51
|
Zhang W, Dong E, Zhang J, Zhang Y. CaMKII, 'jack of all trades' in inflammation during cardiac ischemia/reperfusion injury. J Mol Cell Cardiol 2023; 184:48-60. [PMID: 37813179 DOI: 10.1016/j.yjmcc.2023.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023]
Abstract
Myocardial infarction and revascularization cause cardiac ischemia/reperfusion (I/R) injury featuring cardiomyocyte death and inflammation. The Ca2+/calmodulin dependent protein kinase II (CaMKII) family are serine/ threonine protein kinases that are involved in I/R injury. CaMKII exists in four different isoforms, α, β, γ, and δ. In the heart, CaMKII-δ is the predominant isoform,with multiple splicing variants, such as δB, δC and δ9. During I/R, elevated intracellular Ca2+ concentrations and reactive oxygen species activate CaMKII. In this review, we summarized the regulation and function of CaMKII in multiple cell types including cardiomyocytes, endothelial cells, and macrophages during I/R. We conclude that CaMKII mediates inflammation in the microenvironment of the myocardium, resulting in cell dysfunction, elevated inflammation, and cell death. However, different CaMKII-δ variants exhibit distinct or even opposite functions. Therefore, reagents/approaches that selectively target specific CaMKII isoforms and variants are needed for evaluating and counteracting the exact role of CaMKII in I/R injury and developing effective treatments against I/R injury.
Collapse
Affiliation(s)
- Wenjia Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Erdan Dong
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China; Haihe Laboratory of Cell Ecosystem, Beijing 100191, China
| | - Junxia Zhang
- Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China; Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Beijing 100191, China; Haihe Laboratory of Cell Ecosystem, Beijing 100191, China.
| | - Yan Zhang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Institute of Cardiovascular Sciences, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|
52
|
Zhang L, Liu HH, Yang F, Zhang ZY, Zhang ZY, Zhao XX, Qian LL, Dang SP, Wang RX. Glucose fluctuations aggravate myocardial fibrosis via activating the CaMKII/Stat3 signaling in type 2 diabtetes. Diabetol Metab Syndr 2023; 15:217. [PMID: 37891701 PMCID: PMC10612236 DOI: 10.1186/s13098-023-01197-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Glucose fluctuations (GF) are a risk factor for cardiovascular complications associated with type 2 diabetes. However, there is a lack of adequate research on the effect of GF on myocardial fibrosis and the underlying mechanisms in type 2 diabetes. This study aimed to investigate the impact of glucose fluctuations on myocardial fibrosis and explore the potential mechanisms in type 2 diabetes. METHODS Sprague Dawley (SD) rats were randomly divided into three groups: the control (Con) group, the type 2 diabetic (DM) group and the glucose fluctuations (GF) group. The type 2 diabetic rat model was established using a high-fat diet combined with low-dose streptozotocin injection and the GF model was induced by using staggered glucose and insulin injections daily. After eight weeks, echocardiography was used to assess the cardiac function of the three groups. Hematoxylin-eosin and Masson staining were utilized to evaluate the degree of pathological damage and fibrosis. Meanwhile, a neonatal rat cardiac fibroblast model with GF was established. Western and immunofluorescence were used to find the specific mechanism of myocardial fibrosis caused by GF. RESULTS Compared with rats in the Con and the DM group, cardiac function in the GF group showed significant impairments. Additionally, the results showed that GF aggravated myocardial fibrosis in vitro and in vivo. Moreover, Ca2+/calmodulin‑dependent protein kinase II (CaMKII) was activated by phosphorylation, prompting an increase in phosphorylation of signal transducer and activator of transcription 3 (Stat3) and induced nuclear translocation. Pretreatment with KN-93 (a CaMKII inhibitor) blocked GF-induced Stat3 activation and significantly suppressed myocardial fibrosis. CONCLUSIONS Glucose fluctuations exacerbate myocardial fibrosis by triggering the CaMKII/Stat3 pathway in type 2 diabetes.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cardiology, Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Huan-Huan Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Fan Yang
- Department of Cardiology, Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Zhi-Yuan Zhang
- Department of Cardiology, Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Zhen-Ye Zhang
- Department of Cardiology, Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Xiao-Xi Zhao
- Department of Cardiology, Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Ling-Ling Qian
- Department of Cardiology, Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China
| | - Shi-Peng Dang
- Department of Cardiology, Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China.
| | - Ru-Xing Wang
- Department of Cardiology, Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
53
|
Moccia F, Brunetti V, Soda T, Faris P, Scarpellino G, Berra-Romani R. Store-Operated Ca 2+ Entry as a Putative Target of Flecainide for the Treatment of Arrhythmogenic Cardiomyopathy. J Clin Med 2023; 12:5295. [PMID: 37629337 PMCID: PMC10455538 DOI: 10.3390/jcm12165295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/04/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetic disorder that may lead patients to sudden cell death through the occurrence of ventricular arrhythmias. ACM is characterised by the progressive substitution of cardiomyocytes with fibrofatty scar tissue that predisposes the heart to life-threatening arrhythmic events. Cardiac mesenchymal stromal cells (C-MSCs) contribute to the ACM by differentiating into fibroblasts and adipocytes, thereby supporting aberrant remodelling of the cardiac structure. Flecainide is an Ic antiarrhythmic drug that can be administered in combination with β-adrenergic blockers to treat ACM due to its ability to target both Nav1.5 and type 2 ryanodine receptors (RyR2). However, a recent study showed that flecainide may also prevent fibro-adipogenic differentiation by inhibiting store-operated Ca2+ entry (SOCE) and thereby suppressing spontaneous Ca2+ oscillations in C-MSCs isolated from human ACM patients (ACM C-hMSCs). Herein, we briefly survey ACM pathogenesis and therapies and then recapitulate the main molecular mechanisms targeted by flecainide to mitigate arrhythmic events, including Nav1.5 and RyR2. Subsequently, we describe the role of spontaneous Ca2+ oscillations in determining MSC fate. Next, we discuss recent work showing that spontaneous Ca2+ oscillations in ACM C-hMSCs are accelerated to stimulate their fibro-adipogenic differentiation. Finally, we describe the evidence that flecainide suppresses spontaneous Ca2+ oscillations and fibro-adipogenic differentiation in ACM C-hMSCs by inhibiting constitutive SOCE.
Collapse
Affiliation(s)
- Francesco Moccia
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Valentina Brunetti
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy;
| | - Pawan Faris
- Department of Brain and Behavioral Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Giorgia Scarpellino
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (V.B.); (G.S.)
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla 72410, Mexico;
| |
Collapse
|
54
|
Curtis AJ, Zhu J, Penny CJ, Gold MG. Molecular basis of interactions between CaMKII and α-actinin-2 that underlie dendritic spine enlargement. eLife 2023; 12:e85008. [PMID: 37489746 PMCID: PMC10484527 DOI: 10.7554/elife.85008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 07/24/2023] [Indexed: 07/26/2023] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is essential for long-term potentiation (LTP) of excitatory synapses that is linked to learning and memory. In this study, we focused on understanding how interactions between CaMKIIα and the actin-crosslinking protein α-actinin-2 underlie long-lasting changes in dendritic spine architecture. We found that association of the two proteins was unexpectedly elevated within 2 minutes of NMDA receptor stimulation that triggers structural LTP in primary hippocampal neurons. Furthermore, disruption of interactions between the two proteins prevented the accumulation of enlarged mushroom-type dendritic spines following NMDA receptor activation. α-Actinin-2 binds to the regulatory segment of CaMKII. Calorimetry experiments, and a crystal structure of α-actinin-2 EF hands 3 and 4 in complex with the CaMKII regulatory segment, indicate that the regulatory segment of autoinhibited CaMKII is not fully accessible to α-actinin-2. Pull-down experiments show that occupation of the CaMKII substrate-binding groove by GluN2B markedly increases α-actinin-2 access to the CaMKII regulatory segment. Furthermore, in situ labelling experiments are consistent with the notion that recruitment of CaMKII to NMDA receptors contributes to elevated interactions between the kinase and α-actinin-2 during structural LTP. Overall, our study provides new mechanistic insight into the molecular basis of structural LTP and reveals an added layer of sophistication to the function of CaMKII.
Collapse
Affiliation(s)
- Ashton J Curtis
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Jian Zhu
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Christopher J Penny
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| | - Matthew G Gold
- Department of Neuroscience, Physiology and Pharmacology, University College LondonLondonUnited Kingdom
| |
Collapse
|
55
|
Gaido OER, Pavlaki N, Granger JM, Mesubi OO, Liu B, Lin BL, Long A, Walker D, Mayourian J, Schole KL, Terrillion CE, Nkashama LJ, Hulsurkar MM, Dorn LE, Ferrero KM, Huganir RL, Müller FU, Wehrens XHT, Liu JO, Luczak ED, Bezzerides VJ, Anderson ME. An improved reporter identifies ruxolitinib as a potent and cardioprotective CaMKII inhibitor. Sci Transl Med 2023; 15:eabq7839. [PMID: 37343080 PMCID: PMC11022683 DOI: 10.1126/scitranslmed.abq7839] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/31/2023] [Indexed: 06/23/2023]
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) hyperactivity causes cardiac arrhythmias, a major source of morbidity and mortality worldwide. Despite proven benefits of CaMKII inhibition in numerous preclinical models of heart disease, translation of CaMKII antagonists into humans has been stymied by low potency, toxicity, and an enduring concern for adverse effects on cognition due to an established role of CaMKII in learning and memory. To address these challenges, we asked whether any clinically approved drugs, developed for other purposes, were potent CaMKII inhibitors. For this, we engineered an improved fluorescent reporter, CaMKAR (CaMKII activity reporter), which features superior sensitivity, kinetics, and tractability for high-throughput screening. Using this tool, we carried out a drug repurposing screen (4475 compounds in clinical use) in human cells expressing constitutively active CaMKII. This yielded five previously unrecognized CaMKII inhibitors with clinically relevant potency: ruxolitinib, baricitinib, silmitasertib, crenolanib, and abemaciclib. We found that ruxolitinib, an orally bioavailable and U.S. Food and Drug Administration-approved medication, inhibited CaMKII in cultured cardiomyocytes and in mice. Ruxolitinib abolished arrhythmogenesis in mouse and patient-derived models of CaMKII-driven arrhythmias. A 10-min pretreatment in vivo was sufficient to prevent catecholaminergic polymorphic ventricular tachycardia, a congenital source of pediatric cardiac arrest, and rescue atrial fibrillation, the most common clinical arrhythmia. At cardioprotective doses, ruxolitinib-treated mice did not show any adverse effects in established cognitive assays. Our results support further clinical investigation of ruxolitinib as a potential treatment for cardiac indications.
Collapse
Affiliation(s)
- Oscar E. Reyes Gaido
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nikoleta Pavlaki
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan M. Granger
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Olurotimi O. Mesubi
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bian Liu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Brian L. Lin
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alan Long
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David Walker
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Joshua Mayourian
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kate L. Schole
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chantelle E. Terrillion
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lubika J. Nkashama
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mohit M. Hulsurkar
- Cardiovascular Research Institute and Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lauren E. Dorn
- Cardiovascular Research Institute and Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kimberly M. Ferrero
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard L. Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Frank U. Müller
- Institute of Pharmacology and Toxicology, University of Münster, Münster 48149, Germany
| | - Xander H. T. Wehrens
- Cardiovascular Research Institute and Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Departments of Medicine, Neuroscience, and Pediatrics, Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jun O. Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Elizabeth D. Luczak
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Vassilios J. Bezzerides
- Department of Cardiology, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Mark E. Anderson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Division of Biological Sciences and the Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
56
|
Li H, Wang T, Feng Y, Sun K, Huang G, Cao Y, Xu A. Optimal transplantation strategy using human induced pluripotent stem cell-derived cardiomyocytes for acute myocardial infarction in nonhuman primates. MedComm (Beijing) 2023; 4:e289. [PMID: 37303812 PMCID: PMC10248032 DOI: 10.1002/mco2.289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/27/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023] Open
Abstract
Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) have the potential to be a therapeutic option for myocardium restoration. However, hiPSC-CMs of varying maturation and transplantation routes exhibit different reactivity and therapeutic effects. We previously demonstrated that the saponin+ compound induces more mature hiPSC-CMs. The safety and efficacy of multi-route transplantation of saponin+ compound-induced hiPSC-CMs in a nonhuman primate with myocardial infarction will be investigated for the first time in this study. Our findings indicate that optimized hiPSC-CMs transplanted via intramyocardial and intravenous routes may affect myocardial functions by homing or mitochondrial transfer to the damaged myocardium to play a direct therapeutic role as well as indirect beneficial roles via anti-apoptotic and pro-angiogenesis mechanisms mediated by different paracrine growth factors. Due to significant mural thrombosis, higher mortality, and unilateral renal shrinkage, intracoronary transplantation of hiPSC-CMs requires closer attention to anticoagulation and caution in clinical use. Collectively, our data strongly indicated that intramyocardial transplantation of hiPSC-CMs is the ideal technique for clinical application; multiple cell transfers are recommended to achieve steady and protracted efficacy because intravenous transplantation's potency fluctuates. Thus, our study offers a rationale for choosing a therapeutic cell therapy and the best transplantation strategy for optimally induced hiPSC-CMs.
Collapse
Affiliation(s)
- Hong‐mei Li
- School of Life ScienceBeijing University of Chinese MedicineBeijingP. R. China
- Beizhong Jingyuan Biotechnology (Beijing) LimitedBeijingP. R. China
| | - Ting Wang
- School of Life ScienceBeijing University of Chinese MedicineBeijingP. R. China
| | - Yu‐yin Feng
- School of Life ScienceBeijing University of Chinese MedicineBeijingP. R. China
| | - Ke Sun
- School of Life ScienceBeijing University of Chinese MedicineBeijingP. R. China
| | - Guang‐rui Huang
- School of Life ScienceBeijing University of Chinese MedicineBeijingP. R. China
- Beizhong Jingyuan Biotechnology (Beijing) LimitedBeijingP. R. China
| | - Yu‐lin Cao
- Beizhong Jingyuan Biotechnology (Beijing) LimitedBeijingP. R. China
- Tangyi Holdings (Shenzhen) LimitedShenzhenP. R. China
| | - An‐long Xu
- School of Life ScienceBeijing University of Chinese MedicineBeijingP. R. China
- State Key Laboratory of BiocontrolGuangdong Province Key Laboratory for Pharmaceutical Functional GenesCollege of Life SciencesSun Yat‐Sen UniversityGuangdongP. R. China
| |
Collapse
|
57
|
Reyes Gaido OE, Schole KL, Anderson ME, Luczak ED. Genome-wide CRISPR screen reveals genetic modifiers of Ca 2+ -mediated cell death. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523980. [PMID: 36712017 PMCID: PMC9882248 DOI: 10.1101/2023.01.13.523980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ca 2+ is a fundamental determinant of survival in living cells. Excessive intracellular Ca 2+ causes cellular toxicity and death but the genetic pathways contributing to Ca 2+ induced cell death are incompletely understood. Here, we performed genome-wide CRISPR knock-out screening in human cells challenged with the Ca 2+ ionophore ionomycin and identified genes and pathways essential for cell death after Ca 2+ overload. We discovered 115 protective gene knockouts, 82 of which are non-essential genes and 21 of which belong to the druggable genome. Notably, members of store operated Ca 2+ entry (SOCE), very long-chain fatty acid synthesis, and SWItch/Sucrose Non-Fermentable (SWI/SNF) pathways provided marked protection against Ca 2+ toxicity. These results reveal pathways previously unknown to mediate Ca 2+ -induced cell death and provide a resource for the development of pharmacotherapies against the sequelae of Ca 2+ overload in disease.
Collapse
|
58
|
Griem-Krey N, Clarkson AN, Wellendorph P. CaMKIIα as a Promising Drug Target for Ischemic Grey Matter. Brain Sci 2022; 12:1639. [PMID: 36552099 PMCID: PMC9775128 DOI: 10.3390/brainsci12121639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a major mediator of Ca2+-dependent signaling pathways in various cell types throughout the body. Its neuronal isoform CaMKIIα (alpha) centrally integrates physiological but also pathological glutamate signals directly downstream of glutamate receptors and has thus emerged as a target for ischemic stroke. Previous studies provided evidence for the involvement of CaMKII activity in ischemic cell death by showing that CaMKII inhibition affords substantial neuroprotection. However, broad inhibition of this central kinase is challenging because various essential physiological processes like synaptic plasticity rely on intact CaMKII regulation. Thus, specific strategies for targeting CaMKII after ischemia are warranted which would ideally only interfere with pathological activity of CaMKII. This review highlights recent advances in the understanding of how ischemia affects CaMKII and how pathospecific pharmacological targeting of CaMKII signaling could be achieved. Specifically, we discuss direct targeting of CaMKII kinase activity with peptide inhibitors versus indirect targeting of the association (hub) domain of CaMKIIα with analogues of γ-hydroxybutyrate (GHB) as a potential way to achieve more specific pharmacological modulation of CaMKII activity after ischemia.
Collapse
Affiliation(s)
- Nane Griem-Krey
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Andrew N. Clarkson
- Department of Anatomy, Brain Health Research Centre and Brain Research New Zealand, University of Otago, Dunedin 9016, New Zealand
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
59
|
Grainger N, Santana LF. The Inferior Sinoatrial Node Suffers the Most During Heart Failure. JACC Clin Electrophysiol 2022; 8:1354-1356. [PMID: 36424001 PMCID: PMC10031657 DOI: 10.1016/j.jacep.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/22/2022]
Affiliation(s)
- Nathan Grainger
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA.
| | - L Fernando Santana
- Department of Physiology and Membrane Biology, University of California-Davis, Davis, California, USA.
| |
Collapse
|