasil
| | - Jorge Kalil
- Universidade de São Paulo, Instituto do Coração, Departamento de Imunologia, São PauloSP, Brasil, Departamento de Imunologia, Instituto do Coração, Universidade de São Paulo - USP - São Paulo (SP), Brasil
| | - Heraldo Possolo de Souza
- Universidade de São Paulo, Departamento de Emergências Clínicas, São PauloSP, Brasil, Departamento de Emergências Clínicas, Universidade de São Paulo - USP - São Paulo (SP), Brasil
| | - Luiz Monteiro da Cruz Neto
- Universidade de São Paulo, Departamento de Emergências Clínicas, São PauloSP, Brasil, Departamento de Emergências Clínicas, Universidade de São Paulo - USP - São Paulo (SP), Brasil
| | - Hélcio Rodrigues
- Universidade de São Paulo, Instituto do Coração, Departamento de Imunologia, São PauloSP, Brasil, Departamento de Imunologia, Instituto do Coração, Universidade de São Paulo - USP - São Paulo (SP), Brasil
| |
Collapse
|
72
|
|
73
|
Miles JJ, McCluskey J, Rossjohn J, Gras S. Understanding the complexity and malleability of T-cell recognition. Immunol Cell Biol 2015; 93:433-41. [PMID: 25582337 DOI: 10.1038/icb.2014.112] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/21/2014] [Accepted: 11/23/2014] [Indexed: 12/15/2022]
Abstract
T cells are the master regulators of immune system function, continually walking the biological tightrope between adequate host defence and accidental host pathology. Tolerance is maintained or broken through an intricate structural interplay between the T-cell receptor (TCR) and major histocompatibility complex (MHC) molecule cradling peptide antigens (p). Recent advances in structural biology have shown that the TCR/pMHC interface is surprising precise and extraordinarily malleable. We have seen that seemingly minor changes in the TCR/pMHC interface can abrogate function, as well as substantial conformational changes before and after TCR docking. Our understanding of T-cell biology has also been altered with the knowledge that MHC molecules can bind not only peptides, but also an array of natural and synthetic compounds. Here, we review some examples of the precision and flexibility intrinsic to the TCR/p/MHCI axis.
Collapse
Affiliation(s)
- John J Miles
- 1] QIMR Berghofer Medical Research Institute and QIMR Berghofer Centre for Immunotherapy and Vaccine Development, Brisbane, Queensland, Australia [2] School of Medicine, The University of Queensland, Brisbane, Queensland, Australia [3] Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, UK
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Jamie Rossjohn
- 1] Institute of Infection and Immunity, Cardiff University School of Medicine, Cardiff, Wales, UK [2] Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia [3] ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Stephanie Gras
- 1] Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, Australia [2] ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
74
|
Germline oncopharmacogenetics, a promising field in cancer therapy. Cell Oncol (Dordr) 2015; 38:65-89. [PMID: 25573079 DOI: 10.1007/s13402-014-0214-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2014] [Indexed: 12/14/2022] Open
Abstract
Pharmacogenetics (PGx) is the study of the relationship between inter-individual genetic variation and drug responses. Germline variants of genes involved in drug metabolism, drug transport, and drug targets can affect individual response to medications. Cancer therapies are characterized by an intrinsically high toxicity; therefore, the application of pharmacogenetics to cancer patients is a particularly promising method for avoiding the use of inefficacious drugs and preventing the associated adverse effects. However, despite continuing efforts in this field, very few labels include information about germline genetic variants associated with drug responses. DPYD, TPMT, UGT1A1, G6PD, CYP2D6, and HLA are the sole loci for which the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA) report specific information. This review highlights the germline PGx variants that have been approved to date for anticancer treatments, and also provides some insights about other germline variants with potential clinical applications. The continuous and rapid evolution of next-generation sequencing applications, together with the development of computational methods, should help to refine the implementation of personalized medicine. One day, clinicians may be able to prescribe the best treatment and the correct drug dosage based on each patient's genotype. This approach would improve treatment efficacy, reduce toxicity, and predict non-responders, thereby decreasing chemotherapy-associated morbidity and improving health benefits.
Collapse
|
75
|
Grove JI, Aithal GP. Human leukocyte antigen genetic risk factors of drug-induced liver toxicology. Expert Opin Drug Metab Toxicol 2014; 11:395-409. [PMID: 25491399 DOI: 10.1517/17425255.2015.992414] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Drug-induced liver injury (DILI) is a rare adverse drug reaction, which impacts significantly on patients. Human leukocyte antigen (HLA) risk alleles have been found to be associated with DILI supporting an immunological basis to DILI pathogenesis. AREAS COVERED HLA alleles associated with risk of liver injury induced by specific therapeutic drugs are described. The evidence for a role of the adaptive immune system in DILI is presented; case-control studies showing an association between DILI and HLA alleles are reviewed. Clinical applications of pharmacogenomics are considered. EXPERT OPINION Increasing evidence points to a crucial role for the adaptive immune system in the pathogenesis of DILI. Identification of specific HLA alleles as risk factors through large genome-wide association studies has been instrumental in this and in vitro analyses have facilitated improved understanding of the molecular mechanisms. This provides the basis for developing clinical pharmacogenomic applications. Already, genotyping for hypersensitivity HLA risk alleles has been implemented and opportunities for pre-prescription testing in DILI identified. However, although associations are strong, the rarity of DILI means routine testing has not been formally evaluated. Nevertheless, enhanced understanding of how HLA alleles contribute to injury risk is valuable for drug development. Translation of this research into effective pre-emption and primary prevention remains the goal.
Collapse
Affiliation(s)
- Jane I Grove
- Nottingham University Hospitals NHS Trust and University of Nottingham, NIHR Nottingham Digestive Diseases Biomedical Research Unit , Nottingham, NG7 2UH , UK +01159249924 Ext: 63822 ; +01159709012 ;
| | | |
Collapse
|
76
|
Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI, McCluskey J. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol 2014; 33:169-200. [PMID: 25493333 DOI: 10.1146/annurev-immunol-032414-112334] [Citation(s) in RCA: 554] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Major Histocompatibility Complex (MHC) locus encodes classical MHC class I and MHC class II molecules and nonclassical MHC-I molecules. The architecture of these molecules is ideally suited to capture and present an array of peptide antigens (Ags). In addition, the CD1 family members and MR1 are MHC class I-like molecules that bind lipid-based Ags and vitamin B precursors, respectively. These Ag-bound molecules are subsequently recognized by T cell antigen receptors (TCRs) expressed on the surface of T lymphocytes. Structural and associated functional studies have been highly informative in providing insight into these interactions, which are crucial to immunity, and how they can lead to aberrant T cell reactivity. Investigators have determined over thirty unique TCR-peptide-MHC-I complex structures and twenty unique TCR-peptide-MHC-II complex structures. These investigations have shown a broad consensus in docking geometry and provided insight into MHC restriction. Structural studies on TCR-mediated recognition of lipid and metabolite Ags have been mostly confined to TCRs from innate-like natural killer T cells and mucosal-associated invariant T cells, respectively. These studies revealed clear differences between TCR-lipid-CD1, TCR-metabolite-MR1, and TCR-peptide-MHC recognition. Accordingly, TCRs show remarkable structural and biological versatility in engaging different classes of Ag that are presented by polymorphic and monomorphic Ag-presenting molecules of the immune system.
Collapse
Affiliation(s)
- Jamie Rossjohn
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia; ,
| | | | | | | | | | | |
Collapse
|
77
|
Understanding the structural dynamics of TCR-pMHC interactions. Trends Immunol 2014; 35:604-612. [DOI: 10.1016/j.it.2014.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/20/2014] [Accepted: 10/20/2014] [Indexed: 12/23/2022]
|
78
|
Yang C, Wang C, Zhang S, Huang J, Zhou P. Structural and energetic insights into the intermolecular interaction among human leukocyte antigens, clinical hypersensitive drugs and antigenic peptides. MOLECULAR SIMULATION 2014. [DOI: 10.1080/08927022.2014.929127] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
79
|
Pirmohamed M. Personalized pharmacogenomics: predicting efficacy and adverse drug reactions. Annu Rev Genomics Hum Genet 2014; 15:349-70. [PMID: 24898040 DOI: 10.1146/annurev-genom-090413-025419] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Drug response varies between individuals owing to disease heterogeneity, environmental factors, and genetic factors. Genetic factors can affect both the pharmacokinetics and pharmacodynamics of a drug, leading to changes in local and systemic drug exposure and/or changes in the function of the drug target, altering drug response. Several pharmacogenetic biomarkers are already utilized in clinical practice and have been shown to improve clinical outcomes. However, a large number of other biomarkers have never made it beyond the discovery stage. Concerted effort is needed to improve the translation of pharmacogenetic biomarkers into clinical practice, and this will involve the use of standardized phenotyping and genotyping strategies, collaborative work, multidisciplinary approaches to identifying and replicating associations, and cooperation with industry to facilitate translation and commercialization. Acceptance of these approaches by clinicians, regulators, patients, and the public will be important in determining future success.
Collapse
Affiliation(s)
- Munir Pirmohamed
- Wolfson Centre for Personalised Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GL, United Kingdom;
| |
Collapse
|
80
|
Fontana RJ. Pathogenesis of idiosyncratic drug-induced liver injury and clinical perspectives. Gastroenterology 2014; 146:914-28. [PMID: 24389305 PMCID: PMC4031195 DOI: 10.1053/j.gastro.2013.12.032] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 12/03/2013] [Accepted: 12/11/2013] [Indexed: 12/13/2022]
Abstract
Idiosyncratic drug-induced liver injury (DILI) is a rare disease that develops independently of drug dose, route, or duration of administration. Furthermore, idiosyncratic DILI is not a single disease entity but rather a spectrum of rare diseases with varying clinical, histological, and laboratory features. The pathogenesis of DILI is not fully understood. Standardization of the DILI nomenclature and methods to assess causality, along with the information provided by the LiverTox Web site, will harmonize and accelerate research on DILI. Studies of new serum biomarkers such as glutamate dehydrogenase, high mobility group box protein 1, and microRNA-122 could provide information for use in diagnosis and prognosis and provide important insights into the mechanisms of the pathogenesis of DILI. Single nucleotide polymorphisms in the HLA region have been associated with idiosyncratic hepatotoxicity attributed to flucloxacillin, ximelagatran, lapatinib, and amoxicillin-clavulanate. However, genome-wide association studies of pooled cases have not associated any genetic factors with idiosyncratic DILI. Whole genome and whole exome sequencing analyses are under way to study cases of DILI attributed to a single medication. Serum proteomic, transcriptome, and metabolome as well as intestinal microbiome analyses will increase our understanding of the mechanisms of this disorder. Further improvements to in vitro and in vivo test systems should advance our understanding of the causes, risk factors, and mechanisms of idiosyncratic DILI.
Collapse
|
81
|
Schaid DJ, Spraggs CF, McDonnell SK, Parham LR, Cox CJ, Ejlertsen B, Finkelstein DM, Rappold E, Curran J, Cardon LR, Goss PE. Prospective validation of HLA-DRB1*07:01 allele carriage as a predictive risk factor for lapatinib-induced liver injury. J Clin Oncol 2014; 32:2296-303. [PMID: 24687830 DOI: 10.1200/jco.2013.52.9867] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Liver injury is a serious adverse event leading to permanent discontinuation of lapatinib in affected patients. This study aimed to validate previously associated major histocompatibility complex (MHC) variants as predictors of risk of liver injury by using a large, randomized, placebo-controlled trial of lapatinib in human epidermal growth factor receptor 2-positive, early-stage breast cancer (Tykerb Evaluation After Chemotherapy [TEACH]: Lapatinib Versus Placebo In Women With Early-Stage Breast Cancer). PATIENTS AND METHODS The frequency of ALT elevation cases was compared among four MHC variants in 1,194 patients randomly assigned to lapatinib. Cumulative ALT elevation time courses during treatment were also compared between carriers and noncarriers of specified MHC variants. RESULTS In lapatinib-treated patients, there was a significant difference in ALT case incidence between HLA carriers and noncarriers. The highly correlated alleles HLA-DRB1*07:01 and HLA-DQA1*02:01 (study frequency, 22.4%) were associated with ALT elevation (odds ratio, 14) between cases (n = 37) and controls (n = 1,071). These associations strengthened at higher ALT elevation thresholds and in Hy's Law cases. In lapatinib-treated patients, the overall risk for National Cancer Institute-Common Terminology Criteria for Adverse Events grade 3 ALT elevation (> 5× upper limit of normal) was 2.1%; HLA allele carriers had an increased risk of 7.7%; in noncarriers, risk was reduced to 0.5%, comparable to ALT elevation for all patients receiving placebo. The increase in ALT case incidence in the lapatinib arm showed no evidence of plateau during 1 year of lapatinib treatment. CONCLUSION These results validate HLA-DRB1*07:01 allele carriage as a predictor of increased risk of lapatinib-induced liver injury and implicate an immune pathology. The HLA association could support clinical management of patients experiencing hepatotoxicity during lapatinib treatment.
Collapse
Affiliation(s)
- Daniel J Schaid
- Daniel J. Schaid and Shannon K. McDonnell, Mayo Clinic, Rochester, MN; Colin F. Spraggs and Charles J. Cox, GlaxoSmithKline Research and Development, Stevenage, Hertfordshire; Joan Curran, GlaxoSmithKline Research and Development, London, United Kingdom; Laura R. Parham, GlaxoSmithKline Research and Development, Research Triangle Park, NC; Bent Ejlertsen, Rigshospitalet, Copenhagen, Denmark; Dianne M. Finkelstein and Paul E. Goss, Massachusetts General Hospital, Boston, MA; and Erica Rappold and Lon R. Cardon, GlaxoSmithKline Research and Development, Philadelphia, PA
| | - Colin F Spraggs
- Daniel J. Schaid and Shannon K. McDonnell, Mayo Clinic, Rochester, MN; Colin F. Spraggs and Charles J. Cox, GlaxoSmithKline Research and Development, Stevenage, Hertfordshire; Joan Curran, GlaxoSmithKline Research and Development, London, United Kingdom; Laura R. Parham, GlaxoSmithKline Research and Development, Research Triangle Park, NC; Bent Ejlertsen, Rigshospitalet, Copenhagen, Denmark; Dianne M. Finkelstein and Paul E. Goss, Massachusetts General Hospital, Boston, MA; and Erica Rappold and Lon R. Cardon, GlaxoSmithKline Research and Development, Philadelphia, PA.
| | - Shannon K McDonnell
- Daniel J. Schaid and Shannon K. McDonnell, Mayo Clinic, Rochester, MN; Colin F. Spraggs and Charles J. Cox, GlaxoSmithKline Research and Development, Stevenage, Hertfordshire; Joan Curran, GlaxoSmithKline Research and Development, London, United Kingdom; Laura R. Parham, GlaxoSmithKline Research and Development, Research Triangle Park, NC; Bent Ejlertsen, Rigshospitalet, Copenhagen, Denmark; Dianne M. Finkelstein and Paul E. Goss, Massachusetts General Hospital, Boston, MA; and Erica Rappold and Lon R. Cardon, GlaxoSmithKline Research and Development, Philadelphia, PA
| | - Laura R Parham
- Daniel J. Schaid and Shannon K. McDonnell, Mayo Clinic, Rochester, MN; Colin F. Spraggs and Charles J. Cox, GlaxoSmithKline Research and Development, Stevenage, Hertfordshire; Joan Curran, GlaxoSmithKline Research and Development, London, United Kingdom; Laura R. Parham, GlaxoSmithKline Research and Development, Research Triangle Park, NC; Bent Ejlertsen, Rigshospitalet, Copenhagen, Denmark; Dianne M. Finkelstein and Paul E. Goss, Massachusetts General Hospital, Boston, MA; and Erica Rappold and Lon R. Cardon, GlaxoSmithKline Research and Development, Philadelphia, PA
| | - Charles J Cox
- Daniel J. Schaid and Shannon K. McDonnell, Mayo Clinic, Rochester, MN; Colin F. Spraggs and Charles J. Cox, GlaxoSmithKline Research and Development, Stevenage, Hertfordshire; Joan Curran, GlaxoSmithKline Research and Development, London, United Kingdom; Laura R. Parham, GlaxoSmithKline Research and Development, Research Triangle Park, NC; Bent Ejlertsen, Rigshospitalet, Copenhagen, Denmark; Dianne M. Finkelstein and Paul E. Goss, Massachusetts General Hospital, Boston, MA; and Erica Rappold and Lon R. Cardon, GlaxoSmithKline Research and Development, Philadelphia, PA
| | - Bent Ejlertsen
- Daniel J. Schaid and Shannon K. McDonnell, Mayo Clinic, Rochester, MN; Colin F. Spraggs and Charles J. Cox, GlaxoSmithKline Research and Development, Stevenage, Hertfordshire; Joan Curran, GlaxoSmithKline Research and Development, London, United Kingdom; Laura R. Parham, GlaxoSmithKline Research and Development, Research Triangle Park, NC; Bent Ejlertsen, Rigshospitalet, Copenhagen, Denmark; Dianne M. Finkelstein and Paul E. Goss, Massachusetts General Hospital, Boston, MA; and Erica Rappold and Lon R. Cardon, GlaxoSmithKline Research and Development, Philadelphia, PA
| | - Dianne M Finkelstein
- Daniel J. Schaid and Shannon K. McDonnell, Mayo Clinic, Rochester, MN; Colin F. Spraggs and Charles J. Cox, GlaxoSmithKline Research and Development, Stevenage, Hertfordshire; Joan Curran, GlaxoSmithKline Research and Development, London, United Kingdom; Laura R. Parham, GlaxoSmithKline Research and Development, Research Triangle Park, NC; Bent Ejlertsen, Rigshospitalet, Copenhagen, Denmark; Dianne M. Finkelstein and Paul E. Goss, Massachusetts General Hospital, Boston, MA; and Erica Rappold and Lon R. Cardon, GlaxoSmithKline Research and Development, Philadelphia, PA
| | - Erica Rappold
- Daniel J. Schaid and Shannon K. McDonnell, Mayo Clinic, Rochester, MN; Colin F. Spraggs and Charles J. Cox, GlaxoSmithKline Research and Development, Stevenage, Hertfordshire; Joan Curran, GlaxoSmithKline Research and Development, London, United Kingdom; Laura R. Parham, GlaxoSmithKline Research and Development, Research Triangle Park, NC; Bent Ejlertsen, Rigshospitalet, Copenhagen, Denmark; Dianne M. Finkelstein and Paul E. Goss, Massachusetts General Hospital, Boston, MA; and Erica Rappold and Lon R. Cardon, GlaxoSmithKline Research and Development, Philadelphia, PA
| | - Joan Curran
- Daniel J. Schaid and Shannon K. McDonnell, Mayo Clinic, Rochester, MN; Colin F. Spraggs and Charles J. Cox, GlaxoSmithKline Research and Development, Stevenage, Hertfordshire; Joan Curran, GlaxoSmithKline Research and Development, London, United Kingdom; Laura R. Parham, GlaxoSmithKline Research and Development, Research Triangle Park, NC; Bent Ejlertsen, Rigshospitalet, Copenhagen, Denmark; Dianne M. Finkelstein and Paul E. Goss, Massachusetts General Hospital, Boston, MA; and Erica Rappold and Lon R. Cardon, GlaxoSmithKline Research and Development, Philadelphia, PA
| | - Lon R Cardon
- Daniel J. Schaid and Shannon K. McDonnell, Mayo Clinic, Rochester, MN; Colin F. Spraggs and Charles J. Cox, GlaxoSmithKline Research and Development, Stevenage, Hertfordshire; Joan Curran, GlaxoSmithKline Research and Development, London, United Kingdom; Laura R. Parham, GlaxoSmithKline Research and Development, Research Triangle Park, NC; Bent Ejlertsen, Rigshospitalet, Copenhagen, Denmark; Dianne M. Finkelstein and Paul E. Goss, Massachusetts General Hospital, Boston, MA; and Erica Rappold and Lon R. Cardon, GlaxoSmithKline Research and Development, Philadelphia, PA
| | - Paul E Goss
- Daniel J. Schaid and Shannon K. McDonnell, Mayo Clinic, Rochester, MN; Colin F. Spraggs and Charles J. Cox, GlaxoSmithKline Research and Development, Stevenage, Hertfordshire; Joan Curran, GlaxoSmithKline Research and Development, London, United Kingdom; Laura R. Parham, GlaxoSmithKline Research and Development, Research Triangle Park, NC; Bent Ejlertsen, Rigshospitalet, Copenhagen, Denmark; Dianne M. Finkelstein and Paul E. Goss, Massachusetts General Hospital, Boston, MA; and Erica Rappold and Lon R. Cardon, GlaxoSmithKline Research and Development, Philadelphia, PA
| |
Collapse
|
82
|
Dogan H, Akgun M, Araz O, Ucar EY, Yoruk O, Diyarbakir E, Atis O, Akdemir F, Acemoglu H, Pirim I. The association of human leukocyte antigen polymorphisms with disease severity and latency period in patients with silicosis. Multidiscip Respir Med 2014; 9:17. [PMID: 24646632 PMCID: PMC3994697 DOI: 10.1186/2049-6958-9-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/11/2014] [Indexed: 11/14/2022] Open
Abstract
Background Denim sandblasting may cause silicosis as a result of free crystalline silica inhalation. Its pathogenesis remains unclear, but autoimmunity may play a role in the development of silicosis. The present study aimed to investigate the relationships between human leukocyte antigen (HLA) and the severity and latency period of silicosis. Methods 48 silicotic patients in the Eastern part of Turkey were classified according to their latency period and disease severity. The distribution of HLAs according to disease severity and latency period was assessed. Results A23 (7.5%), B49 (7.5%), and B51 (25%) were more common in the mild group than in the severe group, and B55 (8.9%) and DR4 (17.9%) were more common in the severe group than in the mild one. Only B51 was significantly more common in the mild group than in the severe one (25%, n = 10 vs. 7.1%, n = 4; p = 0.016). Conclusions This study suggests that HLA antigens may play a particular role in the severity of silica-induced lung disease, but there was no association between HLA and progression time of the disease.
Collapse
Affiliation(s)
- Hasan Dogan
- Medical Biology Department, Faculty of Medicine, Ataturk University, Erzurum 25240, Turkey.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
Over the past decade, there have been significant advances in our understanding of the immunopathogenesis and pharmacogenomics of severe immunologically-mediated adverse drug reactions. Such T-cell-mediated adverse drug reactions such as Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN), drug-induced liver disease (DILI) and other drug hypersensitivity syndromes have more recently been shown to be mediated through interactions with various class I and II HLA alleles. Key examples have included the associations of HLA-B*15:02 and carbamazepine induced SJS/TEN in Southeast Asian populations and HLA-B*57:01 and abacavir hypersensitivity. HLA-B*57:01 screening to prevent abacavir hypersensitivity exemplifies a successful translational roadmap from pharmacogenomic discovery through to widespread clinical implementation. Ultimately, our increased understanding of the interaction between drugs and the MHC could be used to inform drug design and drive pre-clinical toxicity programs to improve drug safety.
Collapse
Affiliation(s)
- Eric Karlin
- Vanderbilt University School of Medicine, 1161-21 St Avenue South, A-2200 Medical Center North, Nashville, TN, 37232-2582, USA
| | | |
Collapse
|
84
|
Oxidative stress/reactive metabolite gene expression signature in rat liver detects idiosyncratic hepatotoxicants. Toxicol Appl Pharmacol 2014; 275:189-97. [PMID: 24486436 DOI: 10.1016/j.taap.2014.01.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 12/19/2022]
Abstract
Previously we reported a gene expression signature in rat liver for detecting a specific type of oxidative stress (OS) related to reactive metabolites (RM). High doses of the drugs disulfiram, ethinyl estradiol and nimesulide were used with another dozen paradigm OS/RM compounds, and three other drugs flutamide, phenacetin and sulindac were identified by this signature. In a second study, antiepileptic drugs were compared for covalent binding and their effects on OS/RM; felbamate, carbamazepine, and phenobarbital produced robust OS/RM gene expression. In the present study, liver RNA samples from drug-treated rats from more recent experiments were examined for statistical fit to the OS/RM signature. Of all 97 drugs examined, in addition to the nine drugs noted above, 19 more were identified as OS/RM-producing compounds-chlorpromazine, clozapine, cyproterone acetate, dantrolene, dipyridamole, glibenclamide, isoniazid, ketoconazole, methapyrilene, naltrexone, nifedipine, sulfamethoxazole, tamoxifen, coumarin, ritonavir, amitriptyline, valproic acid, enalapril, and chloramphenicol. Importantly, all of the OS/RM drugs listed above have been linked to idiosyncratic hepatotoxicity, excepting chloramphenicol, which does not have a package label for hepatotoxicity, but does have a black box warning for idiosyncratic bone marrow suppression. Most of these drugs are not acutely toxic in the rat. The OS/RM signature should be useful to avoid idiosyncratic hepatotoxicity of drug candidates.
Collapse
|
85
|
Bhati M, Cole DK, McCluskey J, Sewell AK, Rossjohn J. The versatility of the αβ T-cell antigen receptor. Protein Sci 2014; 23:260-72. [PMID: 24375592 DOI: 10.1002/pro.2412] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 12/20/2013] [Accepted: 12/20/2013] [Indexed: 02/06/2023]
Abstract
The T-cell antigen receptor is a heterodimeric αβ protein (TCR) expressed on the surface of T-lymphocytes, with each chain of the TCR comprising three complementarity-determining regions (CDRs) that collectively form the antigen-binding site. Unlike antibodies, which are closely related proteins that recognize intact protein antigens, TCRs classically bind, via their CDR loops, to peptides (p) that are presented by molecules of the major histocompatibility complex (MHC). This TCR-pMHC interaction is crucially important in cell-mediated immunity, with the specificity in the cellular immune response being attributable to MHC polymorphism, an extensive TCR repertoire and a variable peptide cargo. The ensuing structural and biophysical studies within the TCR-pMHC axis have been highly informative in understanding the fundamental events that underpin protective immunity and dysfunctional T-cell responses that occur during autoimmunity. In addition, TCRs can recognize the CD1 family, a family of MHC-related molecules that instead of presenting peptides are ideally suited to bind lipid-based antigens. Structural studies within the CD1-lipid antigen system are beginning to inform us how lipid antigens are specifically presented by CD1, and how such CD1-lipid antigen complexes are recognized by the TCR. Moreover, it has recently been shown that certain TCRs can bind to vitamin B based metabolites that are bound to an MHC-like molecule termed MR1. Thus, TCRs can recognize peptides, lipids, and small molecule metabolites, and here we review the basic principles underpinning this versatile and fascinating receptor recognition system that is vital to a host's survival.
Collapse
Affiliation(s)
- Mugdha Bhati
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | | | | | | | | |
Collapse
|
86
|
Su SC, Chung WH. Cytotoxic proteins and therapeutic targets in severe cutaneous adverse reactions. Toxins (Basel) 2014; 6:194-210. [PMID: 24394640 PMCID: PMC3920257 DOI: 10.3390/toxins6010194] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 12/20/2013] [Accepted: 12/27/2013] [Indexed: 11/16/2022] Open
Abstract
Severe cutaneous adverse reactions (SCARs), such as Stevens-Johnson syndrome (SJS) and toxic epidermal necrosis (TEN), are rare but life-threatening conditions induced mainly by a variety of drugs. Until now, an effective treatment for SJS/TEN still remains unavailable. Current studies have suggested that the pathobiology of drug-mediated SJS and TEN involves major histocompatibility class (MHC) I-restricted activation of cytotoxic T lymphocytes (CTLs) response. This CTLs response requires several cytotoxic signals or mediators, including granulysin, perforin/granzyme B, and Fas/Fas ligand, to trigger extensive keratinocyte death. In this article, we will discuss the cytotoxic mechanisms of severe cutaneous adverse reactions and their potential applications on therapeutics for this disease.
Collapse
Affiliation(s)
- Shih-Chi Su
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospitals, Taipei, Linkou, and Keelung, 33305, Taiwan.
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospitals, Taipei, Linkou, and Keelung, 33305, Taiwan.
| |
Collapse
|
87
|
Scally SW, Petersen J, Law SC, Dudek NL, Nel HJ, Loh KL, Wijeyewickrema LC, Eckle SBG, van Heemst J, Pike RN, McCluskey J, Toes RE, La Gruta NL, Purcell AW, Reid HH, Thomas R, Rossjohn J. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. ACTA ACUST UNITED AC 2013; 210:2569-82. [PMID: 24190431 PMCID: PMC3832918 DOI: 10.1084/jem.20131241] [Citation(s) in RCA: 312] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Rheumatoid arthritis (RA) is strongly associated with the human leukocyte antigen (HLA)-DRB1 locus that possesses the shared susceptibility epitope (SE) and the citrullination of self-antigens. We show how citrullinated aggrecan and vimentin epitopes bind to HLA-DRB1*04:01/04. Citrulline was accommodated within the electropositive P4 pocket of HLA-DRB1*04:01/04, whereas the electronegative P4 pocket of the RA-resistant HLA-DRB1*04:02 allomorph interacted with arginine or citrulline-containing epitopes. Peptide elution studies revealed P4 arginine-containing peptides from HLA-DRB1*04:02, but not from HLA-DRB1*04:01/04. Citrullination altered protease susceptibility of vimentin, thereby generating self-epitopes that are presented to T cells in HLA-DRB1*04:01(+) individuals. Using HLA-II tetramers, we observed citrullinated vimentin- and aggrecan-specific CD4(+) T cells in the peripheral blood of HLA-DRB1*04:01(+) RA-affected and healthy individuals. In RA patients, autoreactive T cell numbers correlated with disease activity and were deficient in regulatory T cells relative to healthy individuals. These findings reshape our understanding of the association between citrullination, the HLA-DRB1 locus, and T cell autoreactivity in RA.
Collapse
Affiliation(s)
- Stephen W Scally
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Gonçalo M, Coutinho I, Teixeira V, Gameiro A, Brites M, Nunes R, Martinho A. HLA-B*58:01is a risk factor for allopurinol-induced DRESS and Stevens-Johnson syndrome/toxic epidermal necrolysis in a Portuguese population. Br J Dermatol 2013; 169:660-5. [DOI: 10.1111/bjd.12389] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2013] [Indexed: 11/28/2022]
Affiliation(s)
| | - I. Coutinho
- Clinic of Dermatology; Coimbra University Hospital; Praceta Mota Pinto; P-3000-075; Coimbra; Portugal
| | - V. Teixeira
- Clinic of Dermatology; Coimbra University Hospital; Praceta Mota Pinto; P-3000-075; Coimbra; Portugal
| | - A.R. Gameiro
- Clinic of Dermatology; Coimbra University Hospital; Praceta Mota Pinto; P-3000-075; Coimbra; Portugal
| | - M.M. Brites
- Clinic of Dermatology; Coimbra University Hospital; Praceta Mota Pinto; P-3000-075; Coimbra; Portugal
| | - R. Nunes
- Molecular Biology Laboratory; Histocompatibility Center of Coimbra; Coimbra; Portugal
| | - A. Martinho
- Molecular Biology Laboratory; Histocompatibility Center of Coimbra; Coimbra; Portugal
| |
Collapse
|
89
|
Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG, Bolleyn J, Borner C, Böttger J, Braeuning A, Budinsky RA, Burkhardt B, Cameron NR, Camussi G, Cho CS, Choi YJ, Craig Rowlands J, Dahmen U, Damm G, Dirsch O, Donato MT, Dong J, Dooley S, Drasdo D, Eakins R, Ferreira KS, Fonsato V, Fraczek J, Gebhardt R, Gibson A, Glanemann M, Goldring CEP, Gómez-Lechón MJ, Groothuis GMM, Gustavsson L, Guyot C, Hallifax D, Hammad S, Hayward A, Häussinger D, Hellerbrand C, Hewitt P, Hoehme S, Holzhütter HG, Houston JB, Hrach J, Ito K, Jaeschke H, Keitel V, Kelm JM, Kevin Park B, Kordes C, Kullak-Ublick GA, LeCluyse EL, Lu P, Luebke-Wheeler J, Lutz A, Maltman DJ, Matz-Soja M, McMullen P, Merfort I, Messner S, Meyer C, Mwinyi J, Naisbitt DJ, Nussler AK, Olinga P, Pampaloni F, Pi J, Pluta L, Przyborski SA, Ramachandran A, Rogiers V, Rowe C, Schelcher C, Schmich K, Schwarz M, Singh B, Stelzer EHK, Stieger B, Stöber R, Sugiyama Y, Tetta C, Thasler WE, Vanhaecke T, Vinken M, Weiss TS, Widera A, Woods CG, Xu JJ, Yarborough KM, Hengstler JG. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 2013; 87:1315-530. [PMID: 23974980 PMCID: PMC3753504 DOI: 10.1007/s00204-013-1078-5] [Citation(s) in RCA: 965] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/06/2013] [Indexed: 12/15/2022]
Abstract
This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.
Collapse
Affiliation(s)
- Patricio Godoy
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | | | - Ute Albrecht
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Melvin E. Andersen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Nariman Ansari
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Sudin Bhattacharya
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Johannes Georg Bode
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Jennifer Bolleyn
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Jan Böttger
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Albert Braeuning
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Robert A. Budinsky
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Britta Burkhardt
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Neil R. Cameron
- Department of Chemistry, Durham University, Durham, DH1 3LE UK
| | - Giovanni Camussi
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Yun-Jaie Choi
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - J. Craig Rowlands
- Toxicology and Environmental Research and Consulting, The Dow Chemical Company, Midland, MI USA
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General Visceral, and Vascular Surgery, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - Georg Damm
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Olaf Dirsch
- Institute of Pathology, Friedrich-Schiller-University Jena, 07745 Jena, Germany
| | - María Teresa Donato
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Jian Dong
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Steven Dooley
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dirk Drasdo
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
- INRIA (French National Institute for Research in Computer Science and Control), Domaine de Voluceau-Rocquencourt, B.P. 105, 78153 Le Chesnay Cedex, France
- UPMC University of Paris 06, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, 4, pl. Jussieu, 75252 Paris cedex 05, France
| | - Rowena Eakins
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Karine Sá Ferreira
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- GRK 1104 From Cells to Organs, Molecular Mechanisms of Organogenesis, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Valentina Fonsato
- Department of Medical Sciences, University of Torino, 10126 Turin, Italy
| | - Joanna Fraczek
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Andrew Gibson
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Matthias Glanemann
- Department of General-, Visceral- and Transplantation Surgery, Charité University Medicine Berlin, 13353 Berlin, Germany
| | - Chris E. P. Goldring
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - María José Gómez-Lechón
- Unidad de Hepatología Experimental, IIS Hospital La Fe Avda Campanar 21, 46009 Valencia, Spain
- CIBERehd, Fondo de Investigaciones Sanitarias, Barcelona, Spain
| | - Geny M. M. Groothuis
- Department of Pharmacy, Pharmacokinetics Toxicology and Targeting, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lena Gustavsson
- Department of Laboratory Medicine (Malmö), Center for Molecular Pathology, Lund University, Jan Waldenströms gata 59, 205 02 Malmö, Sweden
| | - Christelle Guyot
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - David Hallifax
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | - Seddik Hammad
- Department of Forensic Medicine and Veterinary Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - Adam Hayward
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Claus Hellerbrand
- Department of Medicine I, University Hospital Regensburg, 93053 Regensburg, Germany
| | | | - Stefan Hoehme
- Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, 04107 Leipzig, Germany
| | - Hermann-Georg Holzhütter
- Institut für Biochemie Abteilung Mathematische Systembiochemie, Universitätsmedizin Berlin (Charité), Charitéplatz 1, 10117 Berlin, Germany
| | - J. Brian Houston
- Centre for Applied Pharmacokinetic Research (CAPKR), School of Pharmacy and Pharmaceutical Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT UK
| | | | - Kiyomi Ito
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo, 202-8585 Japan
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Verena Keitel
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | | | - B. Kevin Park
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Claus Kordes
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225 Düsseldorf, Germany
| | - Gerd A. Kullak-Ublick
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Edward L. LeCluyse
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Peng Lu
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | - Anna Lutz
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Daniel J. Maltman
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
| | - Madlen Matz-Soja
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Patrick McMullen
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Irmgard Merfort
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | | | - Christoph Meyer
- Department of Medicine II, Section Molecular Hepatology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jessica Mwinyi
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Dean J. Naisbitt
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andreas K. Nussler
- BG Trauma Center, Siegfried Weller Institut, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Peter Olinga
- Division of Pharmaceutical Technology and Biopharmacy, Department of Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Jingbo Pi
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Linda Pluta
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | - Stefan A. Przyborski
- Reinnervate Limited, NETPark Incubator, Thomas Wright Way, Sedgefield, TS21 3FD UK
- Biological and Biomedical Sciences, Durham University, Durham, DH13LE UK
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160 USA
| | - Vera Rogiers
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Cliff Rowe
- Department of Molecular and Clinical Pharmacology, Centre for Drug Safety Science, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Celine Schelcher
- Department of Surgery, Liver Regeneration, Core Facility, Human in Vitro Models of the Liver, Ludwig Maximilians University of Munich, Munich, Germany
| | - Kathrin Schmich
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Freiburg, Germany
| | - Michael Schwarz
- Department of Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Wilhelmstr. 56, 72074 Tübingen, Germany
| | - Bijay Singh
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-921 Korea
| | - Ernst H. K. Stelzer
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt am Main, Germany
| | - Bruno Stieger
- Department of Clinical Pharmacology and Toxicology, University Hospital, 8091 Zurich, Switzerland
| | - Regina Stöber
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Yuichi Sugiyama
- Sugiyama Laboratory, RIKEN Innovation Center, RIKEN, Yokohama Biopharmaceutical R&D Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045 Japan
| | - Ciro Tetta
- Fresenius Medical Care, Bad Homburg, Germany
| | - Wolfgang E. Thasler
- Department of Surgery, Ludwig-Maximilians-University of Munich Hospital Grosshadern, Munich, Germany
| | - Tamara Vanhaecke
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Mathieu Vinken
- Department of Toxicology, Centre for Pharmaceutical Research, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Thomas S. Weiss
- Department of Pediatrics and Juvenile Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Agata Widera
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| | - Courtney G. Woods
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC USA
| | | | | | - Jan G. Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IFADO), 44139 Dortmund, Germany
| |
Collapse
|
90
|
Abstract
Over several decades, various forms of genomic analysis of the human major histocompatibility complex (MHC) have been extremely successful in picking up many disease associations. This is to be expected, as the MHC region is one of the most gene-dense and polymorphic stretches of human DNA. It also encodes proteins critical to immunity, including several controlling antigen processing and presentation. Single-nucleotide polymorphism genotyping and human leukocyte antigen (HLA) imputation now permit the screening of large sample sets, a technique further facilitated by high-throughput sequencing. These methods promise to yield more precise contributions of MHC variants to disease. However, interpretation of MHC-disease associations in terms of the functions of variants has been problematic. Most studies confirm the paramount importance of class I and class II molecules, which are key to resistance to infection. Infection is likely driving the extreme variation of these genes across the human population, but this has been difficult to demonstrate. In contrast, many associations with autoimmune conditions have been shown to be specific to certain class I and class II alleles. Interestingly, conditions other than infections and autoimmunity are also associated with the MHC, including some cancers and neuropathies. These associations could be indirect, owing, for example, to the infectious history of a particular individual and selective pressures operating at the population level.
Collapse
Affiliation(s)
- John Trowsdale
- Department of Pathology and Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 1QP, United Kingdom;
| | | |
Collapse
|
91
|
Abstract
Drug reaction with eosinophilia and systemic symptoms (DRESS) syndrome, initially recognized as a serious form of cutaneous drug adverse reaction, is now viewed as a drug-related syndrome that can cause life-threatening organ dysfunctions. Characteristic features include a long time interval from first drug exposure to symptom onset and a prolonged course, often with flares, even after discontinuation of the causal drug. The pathophysiology of DRESS syndrome remains incompletely understood but involves reactivation of herpes viruses (HHV-6, HHV-7, EBV, and CMV), against which the body mounts a strong immune response. The culprit drugs may not only affect epigenetic control mechanisms, thereby promoting viral reactivation, but also induce an antiviral T-cell response by interacting with the major histocompatibility complex receptor in individuals with genetic susceptibility factors. Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) syndrome is a potentially life-threatening form of cutaneous drug adverse reaction. The severity of this syndrome is related to the systemic manifestations, which can result in multiorgan failure. DRESS syndrome is characterized by highly specific features, most notably regarding the timing of the manifestations. New insights into the underlying pathophysiological mechanisms indicate a role for immunogenetic susceptibility factors and for reactivation of human herpes viruses (HHVs), chiefly HHV-6. We report a typical case of DRESS syndrome and discuss recent data about this condition.
Collapse
Affiliation(s)
- Vincent Descamps
- Service de dermatologie, centre hospitalier Bichat Claude-Bernard, 46, rue Henri- Huchard, 75877 Paris, France.
| | | |
Collapse
|
92
|
Imputing amino acid polymorphisms in human leukocyte antigens. PLoS One 2013; 8:e64683. [PMID: 23762245 PMCID: PMC3675122 DOI: 10.1371/journal.pone.0064683] [Citation(s) in RCA: 487] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 04/17/2013] [Indexed: 12/14/2022] Open
Abstract
DNA sequence variation within human leukocyte antigen (HLA) genes mediate susceptibility to a wide range of human diseases. The complex genetic structure of the major histocompatibility complex (MHC) makes it difficult, however, to collect genotyping data in large cohorts. Long-range linkage disequilibrium between HLA loci and SNP markers across the major histocompatibility complex (MHC) region offers an alternative approach through imputation to interrogate HLA variation in existing GWAS data sets. Here we describe a computational strategy, SNP2HLA, to impute classical alleles and amino acid polymorphisms at class I (HLA-A, -B, -C) and class II (-DPA1, -DPB1, -DQA1, -DQB1, and -DRB1) loci. To characterize performance of SNP2HLA, we constructed two European ancestry reference panels, one based on data collected in HapMap-CEPH pedigrees (90 individuals) and another based on data collected by the Type 1 Diabetes Genetics Consortium (T1DGC, 5,225 individuals). We imputed HLA alleles in an independent data set from the British 1958 Birth Cohort (N = 918) with gold standard four-digit HLA types and SNPs genotyped using the Affymetrix GeneChip 500 K and Illumina Immunochip microarrays. We demonstrate that the sample size of the reference panel, rather than SNP density of the genotyping platform, is critical to achieve high imputation accuracy. Using the larger T1DGC reference panel, the average accuracy at four-digit resolution is 94.7% using the low-density Affymetrix GeneChip 500 K, and 96.7% using the high-density Illumina Immunochip. For amino acid polymorphisms within HLA genes, we achieve 98.6% and 99.3% accuracy using the Affymetrix GeneChip 500 K and Illumina Immunochip, respectively. Finally, we demonstrate how imputation and association testing at amino acid resolution can facilitate fine-mapping of primary MHC association signals, giving a specific example from type 1 diabetes.
Collapse
|
93
|
Moghimi SM, Farhangrazi ZS. Nanomedicine and the complement paradigm. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2013; 9:458-60. [DOI: 10.1016/j.nano.2013.02.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 02/21/2013] [Indexed: 10/27/2022]
|
94
|
Monitoring abacavir bioactivation in humans: Screening for an aldehyde metabolite. Toxicol Lett 2013; 219:59-64. [DOI: 10.1016/j.toxlet.2013.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/21/2013] [Accepted: 02/23/2013] [Indexed: 11/19/2022]
|
95
|
Gaeti WP, Obreli-Neto PR, Moliterno RA, Schiavon GB, Cuman RKN. HLA typing in Brazilian boys with aromatic antiepileptic drug-induced DRESS. Int J Clin Pharm 2013; 35:319-22. [DOI: 10.1007/s11096-013-9770-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 04/01/2013] [Indexed: 10/27/2022]
|
96
|
Pavlos R, Mallal S, Phillips E. HLA and pharmacogenetics of drug hypersensitivity. Pharmacogenomics 2013; 13:1285-306. [PMID: 22920398 DOI: 10.2217/pgs.12.108] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Immunologically mediated drug reactions have been traditionally classified as unpredictable based on the fact that they cannot be predicted strictly on the pharmacological action of the drug. Such adverse drug reactions are associated with considerable morbidity and include severe cutaneous adverse reactions such as Stevens-Johnson syndrome/toxic epidermal necrolysis and the drug hypersensitivity syndromes (drug reaction with eosinophilia and systemic symptoms/drug-induced hypersensitivity syndrome). Over the last decade there have been many associations between these syndromes and Class I and II HLA alleles of the MHC, which have enriched and driven our knowledge of their immunopathogenesis. Significant translation has also occurred in the case of HLA-B*5701 screening being used to exclude at risk patients from abacavir and prevent abacavir hypersensitivity. The ultimate translation of the knowledge of how drugs interact with HLA would be applicable to preclinical drug screening programs to improve the safety and cost-effectiveness of drug design and development.
Collapse
Affiliation(s)
- Rebecca Pavlos
- The Institute for Immunology & Infectious Diseases, Murdoch University, Western Australia
| | | | | |
Collapse
|
97
|
Spraggs CF, Xu CF, Hunt CM. Genetic characterization to improve interpretation and clinical management of hepatotoxicity caused by tyrosine kinase inhibitors. Pharmacogenomics 2013; 14:541-54. [DOI: 10.2217/pgs.13.24] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tyrosine kinase inhibitors (TKIs) represent important therapeutic alternatives to, or combinations with, traditional cytotoxic chemotherapy. Despite their selective molecular targeting and demonstrated clinical benefit, TKIs produce a range of serious adverse events, including drug-induced liver injury, that require careful patient management to maintain treatment benefit without harm. Genetic characterization of serious adverse events can identify mechanisms of injury and improve safety risk management. This review presents pharmacogenetic comparisons of two approved TKIs, lapatinib and pazopanib, which reveal different mechanisms of injury and inform the characteristics and risk of serious liver injury in treated patients. The data presented demonstrate the utility of genetic studies to investigate drug-induced liver injury and potentially support its management in patients.
Collapse
Affiliation(s)
- Colin F Spraggs
- Genetics, Quantitative Sciences, GlaxoSmithKline Research & Development, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK.
| | - Chun-Fang Xu
- Genetics, Quantitative Sciences, GlaxoSmithKline Research & Development, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK
| | - Christine M Hunt
- Clinical Safety Systems, GlaxoSmithKline Research & Development, Research Triangle Park, NC, USA
- Duke University, Durham, NC, USA
| |
Collapse
|
98
|
Mitsunaga S, Shimizu S, Okudaira Y, Oka A, Tanaka M, Kimura M, Kulski JK, Inoue I, Inoko H. Improved loop-mediated isothermal amplification for HLA-DRB1 genotyping using RecA and a restriction enzyme for enhanced amplification specificity. Immunogenetics 2013; 65:405-15. [PMID: 23474534 DOI: 10.1007/s00251-013-0690-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 02/15/2013] [Indexed: 12/12/2022]
Abstract
Our aim was to test and develop the use of loop-mediated isothermal amplification (LAMP) for HLA-DRB1 genotyping. Initially, we found that the conventional LAMP protocols produced non-specific and variable amplification results depending on the sample DNA conditions. Experiments with different concentrations of DNase in the reaction mixture with and without T4 DNA ligase-treated samples suggested that the strand displacement activity of DNA polymerase in LAMP, at least in part, started from randomly existing nicks because T4 DNA ligase treatment of sample DNA resulted in no amplification. Such non-specific amplification due to the randomly existing nicks was improved specifically by the addition of RecA of Escherichia coli and a restriction enzyme, for example, PvuII, to the reaction mixture. We applied the modified LAMP (mLAMP) (1) to detect specific HLA-DRB1 alleles by using only specific primers for amplification or (2) for genotyping in multiple samples with a multi-probe typing system. In the latter case, HLA-DRB1 genotyping was developed by combining the mLAMP with amplicon capture using polymorphic region-specific probes fixed onto the bottom of the wells of a 96-well plate and the captured amplicons visualized as a black spot at the bottom of the well. The multi-probe human leukocyte antigen (HLA) typing method and the specific HLA allele detection method could be applied for point-of-care testing due to no requirement for specific and expensive instruments.
Collapse
Affiliation(s)
- Shigeki Mitsunaga
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, School of Medicine, Tokai University, Isehara, Kanagawa, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Pompeu YA, Stewart JD, Mallal S, Phillips E, Peters B, Ostrov DA. The structural basis of HLA-associated drug hypersensitivity syndromes. Immunol Rev 2013; 250:158-66. [PMID: 23046128 DOI: 10.1111/j.1600-065x.2012.01163.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent data suggest alternative mechanisms that promote human leukocyte antigen (HLA)-associated drug syndromes. Hypersensitive responses have been attributed to drug interactions with HLA molecules, peptides presented by HLA molecules and T-cell antigen receptors. Definition of an increasing number of HLA-associated drug syndromes suggests that polymorphism in the antigen-binding cleft residues influence recognition of specific drugs. Recent data demonstrate that small molecule drugs bind within the antigen-binding cleft of HLA in a manner that alters the repertoire of HLA-bound peptide ligands. This drug recognition mechanism permits presentation of self-peptides to which the host has not been tolerized. This altered repertoire mechanism is analogous to massive polyclonal T-cell responses occurring in mismatched HLA organ transplantation in which the drug in effect creates a novel HLA allele. Alteration of the self-peptide repertoire by HLA-binding small molecules may be the mechanistic basis for a diverse set of deleterious T-cell responses since the antigen-binding cleft has structural features that are compatible with binding drug-like small molecules. Small molecule drugs that bind elements of the trimolecular complex (T-cell receptor, peptide, and HLA) may cause short- and long-term adverse effects by a diverse set of mechanisms.
Collapse
Affiliation(s)
- Yuri A Pompeu
- Department of Chemistry, University of Florida, Gainesville, USA
| | | | | | | | | | | |
Collapse
|
100
|
Stankov K, Sabo A, Mikov M. Pharmacogenetic Biomarkers as Tools for Pharmacoepidemiology of Severe Adverse Drug Reactions. Drug Dev Res 2013; 74:1-14. [DOI: 10.1002/ddr.21050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abstract
Preclinical Research
The development of new genomic technologies has led to an exponential increase in the number of biomarkers for drug safety and efficacy. Pharmacogenomics has the potential to impact clinically relevant outcomes in drug dosing, efficacy, toxicity, and prediction of adverse drug reactions (ADRs). Genotype‐based prescribing is anticipated to improve the overall efficacy rates and minimize ADRs, making personalized medicine a reality. Genome‐wide association studies have been increasingly applied to pharmacogenetics. Severe ADRs are a major issue for drug therapy because they can cause serious disorders and can be life threatening. For severe ADRs, significant associations have been reported for drug‐induced liver injury, statin‐induced myopathy, increased risk of hemorrhagic complications of anticoagulant use, drug‐induced torsade de pointes, drug‐induced long QT, and severe cutaneous ADRs. This review summarizes the current position concerning the clinical and pharmacoepidemiological relevance of pharmacogenetic biomarkers in ADR prediction and prevention, with an emphasis on genetic risk factors and biomarkers for three specific severe ADRs.
Collapse
Affiliation(s)
- Karmen Stankov
- Clinical Center of Vojvodina Medical Faculty Novi Sad University of Novi Sad 21000 Novi Sad Serbia
| | - Ana Sabo
- Department of Pharmacology, Toxicology and Clinical Pharmacology Medical Faculty Novi Sad University of Novi Sad 21000 Novi Sad Serbia
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology Medical Faculty Novi Sad University of Novi Sad 21000 Novi Sad Serbia
| |
Collapse
|