51
|
Global and gene-specific DNA methylation in adult type 2 diabetic individuals: a protocol for a systematic review. Syst Rev 2018; 7:46. [PMID: 29544537 PMCID: PMC5856358 DOI: 10.1186/s13643-018-0708-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 02/28/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND DNA methylation (global and gene-specific) has been reported as an epigenetic mechanism that could be involved in the pathogenesis of type 2 diabetes mellitus (T2DM). Furthermore, epigenetic therapy has been suggested as a future possibility for T2DM treatment. Epigenetic changes illustrate the environmental link of the disease. Since some of the epigenetic modifications can be reversed, they could be used as potential therapeutic targets. The aim of the systematic review will be to synthesise the available evidence pertaining to the link between DNA methylation and T2DM. The systematic review will evaluate characteristics of reported studies such as the source of DNA used, methods of quantifying DNA methylation and the participants' demographics (age, gender, race and adiposity). We will conduct a narrative synthesis of data, and if there are an adequate number of sufficiently homogenous studies, we will consider performing a meta-analysis. The review will evaluate if the levels of DNA methylation are a possible risk factor for T2DM. Furthermore, we will assess whether DNA methylation is a plausible biomarker and therapeutic target for the treatment and management of T2DM. METHODS This systematic review protocol will be reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA-P) 2015 statement. An extensive search for original research articles, published since inception, was performed on major databases such as Embase, MEDLINE and Cochrane Library. The search strategy will include a combination of key words and MeSH words. Literature that is available in English and studies in other languages that can be translated into English will be used. Data extraction will be done in duplicate, and two authors will independently screen for eligible studies using pre-defined criteria. The Cochrane Risk of Bias Assessment Tool and Joanna Briggs Institute (JBI) Critical Appraisal tools will be used to assess the risk of bias. The Grading of Recommendations, Assessment, Development and Evaluation assessment tool will be used to assess the overall quality of extracted data. DISCUSSION This systematic review will evaluate published literature, assessing the link between DNA methylation and T2DM. Our findings could help guide future research evaluating epigenetic changes in T2DM and direct future therapeutic interventions.
Collapse
|
52
|
Aghajani M, Klapwijk ET, Colins OF, Ziegler C, Domschke K, Vermeiren RRJM, van der Wee NJA. Interactions Between Oxytocin Receptor Gene Methylation and Callous-Unemotional Traits Impact Socioaffective Brain Systems in Conduct-Disordered Offenders. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2018; 3:379-391. [PMID: 29628070 DOI: 10.1016/j.bpsc.2017.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND The developmental trajectory of psychopathy seemingly begins early in life and includes the presence of callous-unemotional (CU) traits (e.g., perturbed socioaffective reactivity and empathy, callousness) in youths with conduct disorder (CD). Whereas oxytocin receptor gene methylation (OXTRMeth) and its downstream neuromodulatory effects are deemed relevant to CU traits, nothing is known of how OXTRMeth interacts with CU traits to impact socioaffective brain systems in youngsters with CD. METHODS Hence, we uniquely probed OXTRMeth × CU trait interactions on corticolimbic activity and amygdala subregional connections during recognition and resonance of distressing socioaffective stimuli (angry and fearful faces), in juvenile offenders with CD (n = 39) versus matched healthy control youths (n = 27). RESULTS Relative to healthy control youths, elevated OXTRMeth and CU levels in youths with CD essentially interacted to predict frontoparietal hyperactivity and amygdalo-frontoparietal disconnection during task performance. Specifically, increasing OXTRMeth and CU levels in youths with CD interactively predicted midcingulate hyperactivity during both emotion conditions, with insular, temporoparietal, and precuneal hyperactivity additionally emerging during emotion recognition. Interactions between high OXTRMeth and CU levels in youths with CD additionally predicted centromedial amygdala decoupling from ventromedial/orbitofrontal regions during emotion recognition, along with basolateral amygdala decoupling from precuneal and temporoparietal cortices during emotion resonance. CONCLUSIONS These results uniquely suggest that interactions between OXTRMeth and CU traits in youths with CD may affect brain systems critical to decoding and integrating socioaffective information. Developmental models of CU traits and psychopathy could thus possibly advance by further examining OXTR epigenetic effects, which may hold promise for indicated prevention and personalized treatment by targeting oxytocinergic function.
Collapse
Affiliation(s)
- Moji Aghajani
- Department of Child and Adolescent Psychiatry, Curium, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands; Department of Psychiatry, VU University Medical Center, Amsterdam, the Netherlands.
| | - Eduard T Klapwijk
- Department of Child and Adolescent Psychiatry, Curium, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands; Brain and Development Research Center, Institute of Psychology, Leiden University, Leiden, the Netherlands
| | - Olivier F Colins
- Department of Child and Adolescent Psychiatry, Curium, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Christiane Ziegler
- Department of Psychiatry and Psychotherapy, University Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Department of Psychiatry, University of Würzburg, Würzburg, Germany
| | | | - Robert R J M Vermeiren
- Department of Child and Adolescent Psychiatry, Curium, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Nic J A van der Wee
- Department of Pschiatry, Curium, Leiden University Medical Center, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| |
Collapse
|
53
|
Duraisamy AJ, Mishra M, Kowluru RA. Crosstalk Between Histone and DNA Methylation in Regulation of Retinal Matrix Metalloproteinase-9 in Diabetes. Invest Ophthalmol Vis Sci 2017; 58:6440-6448. [PMID: 29261844 PMCID: PMC5737805 DOI: 10.1167/iovs.17-22706] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose Diabetes activates matrix metalloproteinase-9 (MMP-9), and MMP-9 via damaging retinal mitochondria, activates capillary cell apoptosis. MMP-9 promoter has binding sites for many transcription factors, and in diabetes its promoter undergoes epigenetic modifications, including histone modifications and DNA methylation. Enhancer of Zeste homolog 2 (Ezh2), which catalyzes dimethylation/trimethylation of histone 3 lysine 27 (H3K27me2 and me3), is also associated with DNA methylation. Our aim was to investigate link(s) between histone and DNA modifications in the regulation of MMP-9. Methods Using human retinal endothelial cells, and also retinal microvessels from diabetic rats, effect of hyperglycemia on H3K27me3, and recruitment of Ezh2 at the MMP-9 promoter were quantified by chromatin-immunoprecipitation technique. Role of H3K27 trimethylation in regulating DNA methylation-transcription of MMP-9 was determined by regulating Ezh2 by its specific siRNA and also a pharmacologic inhibitor. Results Hyperglycemia elevated H3K27me3 levels and the recruitment of Ezh2 at the MMP-9 promoter, and increased the enzyme activity of Ezh2. Inhibition of Ezh2 attenuated recruitment of both DNA methylating (Dnmt1) and hydroxymethylating (Tet2) enzymes and 5 hydroxymethyl cytosine at the same region of the MMP-9 promoter, and prevented increase in MMP-9 transcription and mitochondrial damage. Conclusions Activation of Ezh2 in diabetes, via trimethylation of H3K27, facilitates recruitment of the enzymes responsible for regulation of DNA methylation of the MMP-9 promoter, resulting in its transcriptional activation. Thus, a close crosstalk between H3K27 trimethylation and DNA methylation in diabetes plays a critical role in the maintenance of cellular epigenetic integrity of MMP-9.
Collapse
Affiliation(s)
- Arul J Duraisamy
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| | - Manish Mishra
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| | - Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
54
|
Chen Y, Xu H, Zhu M, Liu K, Lin B, Luo R, Chen C, Li M. Stress inhibits tryptophan hydroxylase expression in a rat model of depression. Oncotarget 2017; 8:63247-63257. [PMID: 28968985 PMCID: PMC5609917 DOI: 10.18632/oncotarget.18780] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/21/2017] [Indexed: 12/30/2022] Open
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) dysfunction is associated with the pathophysiology of depression. Tryptophan hydroxylase (TPH), the rate-limiting enzyme in 5-HT biosynthesis, is believed to have essential role in many mental disorders, including depression. In the present study, we generated a rat model of depression by exposing the animals to stress, and the rats were then treated with paroxetine. The results indicated that the concentration of 5-HT in the brain and liver tissues were significantly lower in the rat model of depression than in healthy or treated rats. Immunohistochemical analyses of TPH1/2 showed less TPH1 and TPH2 expression, specifically TPH2, in the brain, liver and kidney of the depressive rats than in the healthy rats; In addition, the two TPH isoforms, TPH1 and TPH2, had different spatial distributions,the mRNAs of the TPH1/2 genes were significantly decreased and TPH1/2 were highly methylated in the depressive model rat, but treatment with paroxetine ameliorated the expression and methylation of TPH1/2. All together, stress was able to inhibit expression of TPH1/2 in brain tissue and decrease concentration of 5-HT, the mechanism maybe involve in increasing the methylation of TPH2 genes promoter; Paroxetine has a role in confronting the effect of stress in depressive rat model.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
| | - Haixia Xu
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
| | - Mingyue Zhu
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
| | - Kun Liu
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
| | - Bo Lin
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
| | - Ruxian Luo
- Department of Psychiatry, Hainan Provincial Anning Hospital, Haikou 571199, Hainan Province, P. R. China
| | - Chuanbai Chen
- Department of Psychiatry, Hainan Provincial Anning Hospital, Haikou 571199, Hainan Province, P. R. China
| | - Mengsen Li
- Key Laboratory of Molecular Biology, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical College, Haikou 571199, Hainan Province, P. R. China
| |
Collapse
|
55
|
Józefczuk J, Kasprzycka W, Czarnecki R, Graczyk A, Józefczuk P, Magda K, Lampart U. Homocysteine as a Diagnostic and Etiopathogenic Factor in Children with Autism Spectrum Disorder. J Med Food 2017; 20:744-749. [DOI: 10.1089/jmf.2016.0150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jan Józefczuk
- The Paediatric Ward with the Paediatric Cardiology Unit, Specialist Hospital of the Holy Spirit, Sandomierz, Poland
| | - Wiktoria Kasprzycka
- The Department of Biochemistry and Optical Spectroscopy, The Institute of Optoelectronics–The Military University of Technology, Warsaw, Poland
| | - Rafał Czarnecki
- The Paediatric Ward with the Paediatric Cardiology Unit, Specialist Hospital of the Holy Spirit, Sandomierz, Poland
| | - Alfreda Graczyk
- The Department of Biochemistry and Optical Spectroscopy, The Institute of Optoelectronics–The Military University of Technology, Warsaw, Poland
| | - Paweł Józefczuk
- The Foundation for Protection of the Immunological System “Immuno,” Warsaw, Poland
| | - Krzysztof Magda
- Marian Smoluchowski's Institute of Physics, Jagiellonian University, Cracow, Poland
| | - Urszula Lampart
- The Paediatric Ward with the Paediatric Cardiology Unit, Specialist Hospital of the Holy Spirit, Sandomierz, Poland
| |
Collapse
|
56
|
Qiao X, Yin F, Ji Y, Li Y, Yan P, Lai J. 5-Aza-2'-deoxycytidine in the medial prefrontal cortex regulates alcohol-related behavior and Ntf3-TrkC expression in rats. PLoS One 2017; 12:e0179469. [PMID: 28614398 PMCID: PMC5470731 DOI: 10.1371/journal.pone.0179469] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/31/2017] [Indexed: 12/16/2022] Open
Abstract
Recent studies have indicated that DNA methylation plays an important role in the development of alcohol abuse. 5-Aza-2'-deoxycytidine (5-Aza-dc), an inhibitor of DNA methyltransferases, was FDA approved for myelodysplastic syndrome treatment. However, it is unclear whether 5-Aza-dc is involved in alcohol abuse. In this study, using a chronic alcohol exposure model in rats, 5-Aza-dc was injected into the medial prefrontal cortex (mPFC). Alcohol-drinking behavior and the anxiety related behavior were evaluated by two-bottle choice and open field test. We found that 5-Aza-dc injection into the mPFC significantly decreased alcohol consumption and alcohol preference in alcohol-exposure rats, corresponding to the reduced blood alcohol levels. Although 5-Aza-dc potentiated the anxiety-like behavior of alcohol-exposure rats, it had no effect on the locomotor activity. Moreover, both of the mRNA and protein levels of DNA Methyltransferase 3A (DNMT3A) and DNMT3B in the mPFC were upregulated after 35 days of alcohol exposure and this upregulation could be reversed by 5-Aza-dc treatment. Additionally, 5-Aza-dc reversed the alcohol-induced downregulation of neurotrophin-3 (Ntf3), correspondingly the expression of its receptor-TrkC was reduced. These findings identified a functional role of 5-Aza-dc in alcohol-related behavioral phenotypes and one of the potential target genes, Ntf3. We also provide novel evidence for DNA methyltransferases as potential therapeutic targets in alcohol abuse.
Collapse
Affiliation(s)
- Xiaomeng Qiao
- College of Forensic Science, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Fangyuan Yin
- College of Forensic Science, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yuanyuan Ji
- College of Forensic Science, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yunxiao Li
- College of Forensic Science, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Peng Yan
- College of Forensic Science, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Jianghua Lai
- College of Forensic Science, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, Shaanxi, China
| |
Collapse
|
57
|
Li Q, Xue X, Li W, Wang Q, Han L, Brunson T, Xu W, Chambers-Harris I, Wang Q, Li X, Ma L, Song Q. Heterogeneous DNA methylation status in same-cell subpopulations of ovarian cancer tissues. Tumour Biol 2017; 39:1010428317701650. [PMID: 28618935 DOI: 10.1177/1010428317701650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study aims to explore the heterogeneous DNA methylation differences between individual single ovarian cancer cells isolated from the same formalin-fixed and paraffin-embedded human ovarian cancer tissue. Single cells were isolated by laser microdissection. Whole genome amplification and polymerase chain reaction purification were performed on the converted genomic DNA. Target primers designed for checking DNA methylation were used in polymerase chain reaction reactions to amplify special fragments. Sequencing was performed to analyze the heterogeneous DNA methylation statuses of different single ovarian cancer cells. Three of nine single human ovarian cancer cells showed positive bands (33.3%) on separating gel. The methylated and unmethylated CpGs were shown at the same loci in different single cells. We show heterogeneous DNA methylation statuses in same-cell subpopulations.
Collapse
Affiliation(s)
- Qiling Li
- 1 Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xue Xue
- 1 Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Wenzhi Li
- 2 Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Qi Wang
- 1 Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Lu Han
- 1 Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Tiffany Brunson
- 2 Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Wei Xu
- 2 Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Qing Wang
- 1 Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xu Li
- 1 Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Li Ma
- 2 Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA, USA
| | - Qing Song
- 1 Department of Obstetrics and Gynecology, First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
- 2 Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
58
|
Long-term consequences of disrupting adenosine signaling during embryonic development. Mol Aspects Med 2017; 55:110-117. [PMID: 28202385 DOI: 10.1016/j.mam.2017.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/27/2017] [Accepted: 02/03/2017] [Indexed: 12/16/2022]
Abstract
There is growing evidence that disruption in the prenatal environment can have long-lasting effects on an individual's health in adulthood. Research on the fetal programming of adult diseases, including cardiovascular disease, focuses on epi-mutations, which alter the normal pattern of epigenetic factors such as DNA methylation, miRNA expression, or chromatin modification, rather than traditional genetic alteration. Thus, understanding how in utero chemical exposures alter epigenetics and lead to adult disease is of considerable public health concern. Few signaling molecules have the potential to influence the developing mammal as the nucleoside adenosine. Adenosine levels increase rapidly with tissue hypoxia and inflammation. Adenosine antagonists including the methlyxanthines caffeine and theophylline are widely consumed during pregnancy. The receptors that transduce adenosine action are the A1, A2a, A2b, and A3 adenosine receptors (ARs). We examined the long-term effects of in utero disruption of adenosine signaling on cardiac gene expression, morphology, and function in adult offspring. One substance that fetuses are frequently exposed to is caffeine, which is a non-selective adenosine receptor antagonist. Over the past several years, we examined the role of adenosine signaling during embryogenesis and cardiac development. We discovered that in utero alteration in adenosine action leads to adverse effects on embryonic and adult murine hearts. We find that cardiac A1ARs protect the embryo from in utero hypoxic stress, a condition that causes an increase in adenosine levels. After birth in mice, we observed that in utero caffeine exposure leads to abnormal cardiac function and morphology in adults, including an impaired response to β-adrenergic stimulation. Recently, we observed that in utero caffeine exposure induces transgenerational effects on cardiac morphology, function, and gene expression. Our findings indicate that the effects of altered adenosine signaling are dependent on signaling through the A1ARs and timing of disruption. In addition, the long-term effects of altered adenosine signaling appear to be mediated by alterations in DNA methylation, an epigenetic process critical for normal development.
Collapse
|
59
|
Kronfol MM, Dozmorov MG, Huang R, Slattum PW, McClay JL. The role of epigenomics in personalized medicine. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017; 2:33-45. [PMID: 29276780 DOI: 10.1080/23808993.2017.1284557] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction Epigenetics is the study of reversible modifications to chromatin and their extensive and profound effects on gene regulation. To date, the role of epigenetics in personalized medicine has been under-explored. Therefore, this review aims to highlight the vast potential that epigenetics holds. Areas covered We first review the cell-specific nature of epigenetic states and how these can vary with developmental stage and in response to environmental factors. We then summarize epigenetic biomarkers of disease, with a focus on diagnostic tests, followed by a detailed description of current and pipeline drugs with epigenetic modes of action. Finally, we discuss epigenetic biomarkers of drug response. Expert commentary Epigenetic variation can yield information on cellular states and developmental histories in ways that genotype information cannot. Furthermore, in contrast to fixed genome sequence, epigenetic patterns are plastic, so correcting aberrant, disease-causing epigenetic marks holds considerable therapeutic promise. While just six epigenetic drugs are currently approved for use in the United States, a larger number is being developed. However, a drawback to current therapeutics is their non-specific effects. Development of locus-specific epigenetic modifiers, used in conjunction with epigenetic biomarkers of response, will enable truly precision interventions.
Collapse
Affiliation(s)
- Mohamad M Kronfol
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Rong Huang
- Department of Medicinal Chemistry, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| | - Patricia W Slattum
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| | - Joseph L McClay
- Department of Pharmacotherapy and Outcomes Science, Virginia Commonwealth University School of Pharmacy, Richmond, Virginia, USA
| |
Collapse
|
60
|
Yu L, Li N, Zhang J, Jiang Y. IL-13 regulates human nasal epithelial cell differentiation via H3K4me3 modification. J Inflamm Res 2017; 10:181-188. [PMID: 29386911 PMCID: PMC5767096 DOI: 10.2147/jir.s149156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Introduction Epigenetic regulation has been shown to play an important role in the development of inflammatory diseases, including chronic rhinosinusitis and nasal polyps. The latter are characterized by epithelial mis-differentiation and infiltration of inflammatory cytokines. H3K4me3 has been shown to be involved in regulating lineage commitment. However, the underlying mechanisms, especially in human nasal epithelial cells (HNEpC), remain underexplored. The objective of this study was to investigate the role of H3K4me3 in HNEpC differentiation treated with the Th2 cytokine IL-13. Patients and methods The expression levels of mRNA and proteins were investigated using reverse transcription-polymerase chain reaction (RT-PCR) assays and Western blot in nasal polyp tissues and human nasal epithelial cells respectively. We measured these levels of H3K4me3, MLL1 and targeted genes compared with control subjects. Results We demonstrate that expression of H3K4me3 and its methyltransferase MLL1 was significantly upregulated in IL-13-treated HNEpC. This elevation was also observed in nasal polyps. Expression of cilia-related transcription factors FOXJ1 and DNAI2 decreased, while goblet cell-derived genes CLCA1 and MUC5a increased upon IL-13 treatment. Mechanistically, knockdown of MLL1 restored expression of these four genes induced by IL-13. Conclusion These findings suggest that H3K4me3 is a critical regulator in control of nasal epithelial cell differentiation. MLL1 may be a potential therapeutic target for nasal inflammatory diseases.
Collapse
Affiliation(s)
- Lei Yu
- Department of Otorhinolaryngology
| | - Na Li
- Department of Otorhinolaryngology
| | - Jisheng Zhang
- Key Laboratory of Otolaryngology-Head and Neck Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | | |
Collapse
|
61
|
Hizel C, Tremblay J, Bartlett G, Hamet P. Introduction. PROGRESS AND CHALLENGES IN PRECISION MEDICINE 2017:1-34. [DOI: 10.1016/b978-0-12-809411-2.00001-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
62
|
Understanding epigenetic architecture of suicide neurobiology: A critical perspective. Neurosci Biobehav Rev 2016; 72:10-27. [PMID: 27836463 DOI: 10.1016/j.neubiorev.2016.10.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/26/2016] [Accepted: 10/31/2016] [Indexed: 12/29/2022]
Abstract
Current understanding of environmental cross-talk with genetic makeup is found to be mediated through an epigenetic interface which is associated with prominent reversible and heritable changes at gene expression level. Recent emergence of epigenetic modulation in shaping the genetic information has become a key regulatory factor in answering the underlying complexities associated with several mental disorders. A comprehensive understanding of the pertinent changes in the epigenetic makeup of suicide phenotype exhibits a characteristic signature with the possibility of using it as a biomarker to help predict the risk factors associated with suicide. Within the scope of this current review, the most sought after epigenetic changes of DNA methylation and histone modification are thoroughly scrutinized to understand their close functional association with the broad spectrum of suicide phenotype.
Collapse
|
63
|
Abstract
The last decade has been marked by an increased interest in relating epigenetic mechanisms to complex human behaviors, although this interest has not been balanced, accentuating various types of affective and primarily ignoring cognitive functioning. Recent animal model data support the view that epigenetic processes play a role in learning and memory consolidation and help transmit acquired memories even across generations. In this review, we provide an overview of various types of epigenetic mechanisms in the brain (DNA methylation, histone modification, and noncoding RNA action) and discuss their impact proximally on gene transcription, protein synthesis, and synaptic plasticity and distally on learning, memory, and other cognitive functions. Of particular importance are observations that neuronal activation regulates the dynamics of the epigenome's functioning under precise timing, with subsequent alterations in the gene expression profile. In turn, epigenetic regulation impacts neuronal action, closing the circle and substantiating the signaling pathways that underlie, at least partially, learning, memory, and other cognitive processes.
Collapse
|
64
|
Abstract
Genome targeting has quickly developed as one of the most promising fields in science. By using programmable DNA-binding platforms and nucleases, scientists are now able to accurately edit the genome. These DNA-binding tools have recently also been applied to engineer the epigenome for gene expression modulation. Such epigenetic editing constructs have firmly demonstrated the causal role of epigenetics in instructing gene expression. Another focus of epigenome engineering is to understand the order of events of chromatin remodeling in gene expression regulation. Groundbreaking approaches in this field are beginning to yield novel insights into the function of individual chromatin marks in the context of maintaining cellular phenotype and regulating transient gene expression changes. This review focuses on recent advances in the field of epigenetic editing and highlights its promise for sustained gene expression reprogramming.
Collapse
|
65
|
Differential regulation of expression of RNA-editing enzymes, ADAR1 and ADAR2, by 5-aza-2'-deoxycytidine and trichostatin A in human neuronal SH-SY5Y cells. Neuroreport 2016; 26:1089-94. [PMID: 26485095 DOI: 10.1097/wnr.0000000000000474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Adenosine deaminase acting on RNA (ADAR) enzymes, ADAR1 and ADAR2, mediates adenosine-to-inosine RNA editing, and their mRNA expressions are altered during developmental, physiological, and pathophysiological processes in the nervous system. The present study attempted to investigate the involvement of epigenetic modifying enzymes, such as DNA methyltransferase (DNMT) and histone deacetylase (HDAC), in the regulation of ADAR1 and ADAR2 mRNA expressions in neuronal cells. Using human neuronal SH-SY5Y cells, we found that the DNMT inhibitor 5-aza-2'-deoxycytidine led to an increase in ADAR2, but not ADAR1, mRNA expression in a concentration-dependent and time-dependent manner. However, treatment with HDAC inhibitor trichostatin A elicited an increase in ADAR2 mRNA expression and a decrease in ADAR1 mRNA expression, and these changes were blocked by actinomycin D, a transcription inhibitor. Taken together, these findings suggest that ADAR1 and ADAR2 expressions are subject to different regulations by DNMT and HDAC enzymes in neuronal SH-SY5Y cells.
Collapse
|
66
|
Writing of H3K4Me3 overcomes epigenetic silencing in a sustained but context-dependent manner. Nat Commun 2016; 7:12284. [PMID: 27506838 PMCID: PMC4987519 DOI: 10.1038/ncomms12284] [Citation(s) in RCA: 185] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 06/20/2016] [Indexed: 02/06/2023] Open
Abstract
Histone modifications reflect gene activity, but the relationship between cause and consequence of transcriptional control is heavily debated. Recent developments in rewriting local histone codes of endogenous genes elucidated instructiveness of certain marks in regulating gene expression. Maintenance of such repressive epigenome editing is controversial, while stable reactivation is still largely unexplored. Here we demonstrate sustained gene re-expression using two types of engineered DNA-binding domains fused to a H3K4 methyltransferase. Local induction of H3K4me3 is sufficient to allow re-expression of silenced target genes in various cell types. Maintenance of the re-expression is achieved, but strongly depends on the chromatin microenvironment (that is, DNA methylation status). We further identify H3K79me to be essential in allowing stable gene re-expression, confirming its role in epigenetic crosstalk for stable reactivation. Our approach uncovers potent epigenetic modifications to be directly written onto genomic loci to stably activate any given gene.
Collapse
|
67
|
Li Y, Buckhaults P, Cui X, Tollefsbol TO. Combinatorial epigenetic mechanisms and efficacy of early breast cancer inhibition by nutritive botanicals. Epigenomics 2016; 8:1019-37. [PMID: 27478970 PMCID: PMC5066124 DOI: 10.2217/epi-2016-0024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aim: Aberrant epigenetic events are important contributors to the pathogenesis of different types of cancers and dietary botanicals with epigenetic properties can influence early cancer development leading to cancer prevention effects. We sought to investigate potential combinatorial effects of bioactive dietary components including green tea polyphenols (GTPs) and broccoli sprouts (BSp) on neutralizing epigenetic aberrations during breast tumorigenesis. Materials & methods: The combinatorial effects were evaluated in a breast cancer transformation cellular system and breast cancer mouse xenografts. Results & conclusion: Combined treatment with epigallocatechin-3-gallate in GTPs and sulforaphane in BSp resulted in a synergistic inhibition of breast cancer cellular growth. Further studies revealed this combination led to genome-wide epigenetic alterations. Combinatorial diets significantly inhibited tumor growth in breast cancer mouse xenografts. Collectively, these studies indicate that combined GTPs and BSp are highly effective in inhibiting early breast cancer development by, at least in part, regulating epigenetic mechanisms.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Phillip Buckhaults
- Department of Drug Discovery & Biomedical Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Xiangqin Cui
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
68
|
Affiliation(s)
- Monica Bucci
- Center for Youth Wellness, 3450 3rd Street, Building 2, Suite 201, San Francisco, CA 94124, USA
| | - Sara Silvério Marques
- Center for Youth Wellness, 3450 3rd Street, Building 2, Suite 201, San Francisco, CA 94124, USA.
| | - Debora Oh
- Center for Youth Wellness, 3450 3rd Street, Building 2, Suite 201, San Francisco, CA 94124, USA
| | - Nadine Burke Harris
- Center for Youth Wellness, 3450 3rd Street, Building 2, Suite 201, San Francisco, CA 94124, USA
| |
Collapse
|
69
|
Zhang C, Suo J, Katayama H, Wei Y, Garcia-Manero G, Hanash S. Quantitative proteomic analysis of histone modifications in decitabine sensitive and resistant leukemia cell lines. Clin Proteomics 2016; 13:14. [PMID: 27382363 PMCID: PMC4932764 DOI: 10.1186/s12014-016-9115-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/04/2016] [Indexed: 12/12/2022] Open
Abstract
Background The refractory nature of many cancers remains the main health challenge over the past century. The epigenetic drug, decitabine (DAC), represents one of the most promising therapeutic agents in cancers particularly in acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS). However, its ambiguous anti-tumor mechanism and the unpredictable drug-resistant nature in some population compromise its application in cancer therapy. In crosstalk with DNA methylation, histone post-translational modifications (PTMs) are the key players in modulating the downstream epigenetic status of tumor suppressor genes. This study targets the role of decitabine in epigenetic regulation in leukemia therapy and searches responsive predictors and therapeutic targets for pretreatment evaluation and drug development. Results A simple, fast, and robust proteomic strategy identified 15 novel PTMs and 60 PTM combinations in two leukemia cell lines (MDS-L and TF-1). Histone modification profiles have been generated and compared between DAC sensitive and resistant groups (n = 3) in response to DAC treatment. Among these histone PTMs, five of which were found differentially upon DAC treatment in drug sensitive and resistant cells: H3.3K36me3, H4K8acK12acK16ac in MDS-L cells; and H3.1K27me1, H3.1K36me1, H3.1K27me1K36me1 in TF-1 cells. They may serve as biomarkers in predicting leukemia and drug responsiveness. In addition, we also explored PTM differences in two cell lines which were developed from early and advanced stages of AML. Three PTMs (H3.1K27me3, H3.1K27me2K36me2 and H3.3K27me2K36me2) are highly abundant in TF-1 cells (advanced AML cell line), suggesting their relevance to leukemogenesis. Our method allowed deep analysis of histone proteins and elucidation of a large number of histone PTMs with high precision and sensitivity. Conclusion DAC-induced DNA hypomethylation has wide impact on chromatin modifications. This study represents first effort to investigate the undefined epigenetic mechanism of decitabine in leukemia therapy. The identification of 15 novel PTMs and the discovery of several marks have relevance to epigenetic directed therapies. Electronic supplementary material The online version of this article (doi:10.1186/s12014-016-9115-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chunchao Zhang
- Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, 6767 Bertner Ave, Houston, TX 77030 USA
| | - Jinfeng Suo
- Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, 6767 Bertner Ave, Houston, TX 77030 USA
| | - Hiroyuki Katayama
- Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, 6767 Bertner Ave, Houston, TX 77030 USA
| | - Yue Wei
- Department of Leukemia, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 428, Houston, TX 77030 USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 428, Houston, TX 77030 USA
| | - Samir Hanash
- Clinical Cancer Prevention, University of Texas MD Anderson Cancer Center, 6767 Bertner Ave, Houston, TX 77030 USA
| |
Collapse
|
70
|
Hoernes TP, Erlacher MD. Translating the epitranscriptome. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27345446 PMCID: PMC5215311 DOI: 10.1002/wrna.1375] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/25/2016] [Accepted: 05/31/2016] [Indexed: 12/14/2022]
Abstract
RNA modifications are indispensable for the translation machinery to provide accurate and efficient protein synthesis. Whereas the importance of transfer RNA (tRNA) and ribosomal RNA (rRNA) modifications has been well described and is unquestioned for decades, the significance of internal messenger RNA (mRNA) modifications has only recently been revealed. Novel experimental methods have enabled the identification of thousands of modified sites within the untranslated and translated regions of mRNAs. Thus far, N6‐methyladenosine (m6A), pseudouridine (Ψ), 5‐methylcytosine (m5C) and N1‐methyladenosine (m1A) were identified in eukaryal, and to some extent in prokaryal mRNAs. Several of the functions of these mRNA modifications have previously been reported, but many aspects remain elusive. Modifications can be important factors for the direct regulation of protein synthesis. The potential diversification of genomic information and regulation of RNA expression through editing and modifying mRNAs is versatile and many questions need to be addressed to completely elucidate the role of mRNA modifications. Herein, we summarize and highlight some recent findings on various co‐ and post‐transcriptional modifications, describing the impact of these processes on gene expression, with emphasis on protein synthesis. WIREs RNA 2017, 8:e1375. doi: 10.1002/wrna.1375 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Thomas Philipp Hoernes
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Matthias David Erlacher
- Division of Genomics and RNomics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
71
|
Lubecka-Pietruszewska K, Kaufman-Szymczyk A, Stefanska B, Cebula-Obrzut B, Smolewski P, Fabianowska-Majewska K. Sulforaphane Alone and in Combination with Clofarabine Epigenetically Regulates the Expression of DNA Methylation-Silenced Tumour Suppressor Genes in Human Breast Cancer Cells. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2016; 8:91-101. [PMID: 26372775 DOI: 10.1159/000439111] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/29/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIM Sporadic breast cancer is frequently associated with aberrant DNA methylation patterns that are reversible and responsive to environmental factors, including diet. In the present study, we investigated the effects of sulforaphane (SFN), a phytochemical from cruciferous vegetables, on the methylation and expression of PTEN and RARbeta2 tumour suppressor genes as well as on the expression of regulators of DNA methylation reaction, DNMT1 , p53 , and p21 , in MCF-7 and MDA-MB-231 human breast cancer cells with different invasive potential. We also evaluate the role of SFN epigenetic effects in support of therapy with clofarabine (ClF) that was recently shown to modulate the epigenome as well. METHODS Promoter methylation and gene expression were estimated using methylation-sensitive restriction analysis and real-time PCR, respectively. RESULTS In both MCF-7 and MDA-MB-231 cells, SFN at IC 50 (22 and 46 μ M , respectively) and a physiologically relevant 10 μ M concentration lead to hypomethylation of PTEN and RARbeta2 promoters with concomitant gene upregulation. The combination of SFN and ClF enhances these effects, resulting in an increase in cell growth arrest and apoptosis at a non-invasive breast cancer stage. CONCLUSIONS Our findings provide evidence that SFN activates DNA methylation-silenced tumour suppressor genes in breast cancer cells and may contribute to SFN-mediated support of therapy with an anti-cancer drug, ClF, increasing its applications in solid tumours.
Collapse
|
72
|
Bernard C. The Diathesis-Epilepsy Model: How Past Events Impact the Development of Epilepsy and Comorbidities. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a022418. [PMID: 27194167 DOI: 10.1101/cshperspect.a022418] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In epilepsy, seizures and comorbidities (e.g., cognitive deficits and depression) occur when specific thresholds are crossed. These thresholds depend on the diathesis (or vulnerability) of a given individual. The diathesis is controlled by multiple genetic and environmental factors. Diathesis changes over multiple timescales: on a daily basis, and as part of the development/aging processes, etc. The diathesis-epilepsy model introduced here provides a conceptual framework to understand how past events (e.g., a very stressful event) can directly influence the occurrence of epilepsy and comorbidities later in life. Experimental evidence supports this model, and the existence of biomarkers predictive of a vulnerability state have led to the development of preventive therapeutic strategies. Epigenetic modifications could be a key determinant of diathesis. Their role is discussed.
Collapse
Affiliation(s)
- Christophe Bernard
- Aix Marseille Université, Inserm, INS UMR S 1106, 13005 Marseille, France
| |
Collapse
|
73
|
Lendvai Á, Deutsch MJ, Plösch T, Ensenauer R. The peroxisome proliferator-activated receptors under epigenetic control in placental metabolism and fetal development. Am J Physiol Endocrinol Metab 2016; 310:E797-810. [PMID: 26860983 DOI: 10.1152/ajpendo.00372.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 02/02/2016] [Indexed: 01/09/2023]
Abstract
The placental metabolism can adapt to the environment throughout pregnancy to both the demands of the fetus and the signals from the mother. Such adaption processes include epigenetic mechanisms, which alter gene expression and may influence the offspring's health. These mechanisms are linked to the diversity of prenatal environmental exposures, including maternal under- or overnutrition or gestational diabetes. The peroxisome proliferator-activated receptors (PPARs) are nuclear receptors that contribute to the developmental plasticity of the placenta by regulating lipid and glucose metabolism pathways, including lipogenesis, steroidogenesis, glucose transporters, and placental signaling pathways, thus representing a link between energy metabolism and reproduction. Among the PPAR isoforms, PPARγ appears to be the main modulator of mammalian placentation. Certain fatty acids and lipid-derived moieties are the natural activating PPAR ligands. By controlling the amounts of maternal nutrients that go across to the fetus, the PPARs play an important regulatory role in placenta metabolism, thereby adapting to the maternal nutritional status. As demonstrated in animal studies, maternal nutrition during gestation can exert long-term influences on the PPAR methylation pattern in offspring organs. This review underlines the current state of knowledge on the relationship between environmental factors and the epigenetic regulation of the PPARs in placenta metabolism and offspring development.
Collapse
Affiliation(s)
- Ágnes Lendvai
- Center for Liver, Digestive, and Metabolic Diseases, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Manuel J Deutsch
- Research Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Torsten Plösch
- Department of Obstetrics and Gynecology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands;
| | - Regina Ensenauer
- Research Center, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany; Experimental Pediatrics, Department of General Pediatrics, Pediatric Cardiology, and Neonatology, Heinrich-Heine-University Düsseldorf, Dusseldorf, Germany
| |
Collapse
|
74
|
Guidotti A, Grayson DR, Caruncho HJ. Epigenetic RELN Dysfunction in Schizophrenia and Related Neuropsychiatric Disorders. Front Cell Neurosci 2016; 10:89. [PMID: 27092053 PMCID: PMC4820443 DOI: 10.3389/fncel.2016.00089] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/21/2016] [Indexed: 01/02/2023] Open
Abstract
REELIN (RELN) is a large (420 kDa) glycoprotein that in adulthood is mostly synthesized in GABAergic neurons of corticolimbic structures. Upon secretion in the extracellular matrix (ECM), RELN binds to VLDL, APOE2, and α3β2 Integrin receptors located on dendritic shafts and spines of postsynaptic pyramidal neurons. Reduced levels of RELN expression in the adult brain induce cognitive impairment and dendritic spine density deficits. RELN supplementation recovers these deficits suggesting a trophic action for RELN in synaptic plasticity. We and others have shown that altered RELN expression in schizophrenia (SZ) and bipolar (BP) disorder patients is difficult to reconcile with classical Mendelian genetic disorders and it is instead plausible to associate these disorders with altered epigenetic homeostasis. Support for the contribution of altered epigenetic mechanisms in the down-regulation of RELN expression in corticolimbic structures of psychotic patients includes the concomitant increase of DNA-methyltransferases and the increased levels of the methyl donor S-adenosylmethionine (SAM). It is hypothesized that these conditions lead to RELN promoter hypermethylation and a reduction in RELN protein amounts in psychotic patients. The decreased synthesis and release of RELN from GABAergic corticolimbic neurons could serve as a model to elucidate the epigenetic pathophysiological mechanisms acting at pyramidal neuron dendrites that regulate synaptic plasticity and cognition in psychotic and non-psychotic subjects.
Collapse
Affiliation(s)
- Alessandro Guidotti
- Department of Psychiatry, The Psychiatric Institute, College of Medicine, University of Illinois at Chicago Chicago, IL, USA
| | - Dennis R Grayson
- Department of Psychiatry, The Psychiatric Institute, College of Medicine, University of Illinois at Chicago Chicago, IL, USA
| | - Hector J Caruncho
- College of Pharmacy and Nutrition, University of Saskatchewan Saskatoon, SK, Canada
| |
Collapse
|
75
|
Keller SM, Roth TL. Environmental influences on the female epigenome and behavior. ENVIRONMENTAL EPIGENETICS 2016; 2:dvw007. [PMID: 27746953 PMCID: PMC5065103 DOI: 10.1093/eep/dvw007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
Environmental factors have long-lasting effects on brain development and behavior. One way experiences are propagated is via epigenetic modifications to the genome. Environmentally-driven epigenetic modifications show incredible brain region- and sex-specificity, and many brain regions affected are ones involved in maternal behavior. In rodent models, females are typically the primary caregiver and thus, any environmental factors that modulate the epigenotype of the mother could have consequences for her current and future offspring. Here we review evidence of the susceptibility of the female epigenome to environmental factors, with a focus on brain regions involved in maternal behavior. Accordingly, implications for interventions that target the mother's epigenome and parenting behavior are discussed.
Collapse
Affiliation(s)
- Samantha M. Keller
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Tania L. Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
76
|
Impey S, Pelz C, Tafessu A, Marzulla T, Turker MS, Raber J. Proton irradiation induces persistent and tissue-specific DNA methylation changes in the left ventricle and hippocampus. BMC Genomics 2016; 17:273. [PMID: 27036964 PMCID: PMC4815246 DOI: 10.1186/s12864-016-2581-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/08/2016] [Indexed: 02/06/2023] Open
Abstract
Background Proton irradiation poses a potential hazard to astronauts during and following a mission, with post-mitotic cells at most risk because they cannot dilute resultant epigenetic changes via cell division. Persistent epigenetic changes that result from environmental exposures include gains or losses of DNA methylation of cytosine, which can impact gene expression. In the present study, we compared the long-term epigenetic effects of whole body proton irradiation in the mouse hippocampus and left ventricle. We used an unbiased genome-wide DNA methylation study, involving ChIP-seq with antibodies to 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) to identify DNA regions in which methylation levels have changed 22 weeks after a single exposure to proton irradiation. We used DIP-Seq to profile changes in genome-wide DNA methylation and hydroxymethylation following proton irradiation. In addition, we used published RNAseq data to assess whether differentially methylated regions were linked to changes in gene expression. Results The DNA methylation data showed tissue-dependent effects of proton irradiation and revealed significant major pathway changes in response to irradiation that are related to known pathophysiologic processes. Many regions affected in the ventricle mapped to genes involved in cardiovascular function pathways, whereas many regions affected in the hippocampus mapped to genes involved in neuronal functions. In the ventricle, increases in 5hmC were associated with decreases in 5mC. We also observed spatial overlap for regions where both epigenetic marks decreased in the ventricle. In hippocampus, increases in 5hmC were most significantly correlated (spatially) with regions that had increased 5mC, suggesting that deposition of hippocampal 5mC and 5hmC may be mechanistically coupled. Conclusions The results demonstrate long-term changes in DNA methylation patterns following a single proton irradiation, that these changes are tissue specific, and that they map to pathways consistent with tissue specific responses to proton irradiation. Further, the results suggest novel relationships between changes in 5mC and 5hmC. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2581-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Soren Impey
- Oregon Stem Cell Center and Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA. .,Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, OR, 97239, USA. .,Department of Pediatric, L321, Oregon Health and Science University, 3181SW Sam Jackson Park Road, Portland, OR, 97239, USA.
| | - Carl Pelz
- Oregon Stem Cell Center and Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Amanuel Tafessu
- Oregon Stem Cell Center and Department of Pediatrics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Tessa Marzulla
- Department of Behavioral Neuroscience, L470, Oregon Health and Science University, 3181SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Mitchell S Turker
- Oregon Institute of Occupational Health Sciences and Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, L470, Oregon Health and Science University, 3181SW Sam Jackson Park Road, Portland, OR, 97239, USA. .,Departments of Neurology and Radiation Medicine, Division of Neuroscience ONPRC, Oregon Health and Science University, Portland, OR, 97239, USA. .,Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR, 97239, USA.
| |
Collapse
|
77
|
Tan NN, Tang HL, Lin GW, Chen YH, Lu P, Li HJ, Gao MM, Zhao QH, Yi YH, Liao WP, Long YS. Epigenetic Downregulation of Scn3a Expression by Valproate: a Possible Role in Its Anticonvulsant Activity. Mol Neurobiol 2016; 54:2831-2842. [PMID: 27013471 DOI: 10.1007/s12035-016-9871-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/17/2016] [Indexed: 12/20/2022]
Abstract
Upregulation of sodium channel SCN3A expression in epileptic tissues is known to contribute to enhancing neuronal excitability and the development of epilepsy. Therefore, certain strategies to reduce SCN3A expression may be helpful for seizure control. Here, we reveal a novel role of valproate (VPA) in the epigenetic downregulation of Scn3a expression. We found that VPA, instead of carbamazepine (CBZ) and lamotrigine (LTG), could significantly downregulate Scn3a expression in mouse Neuro-2a cells. Luciferase assays and CpG methylation analyses showed that VPA induced the methylation at the -39C site in Scn3a promoter which decreased the promoter activity. We further showed that VPA downregulated the expression of methyl-CpG-binding domain protein 2 (MBD2) at the posttranscriptional level and knockdown of MBD2 increased Scn3a expression. In addition, we found that VPA induced the expression of fat mass and obesity-associated (FTO) protein and FTO knockdown abolished the repressive effects of VPA on MBD2 and Nav1.3 expressions. Furthermore, VPA, instead of other two anticonvulsant drugs, induced the expressions of Scn3a and Mbd2 and reduced Fto expression in the hippocampus of VPA-treated seizure mice. Taken together, this study suggests an epigenetic pathway for the VPA-induced downregulation of Scn3a expression, which provides a possible role of this pathway in the anticonvulsant action of VPA.
Collapse
Affiliation(s)
- Na-Na Tan
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Hui-Ling Tang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Guo-Wang Lin
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yong-Hong Chen
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Ping Lu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Hai-Jun Li
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Mei-Mei Gao
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Qi-Hua Zhao
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yong-Hong Yi
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Wei-Ping Liao
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China.,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China
| | - Yue-Sheng Long
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, 250 Changang East Road, Guangzhou, 510260, China. .,Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou, China.
| |
Collapse
|
78
|
Ahmadzadeh-Amiri A, Ahmadzadeh-Amiri A. Epigenetic Diabetic Vascular Complications. JOURNAL OF PEDIATRICS REVIEW 2016. [DOI: 10.17795/jpr-3375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
79
|
Huang Y, Wang G, Liang Z, Yang Y, Cui L, Liu CY. Loss of nuclear localization of TET2 in colorectal cancer. Clin Epigenetics 2016; 8:9. [PMID: 26816554 PMCID: PMC4727298 DOI: 10.1186/s13148-016-0176-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 01/17/2016] [Indexed: 11/17/2022] Open
Abstract
5-Hydroxymethylcytosine (5hmC) is lost in multiple human cancers, including colorectal cancer (CRC). Decreased ten-eleven translocation 1 (TET1) messenger RNA (mRNA), but not other two TET family members, has been observed in the colorectal cancer and is crucial for colorectal cancer initiation. Here, we show that nuclear localization of TET2 was lost in a significant portion of CRC tissues, in association with metastasis. In CRC cells, nuclear expression of TET2 were absent but not TET3. Nuclear export inhibitor can increase the 5hmC level in CRC cells, probably through regulating TET2. Our results indicate a new mechanism of TET2 dysregulation in colorectal cancer.
Collapse
Affiliation(s)
- Yuji Huang
- Department of colorectal and anal surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Colorectal Cancer Research Centre, Shanghai, China
| | - Guanghui Wang
- Department of colorectal and anal surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Colorectal Cancer Research Centre, Shanghai, China
| | - Zhonglin Liang
- Department of colorectal and anal surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Colorectal Cancer Research Centre, Shanghai, China
| | - Yili Yang
- Department of colorectal and anal surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Colorectal Cancer Research Centre, Shanghai, China
| | - Long Cui
- Department of colorectal and anal surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Colorectal Cancer Research Centre, Shanghai, China
| | - Chen-Ying Liu
- Department of colorectal and anal surgery, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Shanghai Colorectal Cancer Research Centre, Shanghai, China
| |
Collapse
|
80
|
Kohan-Ghadr HR, Kadam L, Jain C, Armant DR, Drewlo S. Potential role of epigenetic mechanisms in regulation of trophoblast differentiation, migration, and invasion in the human placenta. Cell Adh Migr 2016; 10:126-35. [PMID: 26745760 PMCID: PMC4853046 DOI: 10.1080/19336918.2015.1098800] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The proper establishment and organogenesis of the placenta is crucial for intrauterine fetal growth and development. Endometrial invasion by the extravillous trophoblast cells, as well as formation of the syncytiotrophoblast (STB), are of vital importance for placental function. Trophoblast migration and invasion is often compared to tumor metastasis, which uses many of the same molecular mechanisms. However, unlike cancer cells, both initiation and the extent of trophoblast invasion are tightly regulated by feto-maternal cross-talk, which when perturbed, results in a wide range of abnormalities. Multiple factors control the trophoblast, including cytokines and hormones, which are subject to transcriptional regulatory networks. The relevance of epigenetics in transcriptional regulation of trophoblast differentiation and invasion, as well as in the onset of placenta-related pregnancy disorders, became recognized decades ago. Although, there has been tremendous progress in uncovering the molecular foundation of placental development, there is still much to be learned about the epigenetic machinery, and its role in trophoblast differentiation and invasion. This review will provide an overview of the epigenetic control of trophoblast differentiation and invasion. It will also highlight the major epigenetic mechanisms involved in pregnancy complications related to placental deficiencies.
Collapse
Affiliation(s)
- Hamid-Reza Kohan-Ghadr
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Leena Kadam
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chandni Jain
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - D. Randall Armant
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sascha Drewlo
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
81
|
Terry MB, McDonald JA, Wu HC, Eng S, Santella RM. Epigenetic Biomarkers of Breast Cancer Risk: Across the Breast Cancer Prevention Continuum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 882:33-68. [PMID: 26987530 PMCID: PMC5305320 DOI: 10.1007/978-3-319-22909-6_2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Epigenetic biomarkers, such as DNA methylation, can increase cancer risk through altering gene expression. The Cancer Genome Atlas (TCGA) Network has demonstrated breast cancer-specific DNA methylation signatures. DNA methylation signatures measured at the time of diagnosis may prove important for treatment options and in predicting disease-free and overall survival (tertiary prevention). DNA methylation measurement in cell free DNA may also be useful in improving early detection by measuring tumor DNA released into the blood (secondary prevention). Most evidence evaluating the use of DNA methylation markers in tertiary and secondary prevention efforts for breast cancer comes from studies that are cross-sectional or retrospective with limited corresponding epidemiologic data, raising concerns about temporality. Few prospective studies exist that are large enough to address whether DNA methylation markers add to the prediction of tertiary and secondary outcomes over and beyond standard clinical measures. Determining the role of epigenetic biomarkers in primary prevention can help in identifying modifiable pathways for targeting interventions and reducing disease incidence. The potential is great for DNA methylation markers to improve cancer outcomes across the prevention continuum. Large, prospective epidemiological studies will provide essential evidence of the overall utility of adding these markers to primary prevention efforts, screening, and clinical care.
Collapse
Affiliation(s)
- Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| | - Jasmine A McDonald
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Hui Chen Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Sybil Eng
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Regina M Santella
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
82
|
Epigenome Editing: State of the Art, Concepts, and Perspectives. Trends Genet 2015; 32:101-113. [PMID: 26732754 DOI: 10.1016/j.tig.2015.12.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/28/2015] [Accepted: 12/01/2015] [Indexed: 12/21/2022]
Abstract
Epigenome editing refers to the directed alteration of chromatin marks at specific genomic loci by using targeted EpiEffectors which comprise designed DNA recognition domains (zinc finger, TAL effector, or modified CRISPR/Cas9 complex) and catalytic domains from a chromatin-modifying enzyme. Epigenome editing is a promising approach for durable gene regulation, with many applications in basic research including the investigation of the regulatory functions and logic of chromatin modifications and cellular reprogramming. From a clinical point of view, targeted regulation of disease-related genes offers novel therapeutic avenues for many diseases. We review here the progress made in this field and discuss open questions in epigenetic regulation and its stability, methods to increase the specificity of epigenome editing, and improved delivery methods for targeted EpiEffectors. Future work will reveal if the approach of epigenome editing fulfills its great promise in basic research and clinical applications.
Collapse
|
83
|
Han S, Zhang H, Lockett GA, Mukherjee N, Holloway JW, Karmaus W. Identifying heterogeneous transgenerational DNA methylation sites via clustering in beta regression. Ann Appl Stat 2015. [DOI: 10.1214/15-aoas865] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
84
|
Greißel A, Culmes M, Burgkart R, Zimmermann A, Eckstein HH, Zernecke A, Pelisek J. Histone acetylation and methylation significantly change with severity of atherosclerosis in human carotid plaques. Cardiovasc Pathol 2015; 25:79-86. [PMID: 26764138 DOI: 10.1016/j.carpath.2015.11.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The aim of the study was to analyze histone acetylation, methylation, and the expression of their corresponding transferases in atherosclerotic plaques of patients with carotid artery stenosis. METHODS Atherosclerotic tissue from our biobank (n=80) was divided into various segments covering all plaque stages and classified according to the American Heart Association. The plaques were assigned to early (types I-III) or advanced (types V-VII) stage group of atherosclerosis. Ten healthy carotid arteries from transplant donors served as controls. The expression of histone acetyltransferases (GNAT group: GCN5L, P300/CBP group: P300, MYST group: MYST1 and MYST2) and histone methyltransferases (H3K4: MLL2/4, SET7/9, and hSET1A; H3K9: SUV39H1, SUV39H2, ESET/SETDB1, and EHMT1; H3K27: EZH2 and G9a) was analyzed by SYBR-green-based real-time polymerase chain reaction. Histone acetylation/methylation in the cells within atherosclerotic plaques was determined by immunohistochemistry. RESULTS Increased histone acetylation was observed on H3K9 and H3K27 in smooth muscle cells (SMCs) in advanced atherosclerotic lesions compared to healthy vessels (P=.002 and .034). H3K9 acetylation in SMCs and macrophages was associated with plaque severity of atherosclerosis (P=.048 and <.001). Expression of GCN5L and MYST1 also correlated with the severity of atherosclerosis (P<.001). Methylation of H3K9 and H3K27 was significantly reduced in atherosclerotic plaques in SMCs and inflammatory cells (P<.001 and .026). Methylation on H3K4 was significantly associated with the severity of atherosclerosis. Expression of methyltransferase MLL2/4 was increased in advanced stages of atherosclerosis (P<.001). CONCLUSIONS Histone acetylation and methylation seem to play a decisive role in atherosclerosis, showing significant differences between healthy vessels and vessels at different stages of atherosclerosis.
Collapse
Affiliation(s)
- Anna Greißel
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Germany
| | - Mihaela Culmes
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Germany
| | - Rainer Burgkart
- Clinic of Orthopedics, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Germany
| | - Alexander Zimmermann
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Germany
| | - Hans-Henning Eckstein
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Germany
| | - Alma Zernecke
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Germany; Institute of Clinical Biochemistry and Pathobiochemistry, University Hospital, Wuerzburg, Germany
| | - Jaroslav Pelisek
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Germany.
| |
Collapse
|
85
|
Shavit Y, Merelli I, Milanesi L, Lio’ P. How computer science can help in understanding the 3D genome architecture. Brief Bioinform 2015; 17:733-44. [DOI: 10.1093/bib/bbv085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Indexed: 01/20/2023] Open
|
86
|
Ernst UR, Van Hiel MB, Depuydt G, Boerjan B, De Loof A, Schoofs L. Epigenetics and locust life phase transitions. ACTA ACUST UNITED AC 2015; 218:88-99. [PMID: 25568455 DOI: 10.1242/jeb.107078] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Insects are one of the most successful classes on Earth, reflected in an enormous species richness and diversity. Arguably, this success is partly due to the high degree to which polyphenism, where one genotype gives rise to more than one phenotype, is exploited by many of its species. In social insects, for instance, larval diet influences the development into distinct castes; and locust polyphenism has tricked researchers for years into believing that the drastically different solitarious and gregarious phases might be different species. Solitarious locusts behave much as common grasshoppers. However, they are notorious for forming vast, devastating swarms upon crowding. These gregarious animals are shorter lived, less fecund and transmit their phase characteristics to their offspring. The behavioural gregarisation occurs within hours, yet the full display of gregarious characters takes several generations, as does the reversal to the solitarious phase. Hormones, neuropeptides and neurotransmitters influence some of the phase traits; however, none of the suggested mechanisms can account for all the observed differences, notably imprinting effects on longevity and fecundity. This is why, more recently, epigenetics has caught the interest of the polyphenism field. Accumulating evidence points towards a role for epigenetic regulation in locust phase polyphenism. This is corroborated in the economically important locust species Locusta migratoria and Schistocerca gregaria. Here, we review the key elements involved in phase transition in locusts and possible epigenetic regulation. We discuss the relative role of DNA methylation, histone modification and small RNA molecules, and suggest future research directions.
Collapse
Affiliation(s)
- Ulrich R Ernst
- Functional Genomics and Proteomics Lab, KU Leuven, Naamsestraat 59, bus 2465, B-3000 Leuven, Belgium
| | - Matthias B Van Hiel
- Functional Genomics and Proteomics Lab, KU Leuven, Naamsestraat 59, bus 2465, B-3000 Leuven, Belgium
| | - Geert Depuydt
- Functional Genomics and Proteomics Lab, KU Leuven, Naamsestraat 59, bus 2465, B-3000 Leuven, Belgium
| | - Bart Boerjan
- Functional Genomics and Proteomics Lab, KU Leuven, Naamsestraat 59, bus 2465, B-3000 Leuven, Belgium
| | - Arnold De Loof
- Functional Genomics and Proteomics Lab, KU Leuven, Naamsestraat 59, bus 2465, B-3000 Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics Lab, KU Leuven, Naamsestraat 59, bus 2465, B-3000 Leuven, Belgium
| |
Collapse
|
87
|
Li J, Wu S, Tang H, Huang W, Wang L, Zhou H, Zhou M, Wang H, Li J. Long-term effects of acupuncture treatment on airway smooth muscle in a rat model of smoke-induced chronic obstructive pulmonary disease. Acupunct Med 2015; 34:107-13. [PMID: 26345700 PMCID: PMC4853589 DOI: 10.1136/acupmed-2014-010674] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2015] [Indexed: 01/12/2023]
Abstract
Background Chronic obstructive pulmonary disease (COPD) is one of the most common lung diseases. It is a chronic inflammatory process characterised by airway obstruction and progressive lung inflammation, associated with difficulty breathing and insensitivity to corticosteroid therapy. Although there is some preliminary evidence to suggest a beneficial effect of acupuncture on COPD, its mechanism of action has not been investigated. Our aim was to examine the anti-inflammatory effects of acupuncture in a rat model of COPD induced by exposure to cigarette smoke (CS). Methods Sixty Sprague–Dawley rats were exposed to the smoke of 15 cigarettes for 1 h/day, 6 days/week for 3 months to induce COPD and treated with acupuncture at BL13 (Feishu), BL23 (Shenshu) and Dingchuan (COPD+Acupuncture, n=15), sham acupuncture (COPD+Sham, n=15) or left untreated (n=15). Exposed rats were compared with controls not exposed to CS (control, n=15). Pulmonary function was measured, and tumour necrosis factor-α (TNF-α) and interleukin-8 (IL-8) levels were determined in bronchoalveolar lavage fluid by ELISA. Histone deacetylase 2 (HDAC2) protein and mRNA expression were examined in lung tissue and in bronchus. Results Acupuncture treatment appeared to protect pulmonary function and reduce the COPD-induced inflammatory response by decreasing cell inflammation and the production of TNF-α and IL-8. Acupuncture also enhanced HDAC2 mRNA and protein expression, suggesting a possible direct effect on protein structure through post-translational modifications. Conclusions Our results suggest that acupuncture regulates inflammatory cytokines and contributes to lung protection in a rat model of smoke-induced COPD by modulating HDAC2.
Collapse
Affiliation(s)
- Jia Li
- Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
| | - Song Wu
- Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
| | - Hongtu Tang
- Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
| | - Wei Huang
- Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
| | - Lushan Wang
- Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China Taihe Hospital, Affiliated to Hubei University of Medicine, Shiyan, China
| | - Huanjiao Zhou
- Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
| | - Miao Zhou
- Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
| | - Hua Wang
- Hubei University of Chinese Medicine/Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
| | - Jing Li
- Department of Acupuncture, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| |
Collapse
|
88
|
Klengel T, Binder EB. Epigenetics of Stress-Related Psychiatric Disorders and Gene × Environment Interactions. Neuron 2015; 86:1343-57. [PMID: 26087162 DOI: 10.1016/j.neuron.2015.05.036] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A deeper understanding of the pathomechanisms leading to stress-related psychiatric disorders is important for the development of more efficient preventive and therapeutic strategies. Epidemiological studies indicate a combined contribution of genetic and environmental factors in the risk for disease. The environment, particularly early life severe stress or trauma, can lead to lifelong molecular changes in the form of epigenetic modifications that can set the organism off on trajectories to health or disease. Epigenetic modifications are capable of shaping and storing the molecular response of a cell to its environment as a function of genetic predisposition. This provides a potential mechanism for gene-environment interactions. Here, we review epigenetic mechanisms associated with the response to stress and trauma exposure and the development of stress-related psychiatric disorders. We also look at how they may contribute to our understanding of the combined effects of genetic and environmental factors in shaping disease risk.
Collapse
Affiliation(s)
- Torsten Klengel
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich 80804, Germany; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
89
|
|
90
|
Fang X, Robinson J, Wang-Hu J, Jiang L, Freeman DA, Rivkees SA, Wendler CC. cAMP induces hypertrophy and alters DNA methylation in HL-1 cardiomyocytes. Am J Physiol Cell Physiol 2015. [PMID: 26224577 DOI: 10.1152/ajpcell.00058.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
cAMP is a highly regulated secondary messenger involved in many biological processes. Chronic activation of the cAMP pathway by catecholamines results in cardiac hypertrophy and fibrosis; however, the mechanism by which elevated cAMP leads to cardiomyopathy is not fully understood. To address this issue, we increased intracellular cAMP levels in HL-1 cardiomyocytes, a cell line derived from adult mouse atrium, using either the stable cAMP analog N(6),2'-O-dibutyryladenosine 3',5'-cyclic monophosphate (DBcAMP) or phosphodiesterase (PDE) inhibitors caffeine and theophylline. Elevated cAMP levels increased cell size and altered expression levels of cardiac genes and micro-RNAs associated with hypertrophic cardiomyopathy (HCM), including Myh6, Myh7, Myh7b, Tnni3, Anp, Bnp, Gata4, Mef2c, Mef2d, Nfatc1, miR208a, and miR208b. In addition, DBcAMP altered the expression of DNA methyltransferases (Dnmts) and Tet methylcytosine dioxygenases (Tets), enzymes that regulate genomic DNA methylation levels. Changes in expression of DNA methylation genes induced by elevated cAMP led to increased global DNA methylation in HL-1 cells. In contrast, inhibition of DNMT activity with 5-azacytidine treatment decreased global DNA methylation levels and blocked the increased expression of several HCM genes (Myh7, Gata4, Mef2c, Nfatc1, Myh7b, Tnni3, and Bnp) observed with DBcAMP treatment. These results demonstrate that cAMP induces cardiomyocyte hypertrophy and altered HCM gene expression in vitro and that DNA methylation patterns mediate the upregulation of HCM genes induced by cAMP. These data identify a previously unknown mechanism by which elevated levels of cAMP lead to increased expression of genes associated with cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- Xiefan Fang
- Department of Pediatrics, Child Health Research Institute, College of Medicine, University of Florida, Gainesville, Florida
| | - Jourdon Robinson
- Department of Pediatrics, Child Health Research Institute, College of Medicine, University of Florida, Gainesville, Florida
| | - John Wang-Hu
- Department of Pediatrics, Child Health Research Institute, College of Medicine, University of Florida, Gainesville, Florida
| | - Lingli Jiang
- Department of Pediatrics, Child Health Research Institute, College of Medicine, University of Florida, Gainesville, Florida
| | - Daniel A Freeman
- Department of Pediatrics, Child Health Research Institute, College of Medicine, University of Florida, Gainesville, Florida
| | - Scott A Rivkees
- Department of Pediatrics, Child Health Research Institute, College of Medicine, University of Florida, Gainesville, Florida
| | - Christopher C Wendler
- Department of Pediatrics, Child Health Research Institute, College of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|
91
|
Vaish V, Khare T, Verma M, Khare S. Epigenetic therapy for colorectal cancer. Methods Mol Biol 2015; 1238:771-82. [PMID: 25421691 DOI: 10.1007/978-1-4939-1804-1_40] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aberrations in epigenome that include alterations in DNA methylation, histone acetylation, and miRNA (microRNA) expression may govern the progression of colorectal cancer (CRC). These epigenetic changes affect every phase of tumor development from initiation to metastasis. Since epigenetic alterations can be reversed by DNA demethylating and histone acetylating agents, current status of the implication of epigenetic therapy in CRC is discussed in this article. Interestingly, DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi) have shown promising results in controlling cancer progression. The information provided here might be useful in developing personalized medicine approaches.
Collapse
Affiliation(s)
- Vivek Vaish
- Section of Gastroenterology and Hepatology, Department of Internal Medicine, University of Missouri, Columbia, MO, 65212, USA
| | | | | | | |
Collapse
|
92
|
Insects as models to study the epigenetic basis of disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:69-78. [DOI: 10.1016/j.pbiomolbio.2015.02.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 01/06/2015] [Accepted: 02/23/2015] [Indexed: 12/17/2022]
|
93
|
Guidotti A, Grayson DR. DNA methylation and demethylation as targets for antipsychotic therapy. DIALOGUES IN CLINICAL NEUROSCIENCE 2015. [PMID: 25364290 PMCID: PMC4214182 DOI: 10.31887/dcns.2014.16.3/aguidotti] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Schizophrenia (SZ) and bipolar disorder (BPD) patients show a downregulation of GAD67, reelin (RELN), brain-derived neurotrophic factor (BDNF), and other genes expressed in telencephalic GABAergic and glutamatergic neurons. This downregulation is associated with the enrichment of 5-methylcytosine and 5-hydroxymethylcytosine proximally at gene regulatory domains at the respective genes. A pharmacological strategy to reduce promoter hypermethylation and to induce a more permissive chromatin conformation is to administer drugs, such as the histone deacetylase (HDAC) inhibitor valproate (VPA), that facilitate chromatin remodeling. Studies in mouse models of SZ indicate that clozapine induces DNA demethylation at relevant promoters, and that this action is potentiated by VPA. By activating DNA demethylation, clozapine or its derivatives with VPA or other more potent and selective HDAC inhibitors may be a promising treatment strategy to correct the gene expression deficits detected in postmortem brain of SZ and BPD patients.
Collapse
Affiliation(s)
- Alessandro Guidotti
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Illinois, USA
| | - Dennis R Grayson
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Illinois, USA
| |
Collapse
|
94
|
Abstract
Cellular processes that control transcription of genetic information are critical for cellular function, and are often implicated in psychiatric and neurological disease states. Among the most critical of these processes are epigenetic mechanisms, which serve to link the cellular environment with genomic material. Until recently our understanding of epigenetic mechanisms has been limited by the lack of tools that can selectively manipulate the epigenome with genetic, cellular, and temporal precision, which in turn diminishes the potential impact of epigenetic processes as therapeutic targets. This review highlights an emerging suite of tools that enable robust yet selective interrogation of the epigenome. In addition to allowing site-specific epigenetic editing, these tools can be paired with optogenetic approaches to provide temporal control over epigenetic processes, allowing unparalleled insight into the function of these mechanisms. This improved control promises to revolutionize our understanding of epigenetic modifications in human health and disease states.
Collapse
Affiliation(s)
- Jeremy J Day
- Assistant Professor, Department of Neurobiology, University of Alabama at Birmingham, Alabama, USA
| |
Collapse
|
95
|
Nikolova YS, Hariri AR. Can we observe epigenetic effects on human brain function? Trends Cogn Sci 2015; 19:366-73. [PMID: 26051383 DOI: 10.1016/j.tics.2015.05.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 12/12/2022]
Abstract
Imaging genetics has identified many contributions of DNA sequence variation to individual differences in brain function, behavior, and risk for psychopathology. Recent studies have extended this work beyond the genome by mapping epigenetic differences, specifically gene methylation in peripherally assessed DNA, onto variability in behaviorally and clinically relevant brain function. These data have generated understandable enthusiasm for the potential of such research to illuminate biological mechanisms of risk. We use our research on the effects of genetic and epigenetic variation in the human serotonin transporter on brain function to generate a guardedly optimistic opinion that the available data encourage continued research in this direction, and suggest strategies to promote faster progress.
Collapse
Affiliation(s)
- Yuliya S Nikolova
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, Canada.
| | - Ahmad R Hariri
- Laboratory of NeuroGenetics, Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, USA
| |
Collapse
|
96
|
Petropoulos S, Guillemin C, Ergaz Z, Dimov S, Suderman M, Weinstein-Fudim L, Ornoy A, Szyf M. Gestational Diabetes Alters Offspring DNA Methylation Profiles in Human and Rat: Identification of Key Pathways Involved in Endocrine System Disorders, Insulin Signaling, Diabetes Signaling, and ILK Signaling. Endocrinology 2015; 156:2222-38. [PMID: 25514087 DOI: 10.1210/en.2014-1643] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gestational diabetes is associated with risk for metabolic disease later in life. Using a cross-species approach in rat and humans, we examined the hypothesis that gestational diabetes during pregnancy triggers changes in the methylome of the offspring that might be mediating these risks. We show in a gestation diabetes rat model, the Cohen diabetic rat, that gestational diabetes triggers wide alterations in DNA methylation in the placenta in both candidate diabetes genes and genome-wide promoters, thus providing evidence for a causal relationship between diabetes during pregnancy and DNA methylation alterations. There is a significant overlap between differentially methylated genes in the placenta and the liver of the rat offspring. Several genes differentially methylated in rat placenta exposed to maternal diabetes are also differentially methylated in the human placenta of offspring exposed to gestational diabetes in utero. DNA methylation changes inversely correlate with changes in expression. The changes in DNA methylation affect known functional gene pathways involved in endocrine function, metabolism, and insulin responses. These data provide support to the hypothesis that early-life exposures and their effects on metabolic disease are mediated by DNA methylation changes. This has important diagnostic and therapeutic implications.
Collapse
Affiliation(s)
- Sophie Petropoulos
- Department of Pharmacology and Therapeutics (S.P., C.G., S.D., M.Su., M.Sz.) and Sackler Program for Epigenetics and Psychobiology (M.Sz.), McGill University, Montréal, Canada H3G 1Y6; and Laboratory of Teratology (Z.E., L.W.-F., A.O.), Department of Medical Neurobiology, Hebrew University-Haddassah Medical School, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Lavu V, Venkatesan V, Rao SR. The epigenetic paradigm in periodontitis pathogenesis. J Indian Soc Periodontol 2015; 19:142-9. [PMID: 26015662 PMCID: PMC4439621 DOI: 10.4103/0972-124x.145784] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 09/29/2014] [Indexed: 01/07/2023] Open
Abstract
Epigenome refers to “epi” meaning outside the “genome.” Epigenetics is the field of study of the epigenome. Epigenetic modifications include changes in the promoter CpG Islands, modifications of histone protein structure, posttranslational repression by micro-RNA which contributes to the alteration of gene expression. Epigenetics provides an understanding of the role of gene-environment interactions on disease phenotype especially in complex multifactorial diseases. Periodontitis is a chronic inflammatory disorder that affects the supporting structures of the tooth. The role of the genome (in terms of genetic polymorphisms) in periodontitis pathogenesis has been examined in numerous studies, and chronic periodontitis has been established as a polygenic disorder. The potential role of epigenetic modifications in the various facets of pathogenesis of periodontitis is discussed in this paper based on the available literature.
Collapse
Affiliation(s)
- Vamsi Lavu
- Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra University, Porur, Chennai, Tamil Nadu, India
| | - Vettriselvi Venkatesan
- Department of Human Genetics, Faculty of Bio-Medical Sciences, Sri Ramachandra University, Porur, Chennai, Tamil Nadu, India
| | - Suresh Ranga Rao
- Department of Periodontology, Faculty of Dental Sciences, Sri Ramachandra University, Porur, Chennai, Tamil Nadu, India
| |
Collapse
|
98
|
Greißel A, Culmes M, Napieralski R, Wagner E, Gebhard H, Schmitt M, Zimmermann A, Eckstein HH, Zernecke A, Pelisek J. Alternation of histone and DNA methylation in human atherosclerotic carotid plaques. Thromb Haemost 2015; 114:390-402. [PMID: 25993995 DOI: 10.1160/th14-10-0852] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/25/2015] [Indexed: 01/08/2023]
Abstract
Little is known about epigenetics and its possible role in atherosclerosis. We here analysed histone and DNA methylation and the expression of corresponding methyltransferases in early and advanced human atherosclerotic carotid lesions in comparison to healthy carotid arteries. Western Blotting was performed on carotid plaques from our biobank with early (n=60) or advanced (n=60) stages of atherosclerosis and healthy carotid arteries (n=12) to analyse di-methylation patterns of histone H3 at positions K4, K9 and K27. In atherosclerotic lesions, di-methylation of H3K4 was unaltered and that of H3K9 and H3K27 significantly decreased compared to control arteries. Immunohistochemistry revealed an increased appearance of di-methylated H3K4 in smooth muscle cells (SMCs), a decreased expression of di-methylated H3K9 in SMCs and inflammatory cells, and reduced di-methylated H3K27 in inflammatory cells in advanced versus early atherosclerosis. Expression of corresponding histone methyltransferases MLL2 and G9a was increased in advanced versus early atherosclerosis. Genomic DNA hypomethylation, as determined by PCR for methylated LINE1 and SAT-alpha, was observed in early and advanced plaques compared to control arteries and in cell-free serum of patients with high-grade carotid stenosis compared to healthy volunteers. In contrast, no differences in DNA methylation were observed in blood cells. Expression of DNA-methyltransferase DNMT1 was reduced in atherosclerotic plaques versus controls, DNMT3A was undetectable, and DNMT3B not altered. DNA-demethylase TET1 was increased in atherosclerosisc plaques. The extent of histone and DNA methylation and expression of some corresponding methyltransferases are significantly altered in atherosclerosis, suggesting a possible contribution of epigenetics in disease development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - A Zernecke
- Alma Zernecke, MD, Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Ismaninger Str. 22, D-81675 Munich, Germany, Phone: 0049-89-4140-5168, Fax: 0049-89-4140-4861, E-mail:
| | - J Pelisek
- Jaroslav Pelisek, PhD, Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar der Technischen Universitaet Muenchen, Ismaninger Str. 22, D-81675 Munich, Germany, Phone: 0049-89-4140-5168, Fax: 0049-89-4140-4861, E-mail:
| |
Collapse
|
99
|
Salminen A, Haapasalo A, Kauppinen A, Kaarniranta K, Soininen H, Hiltunen M. Impaired mitochondrial energy metabolism in Alzheimer's disease: Impact on pathogenesis via disturbed epigenetic regulation of chromatin landscape. Prog Neurobiol 2015; 131:1-20. [PMID: 26001589 DOI: 10.1016/j.pneurobio.2015.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 05/05/2015] [Accepted: 05/11/2015] [Indexed: 12/14/2022]
Abstract
The amyloid cascade hypothesis for the pathogenesis of Alzheimer's disease (AD) was proposed over twenty years ago. However, the mechanisms of neurodegeneration and synaptic loss have remained elusive delaying the effective drug discovery. Recent studies have revealed that amyloid-β peptides as well as phosphorylated and fragmented tau proteins accumulate within mitochondria. This process triggers mitochondrial fission (fragmentation) and disturbs Krebs cycle function e.g. by inhibiting the activity of 2-oxoglutarate dehydrogenase. Oxidative stress, hypoxia and calcium imbalance also disrupt the function of Krebs cycle in AD brains. Recent studies on epigenetic regulation have revealed that Krebs cycle intermediates control DNA and histone methylation as well as histone acetylation and thus they have fundamental roles in gene expression. DNA demethylases (TET1-3) and histone lysine demethylases (KDM2-7) are included in the family of 2-oxoglutarate-dependent oxygenases (2-OGDO). Interestingly, 2-oxoglutarate is the obligatory substrate of 2-OGDO enzymes, whereas succinate and fumarate are the inhibitors of these enzymes. Moreover, citrate can stimulate histone acetylation via acetyl-CoA production. Epigenetic studies have revealed that AD is associated with changes in DNA methylation and histone acetylation patterns. However, the epigenetic results of different studies are inconsistent but one possibility is that they represent both coordinated adaptive responses and uncontrolled stochastic changes, which provoke pathogenesis in affected neurons. Here, we will review the changes observed in mitochondrial dynamics and Krebs cycle function associated with AD, and then clarify the mechanisms through which mitochondrial metabolites can control the epigenetic landscape of chromatin and induce pathological changes in AD.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland.
| | - Annakaisa Haapasalo
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Anu Kauppinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Hilkka Soininen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland
| | - Mikko Hiltunen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Department of Neurology, Kuopio University Hospital, P.O. Box 100, FI-70029 KYS, Finland; Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| |
Collapse
|
100
|
Szyf M. Epigenetics, a key for unlocking complex CNS disorders? Therapeutic implications. Eur Neuropsychopharmacol 2015; 25:682-702. [PMID: 24857313 DOI: 10.1016/j.euroneuro.2014.01.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/07/2013] [Accepted: 01/11/2014] [Indexed: 12/13/2022]
Abstract
Aberrant changes in gene function are believed to be involved in a wide spectrum of human disease including behavioral, cognitive and neurodegenerative pathologies. Most of the attention in last few decades have focused on changes in gene sequence as a cause of gene dysfunction leading to disease and mental health disorders. Germ line mutations or other alterations in the sequence of DNA that associate with different behavioral and neurological pathologies have been identified. However, sequence alterations explain only a small fraction of the cases. In addition there is evidence for "gene-environment" interactions in the brain suggesting mechanisms that alter gene function and the phenotype through environmental exposure. Genes are programmed by "epigenetic" mechanisms such as chromatin structure, chromatin modification and DNA methylation. These mechanisms confer on similar sequences different identities during cellular differentiation. Epigenetic differences are proposed to be involved in differentiating gene function in response to different environmental contexts and could result in alterations in functional gene networks that lead to brain disease. Epigenetic markers could serve important biomarkers in brain and behavioral diseases. Moreover, epigenetic processes are potentially reversible pointing to epigenetic therapeutics in psychotherapy.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G1Y5.
| |
Collapse
|