51
|
Nguyen H, Labella S, Silva N, Jantsch V, Zetka M. C. elegans ZHP-4 is required at multiple distinct steps in the formation of crossovers and their transition to segregation competent chiasmata. PLoS Genet 2018; 14:e1007776. [PMID: 30379819 PMCID: PMC6239344 DOI: 10.1371/journal.pgen.1007776] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 11/16/2018] [Accepted: 10/17/2018] [Indexed: 12/31/2022] Open
Abstract
Correct segregation of meiotic chromosomes depends on DNA crossovers (COs) between homologs that culminate into visible physical linkages called chiasmata. COs emerge from a larger population of joint molecules (JM), the remainder of which are repaired as noncrossovers (NCOs) to restore genomic integrity. We present evidence that the RNF212-like C. elegans protein ZHP-4 cooperates with its paralog ZHP-3 to enforce crossover formation at distinct steps during meiotic prophase: in the formation of early JMs and in transition of late CO intermediates into chiasmata. ZHP-3/4 localize to the synaptonemal complex (SC) co-dependently followed by their restriction to sites of designated COs. RING domain mutants revealed a critical function for ZHP-4 in localization of both proteins to the SC and for CO formation. While recombination initiates in zhp-4 mutants, they fail to appropriately acquire pro-crossover factors at abundant early JMs, indicating a function for ZHP-4 in an early step of the CO/NCO decision. At late pachytene stages, hypomorphic mutants exhibit significant levels of crossing over that are accompanied by defects in localization of pro-crossover RMH-1, MSH-5 and COSA-1 to designated crossover sites, and by the appearance of bivalents defective in chromosome remodelling required for segregation. These results reveal a ZHP-4 function at designated CO sites where it is required to stabilize pro-crossover factors at the late crossover intermediate, which in turn are required for the transition to a chiasma that is required for bivalent remodelling. Our study reveals an essential requirement for ZHP-4 in negotiating both the formation of COs and their ability to transition to structures capable of directing accurate chromosome segregation. We propose that ZHP-4 acts in concert with ZHP-3 to propel interhomolog JMs along the crossover pathway by stabilizing pro-CO factors that associate with early and late intermediates, thereby protecting designated crossovers as they transition into the chiasmata required for disjunction.
Collapse
Affiliation(s)
- Hanh Nguyen
- Department of Biology, McGill University, Montreal, Quebec Canada
| | - Sara Labella
- Department of Biology, McGill University, Montreal, Quebec Canada
| | - Nicola Silva
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna, Vienna, Austria
| | - Verena Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, Vienna Bio Center, University of Vienna, Vienna, Austria
| | - Monique Zetka
- Department of Biology, McGill University, Montreal, Quebec Canada
| |
Collapse
|
52
|
Mohammad A, Vanden Broek K, Wang C, Daryabeigi A, Jantsch V, Hansen D, Schedl T. Initiation of Meiotic Development Is Controlled by Three Post-transcriptional Pathways in Caenorhabditis elegans. Genetics 2018; 209:1197-1224. [PMID: 29941619 PMCID: PMC6063227 DOI: 10.1534/genetics.118.300985] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/20/2018] [Indexed: 11/18/2022] Open
Abstract
A major event in germline development is the transition from stem/progenitor cells to entry into meiosis and gametogenesis. This transition requires downregulation of mitotic cell cycle activity and upregulation of processes associated with meiosis. We identify the Caenorhabditis elegans SCFPROM-1 E3 ubiquitin-ligase complex as functioning to downregulate mitotic cell cycle protein levels including cyclin E, WAPL-1, and KNL-2 at meiotic entry and, independently, promoting homologous chromosome pairing as a positive regulator of the CHK-2 kinase. SCFPROM-1 is thus a novel regulator of meiotic entry, coordinating downregulation of mitotic cell cycle proteins and promoting homolog pairing. We further show that SCFPROM-1 functions redundantly, in parallel to the previously described GLD-1 and GLD-2 meiotic entry pathways, downstream of and inhibited by GLP-1 Notch signaling, which specifies the stem cell fate. Accordingly, C. elegans employs three post-transcriptional pathways, SCFPROM-1-mediated protein degradation, GLD-1-mediated translational repression, and GLD-2-mediated translational activation, to control and coordinate the initiation of meiotic development.
Collapse
Affiliation(s)
- Ariz Mohammad
- Department of Genetics, School of Medicine, Washington University in St. Louis, Missouri 63110
| | - Kara Vanden Broek
- Department of Biological Sciences, University of Calgary, T2N 1N4, Canada
| | - Christopher Wang
- Department of Biological Sciences, University of Calgary, T2N 1N4, Canada
| | - Anahita Daryabeigi
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030, Austria
| | - Verena Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030, Austria
| | - Dave Hansen
- Department of Biological Sciences, University of Calgary, T2N 1N4, Canada
| | - Tim Schedl
- Department of Genetics, School of Medicine, Washington University in St. Louis, Missouri 63110
| |
Collapse
|
53
|
Hurel A, Phillips D, Vrielynck N, Mézard C, Grelon M, Christophorou N. A cytological approach to studying meiotic recombination and chromosome dynamics in Arabidopsis thaliana male meiocytes in three dimensions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:385-396. [PMID: 29681056 DOI: 10.1111/tpj.13942] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/28/2018] [Accepted: 04/05/2018] [Indexed: 05/18/2023]
Abstract
During meiotic prophase I chromosomes undergo dramatic conformational changes that accompany chromosome condensation, pairing and recombination between homologs. These changes include the anchoring of telomeres to the nuclear envelope and their clustering to form a bouquet. In plants, these events have been studied and illustrated in intact meiocytes of species with large genomes. Arabidopsis thaliana is an excellent genetic model in which major molecular pathways that control synapsis and recombination between homologs have been uncovered. Yet the study of chromosome dynamics is hampered by current cytological methods that disrupt the three-dimensional (3D) architecture of the nucleus. Here we set up a protocol to preserve the 3D configuration of A. thaliana meiocytes. We showed that this technique is compatible with the use of a variety of antibodies that label structural and recombination proteins and were able to highlight the presence of clustered synapsis initiation centers at the nuclear periphery. By using fluorescence in situ hybridization we also studied the behavior of chromosomes during pre-meiotic G2 and prophase I, revealing the existence of a telomere bouquet during A. thaliana male meiosis. In addition we showed that the number of telomeres in a bouquet and its volume vary greatly, thus revealing the complexity of telomere behavior during meiotic prophase I. Finally, by using probes that label subtelomeric regions of individual chromosomes, we revealed differential localization behaviors of chromosome ends. Our protocol opens new areas of research for investigating chromosome dynamics in A. thaliana meiocytes.
Collapse
Affiliation(s)
- Aurélie Hurel
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Dylan Phillips
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, UK
| | - Nathalie Vrielynck
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Christine Mézard
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Mathilde Grelon
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| | - Nicolas Christophorou
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026, Versailles Cedex, France
| |
Collapse
|
54
|
Wang S, Zhai B, Yang X, Zhang L. Protect chromosomes from end-to-end fusion during meiotic bouquet. SCIENCE CHINA-LIFE SCIENCES 2018; 61:736-738. [PMID: 29790060 DOI: 10.1007/s11427-018-9299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/10/2018] [Indexed: 10/16/2022]
Affiliation(s)
- Shunxin Wang
- Center for Reproductive Medicine, Shandong University, Shandong Provincial Hospital Affiliated to Shandong University, The Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, 250001, China.
| | - Binyuan Zhai
- Center for Reproductive Medicine, Shandong University, Shandong Provincial Hospital Affiliated to Shandong University, The Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, 250001, China
| | - Xiao Yang
- Center for Reproductive Medicine, Shandong University, Shandong Provincial Hospital Affiliated to Shandong University, The Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, 250001, China
| | - Liangran Zhang
- Center for Reproductive Medicine, Shandong University, Shandong Provincial Hospital Affiliated to Shandong University, The Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Provincial Key Laboratory of Reproductive Medicine, Jinan, 250001, China. .,State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China.
| |
Collapse
|
55
|
Link J, Paouneskou D, Velkova M, Daryabeigi A, Laos T, Labella S, Barroso C, Pacheco Piñol S, Montoya A, Kramer H, Woglar A, Baudrimont A, Markert SM, Stigloher C, Martinez-Perez E, Dammermann A, Alsheimer M, Zetka M, Jantsch V. Transient and Partial Nuclear Lamina Disruption Promotes Chromosome Movement in Early Meiotic Prophase. Dev Cell 2018; 45:212-225.e7. [PMID: 29689196 PMCID: PMC5920155 DOI: 10.1016/j.devcel.2018.03.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 02/13/2018] [Accepted: 03/23/2018] [Indexed: 12/03/2022]
Abstract
Meiotic chromosome movement is important for the pairwise alignment of homologous chromosomes, which is required for correct chromosome segregation. Movement is driven by cytoplasmic forces, transmitted to chromosome ends by nuclear membrane-spanning proteins. In animal cells, lamins form a prominent scaffold at the nuclear periphery, yet the role lamins play in meiotic chromosome movement is unclear. We show that chromosome movement correlates with reduced lamin association with the nuclear rim, which requires lamin phosphorylation at sites analogous to those that open lamina network crosslinks in mitosis. Failure to remodel the lamina results in delayed meiotic entry, altered chromatin organization, unpaired or interlocked chromosomes, and slowed chromosome movement. The remodeling kinases are delivered to lamins via chromosome ends coupled to the nuclear envelope, potentially enabling crosstalk between the lamina and chromosomal events. Thus, opening the lamina network plays a role in modulating contacts between chromosomes and the nuclear periphery during meiosis.
Collapse
Affiliation(s)
- Jana Link
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Dimitra Paouneskou
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Maria Velkova
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Anahita Daryabeigi
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Triin Laos
- Department of Microbiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Sara Labella
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC H2A 1B1, Canada
| | - Consuelo Barroso
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Sarai Pacheco Piñol
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Alex Montoya
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Holger Kramer
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Alexander Woglar
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Antoine Baudrimont
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | | | - Christian Stigloher
- Imaging Core Facility, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Enrique Martinez-Perez
- MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Alexander Dammermann
- Department of Microbiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria
| | - Manfred Alsheimer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Monique Zetka
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, QC H2A 1B1, Canada
| | - Verena Jantsch
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, 1030 Vienna, Austria.
| |
Collapse
|
56
|
Fernandes JB, Séguéla-Arnaud M, Larchevêque C, Lloyd AH, Mercier R. Unleashing meiotic crossovers in hybrid plants. Proc Natl Acad Sci U S A 2018; 115:2431-2436. [PMID: 29183972 DOI: 10.1101/159640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023] Open
Abstract
Meiotic crossovers shuffle parental genetic information, providing novel combinations of alleles on which natural or artificial selection can act. However, crossover events are relatively rare, typically one to three exchange points per chromosome pair. Recent work has identified three pathways limiting meiotic crossovers in Arabidopsis thaliana that rely on the activity of FANCM [Crismani W, et al. (2012) Science 336:1588-1590], RECQ4 [Séguéla-Arnaud M, et al. (2015) Proc Natl Acad Sci USA 112:4713-4718], and FIGL1 [Girard C, et al. (2015) PLoS Genet 11:e1005369]. Here we analyzed recombination in plants in which one, two, or all three of these pathways were disrupted in both pure line and hybrid contexts. The greatest effect was observed when combining recq4 and figl1 mutations, which increased the hybrid genetic map length from 389 to 3,037 cM. This corresponds to an unprecedented 7.8-fold increase in crossover frequency. Disrupting the three pathways did not further increase recombination, suggesting that some upper limit had been reached. The increase in crossovers is not uniform along chromosomes and rises from centromere to telomere. Finally, although in wild type recombination is much higher in male meiosis than in female meiosis (490 cM vs. 290 cM), female recombination is higher than male recombination in recq4 figl1 (3,200 cM vs. 2,720 cM), suggesting that the factors that make wild-type female meiosis less recombinogenic than male wild-type meiosis do not apply in the mutant context. The massive increase in recombination observed in recq4 figl1 hybrids opens the possibility of manipulating recombination to enhance plant breeding efficiency.
Collapse
Affiliation(s)
- Joiselle Blanche Fernandes
- Institut Jean-Pierre Bourgin (IJPB), Institut National de la Recherche Agronomique, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
- Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Mathilde Séguéla-Arnaud
- Institut Jean-Pierre Bourgin (IJPB), Institut National de la Recherche Agronomique, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Cécile Larchevêque
- Institut Jean-Pierre Bourgin (IJPB), Institut National de la Recherche Agronomique, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Andrew H Lloyd
- Institut Jean-Pierre Bourgin (IJPB), Institut National de la Recherche Agronomique, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Raphael Mercier
- Institut Jean-Pierre Bourgin (IJPB), Institut National de la Recherche Agronomique, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France;
| |
Collapse
|
57
|
Fernandes JB, Séguéla-Arnaud M, Larchevêque C, Lloyd AH, Mercier R. Unleashing meiotic crossovers in hybrid plants. Proc Natl Acad Sci U S A 2018; 115:2431-2436. [PMID: 29183972 PMCID: PMC5877974 DOI: 10.1073/pnas.1713078114] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Meiotic crossovers shuffle parental genetic information, providing novel combinations of alleles on which natural or artificial selection can act. However, crossover events are relatively rare, typically one to three exchange points per chromosome pair. Recent work has identified three pathways limiting meiotic crossovers in Arabidopsis thaliana that rely on the activity of FANCM [Crismani W, et al. (2012) Science 336:1588-1590], RECQ4 [Séguéla-Arnaud M, et al. (2015) Proc Natl Acad Sci USA 112:4713-4718], and FIGL1 [Girard C, et al. (2015) PLoS Genet 11:e1005369]. Here we analyzed recombination in plants in which one, two, or all three of these pathways were disrupted in both pure line and hybrid contexts. The greatest effect was observed when combining recq4 and figl1 mutations, which increased the hybrid genetic map length from 389 to 3,037 cM. This corresponds to an unprecedented 7.8-fold increase in crossover frequency. Disrupting the three pathways did not further increase recombination, suggesting that some upper limit had been reached. The increase in crossovers is not uniform along chromosomes and rises from centromere to telomere. Finally, although in wild type recombination is much higher in male meiosis than in female meiosis (490 cM vs. 290 cM), female recombination is higher than male recombination in recq4 figl1 (3,200 cM vs. 2,720 cM), suggesting that the factors that make wild-type female meiosis less recombinogenic than male wild-type meiosis do not apply in the mutant context. The massive increase in recombination observed in recq4 figl1 hybrids opens the possibility of manipulating recombination to enhance plant breeding efficiency.
Collapse
Affiliation(s)
- Joiselle Blanche Fernandes
- Institut Jean-Pierre Bourgin (IJPB), Institut National de la Recherche Agronomique, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
- Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Mathilde Séguéla-Arnaud
- Institut Jean-Pierre Bourgin (IJPB), Institut National de la Recherche Agronomique, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Cécile Larchevêque
- Institut Jean-Pierre Bourgin (IJPB), Institut National de la Recherche Agronomique, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Andrew H Lloyd
- Institut Jean-Pierre Bourgin (IJPB), Institut National de la Recherche Agronomique, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Raphael Mercier
- Institut Jean-Pierre Bourgin (IJPB), Institut National de la Recherche Agronomique, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France;
| |
Collapse
|
58
|
Agostinho A, Kouznetsova A, Hernández-Hernández A, Bernhem K, Blom H, Brismar H, Höög C. Sexual dimorphism in the width of the mouse synaptonemal complex. J Cell Sci 2018; 131:jcs.212548. [PMID: 29420300 DOI: 10.1242/jcs.212548] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/19/2018] [Indexed: 11/20/2022] Open
Abstract
Sexual dimorphism has been used to describe morphological differences between the sexes, but can be extended to any biologically related process that varies between males and females. The synaptonemal complex (SC) is a tripartite structure that connects homologous chromosomes in meiosis. Here, aided by super-resolution microscopy techniques, we show that the SC is subject to sexual dimorphism, in mouse germ cells. We have identified a significantly narrower SC in oocytes and have established that this difference does not arise from a different organization of the lateral elements nor from a different isoform of transverse filament protein SYCP1. Instead, we provide evidence for the existence of a narrower central element and a different integration site for the C-termini of SYCP1, in females. In addition to these female-specific features, we speculate that post-translation modifications affecting the SYCP1 coiled-coil region could render a more compact conformation, thus contributing to the narrower SC observed in females.
Collapse
Affiliation(s)
- Ana Agostinho
- Department of Cell and Molecular Biology, Karolinska Institutet, Berzelius väg 35, 171 77 Stockholm, Sweden
| | - Anna Kouznetsova
- Department of Cell and Molecular Biology, Karolinska Institutet, Berzelius väg 35, 171 77 Stockholm, Sweden
| | - Abrahan Hernández-Hernández
- Laboratorio de Investigación en Patología Experimental, Hospital Infantil de México Federico Gómez, Avenida Dr. Márquez 162, Colonia Doctores, 06720 México, D.F., Mexico
| | - Kristoffer Bernhem
- Science for Life Laboratory, Dept. of Applied Physics, Royal Institute of Technology, PO Box 1031, 17121, Solna, Sweden
| | - Hans Blom
- Science for Life Laboratory, Dept. of Applied Physics, Royal Institute of Technology, PO Box 1031, 17121, Solna, Sweden
| | - Hjalmar Brismar
- Science for Life Laboratory, Dept. of Applied Physics, Royal Institute of Technology, PO Box 1031, 17121, Solna, Sweden
| | - Christer Höög
- Department of Cell and Molecular Biology, Karolinska Institutet, Berzelius väg 35, 171 77 Stockholm, Sweden
| |
Collapse
|
59
|
Wellard SR, Hopkins J, Jordan PW. A Seminiferous Tubule Squash Technique for the Cytological Analysis of Spermatogenesis Using the Mouse Model. J Vis Exp 2018. [PMID: 29443055 DOI: 10.3791/56453] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Meiotic progression in males is a process that requires the concerted action of a number of highly regulated cellular events. Errors occurring during meiosis can lead to infertility, pregnancy loss or genetic defects. Commencing at the onset of puberty and continuing throughout adulthood, continuous semi-synchronous waves of spermatocytes undergo spermatogenesis and ultimately form haploid sperm. The first wave of mouse spermatocytes undergoing meiotic initiation appear at day 10 post-partum (10 dpp) and are released into the lumen of seminiferous tubules as mature sperm at 35 dpp. Therefore, it is advantageous to utilize mice within this developmental time-window in order to obtain highly enriched populations of interest. Analysis of rare cell stages is more difficult in older mice due to the contribution of successive spermatogenic waves, which increase the diversity of the cellular populations within the tubules. The method described here is an easily implemented technique for the cytological evaluation of the cells found within the seminiferous tubules of mice, including spermatogonia, spermatocytes, and spermatids. The tubule squash technique maintains the integrity of isolated male germ cells and allows examination of cellular structures that are not easily visualized with other techniques. To demonstrate the possible applications of this tubule squash technique, spindle assembly was monitored in spermatocytes progressing through the prophase to metaphase I transition (G2/MI transition). In addition, centrosome duplication, meiotic sex chromosome inactivation (MSCI), and chromosome bouquet formation were assessed as examples of the cytological structures that can be observed using this tubule squash method. This technique can be used to pinpoint specific defects during spermatogenesis that are caused by mutation or exogenous perturbation, and thus, contributes to our molecular understanding of spermatogenesis.
Collapse
Affiliation(s)
- Stephen R Wellard
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health
| | - Jessica Hopkins
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health
| | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health;
| |
Collapse
|
60
|
Symmetry from Asymmetry or Asymmetry from Symmetry? COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:305-318. [PMID: 29348326 DOI: 10.1101/sqb.2017.82.034272] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The processes of DNA replication and mitosis allow the genetic information of a cell to be copied and transferred reliably to its daughter cells. However, if DNA replication and cell division were always performed in a symmetric manner, the result would be a cluster of tumor cells instead of a multicellular organism. Therefore, gaining a complete understanding of any complex living organism depends on learning how cells become different while faithfully maintaining the same genetic material. It is well recognized that the distinct epigenetic information contained in each cell type defines its unique gene expression program. Nevertheless, how epigenetic information contained in the parental cell is either maintained or changed in the daughter cells remains largely unknown. During the asymmetric cell division (ACD) of Drosophila male germline stem cells, our previous work revealed that preexisting histones are selectively retained in the renewed stem cell daughter, whereas newly synthesized histones are enriched in the differentiating daughter cell. We also found that randomized inheritance of preexisting histones versus newly synthesized histones results in both stem cell loss and progenitor germ cell tumor phenotypes, suggesting that programmed histone inheritance is a key epigenetic player for cells to either remember or reset cell fates. Here, we will discuss these findings in the context of current knowledge on DNA replication, polarized mitotic machinery, and ACD for both animal development and tissue homeostasis. We will also speculate on some potential mechanisms underlying asymmetric histone inheritance, which may be used in other biological events to achieve the asymmetric cell fates.
Collapse
|
61
|
Zeng X, Li K, Yuan R, Gao H, Luo J, Liu F, Wu Y, Wu G, Yan X. Nuclear Envelope-Associated Chromosome Dynamics during Meiotic Prophase I. Front Cell Dev Biol 2018; 5:121. [PMID: 29376050 PMCID: PMC5767173 DOI: 10.3389/fcell.2017.00121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/21/2017] [Indexed: 12/21/2022] Open
Abstract
Chromosome dynamics during meiotic prophase I are associated with a series of major events such as chromosomal reorganization and condensation, pairing/synapsis and recombination of the homologs, and chromosome movements at the nuclear envelope (NE). The NE is the barrier separating the nucleus from the cytoplasm and thus plays a central role in NE-associated chromosomal movements during meiosis. Previous studies have shown in various species that NE-linked chromosome dynamics are actually driven by the cytoskeleton. The linker of nucleoskeleton and cytoskeleton (LINC) complexes are important constituents of the NE that facilitate in the transfer of cytoskeletal forces across the NE to individual chromosomes. The LINCs consist of the inner and outer NE proteins Sad1/UNC-84 (SUN), and Klarsicht/Anc-1/Syne (KASH) domain proteins. Meiosis-specific adaptations of the LINC components and unique modifications of the NE are required during chromosomal movements. Nonetheless, the actual role of the NE in chromosomic dynamic movements in plants remains elusive. This review summarizes the findings of recent studies on meiosis-specific constituents and modifications of the NE and corresponding nucleoplasmic/cytoplasmic adaptors being involved in NE-associated movement of meiotic chromosomes, as well as describes the potential molecular network of transferring cytoplasm-derived forces into meiotic chromosomes in model organisms. It helps to gain a better understanding of the NE-associated meiotic chromosomal movements in plants.
Collapse
Affiliation(s)
- Xinhua Zeng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Keqi Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Rong Yuan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Hongfei Gao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Junling Luo
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Fang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Yuhua Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Gang Wu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Xiaohong Yan
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| |
Collapse
|
62
|
Sun L, Wang J, Sang M, Jiang L, Zhao B, Cheng T, Zhang Q, Wu R. Landscaping Crossover Interference Across a Genome. TRENDS IN PLANT SCIENCE 2017; 22:894-907. [PMID: 28822625 DOI: 10.1016/j.tplants.2017.06.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 06/09/2017] [Accepted: 06/12/2017] [Indexed: 05/14/2023]
Abstract
The evolutionary success of eukaryotic organisms crucially depends on the capacity to produce genetic diversity through reciprocal exchanges of each chromosome pair, or crossovers (COs), during meiosis. It has been recognized that COs arise more evenly across a given chromosome than at random. This phenomenon, termed CO interference, occurs pervasively in eukaryotes and may confer a selective advantage. We describe here a multipoint linkage analysis procedure for segregating families to quantify the strength of CO interference over the genome, and extend this procedure to illustrate the landscape of CO interference in natural populations. We further discuss the crucial role of CO interference in amplifying and maintaining genetic diversity through sex-, stress-, and age-induced differentiation.
Collapse
Affiliation(s)
- Lidan Sun
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
| | - Jing Wang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Mengmeng Sang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Libo Jiang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
| | - Bingyu Zhao
- Department of Horticulture, Virginia Tech, Blacksburg, VA 24061, USA
| | - Tangran Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Forestry University, Beijing 100083, China
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; Center for Statistical Genetics, Pennsylvania State University, Hershey, PA 17033, USA.
| |
Collapse
|
63
|
Draeger T, Moore G. Short periods of high temperature during meiosis prevent normal meiotic progression and reduce grain number in hexaploid wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1785-1800. [PMID: 28550436 PMCID: PMC5565671 DOI: 10.1007/s00122-017-2925-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/15/2017] [Indexed: 05/18/2023]
Abstract
Exposure of wheat to high temperatures during male meiosis prevents normal meiotic progression and reduces grain number. We define a temperature-sensitive period and link heat tolerance to chromosome 5D. This study assesses the effects of heat on meiotic progression and grain number in hexaploid wheat (Triticum aestivum L. var. Chinese Spring), defines a heat-sensitive stage and evaluates the role of chromosome 5D in heat tolerance. Plants were exposed to high temperatures (30 or 35 °C) in a controlled environment room for 20-h periods during meiosis and the premeiotic interphase just prior to meiosis. Examination of pollen mother cells (PMCs) from immature anthers immediately before and after heat treatment enabled precise identification of the developmental phases being exposed to heat. A temperature-sensitive period was defined, lasting from premeiotic interphase to late leptotene, during which heat can prevent PMCs from progressing through meiosis. PMCs exposed to 35 °C were less likely to progress than those exposed to 30 °C. Grain number per spike was reduced at 30 °C, and reduced even further at 35 °C. Chinese Spring nullisomic 5D-tetrasomic 5B (N5DT5B) plants, which lack chromosome 5D, were more susceptible to heat during premeiosis-leptotene than Chinese Spring plants with the normal (euploid) chromosome complement. The proportion of plants with PMCs progressing through meiosis after heat treatment was lower for N5DT5B plants than for euploids, but the difference was not significant. However, following exposure to 30 °C, in euploid plants grain number was reduced (though not significantly), whereas in N5DT5B plants the reduction was highly significant. After exposure to 35 °C, the reduction in grain number was highly significant for both genotypes. Implications of these findings for the breeding of thermotolerant wheat are discussed.
Collapse
Affiliation(s)
- Tracie Draeger
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Graham Moore
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
64
|
Colas I, Darrier B, Arrieta M, Mittmann SU, Ramsay L, Sourdille P, Waugh R. Observation of Extensive Chromosome Axis Remodeling during the "Diffuse-Phase" of Meiosis in Large Genome Cereals. FRONTIERS IN PLANT SCIENCE 2017; 8:1235. [PMID: 28751906 PMCID: PMC5508023 DOI: 10.3389/fpls.2017.01235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/29/2017] [Indexed: 05/02/2023]
Abstract
The production of balanced fertile haploid gametes requires the faithful separation of paired (synapsed) chromosomes toward the end of meiotic prophase I (desynapsis). This involves the timely dissolution of the synaptonemal complex during the pachytene-diplotene transition, a stage traditionally referred to as the "diffuse stage." In species with large genomes such as, barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) we know most about the early stages of meiotic prophase I. There, synapsis initiates at the telomeric ends of chromosomes and progresses toward the centromeric regions through the ordered assembly of the synaptonemal complex (SC). Synapsis is impacted by recombination (crossing over, CO) which locally modifies the extent of chromatin compaction and extension. CO is uneven along the chromosomes, occurring mainly toward the telomeric regions resulting in a highly skewed distribution of recombination events. However, we know very little about the process of desynapsis which occurs during the "diffuse stage," where the synapsed and recombined chromosomes faithfully desynapse and separate into daughter cells. Here, using 3D-SIM super-resolution immuno-cytology combined with the use of antibodies directed against two crucial SC proteins, ASY1 and ZYP1, we followed the whole of meiosis I (i.e., both synapsis and desynapsis) in both barley and wheat. We showed that synapsis forms a characteristic tri-partite SC structure in zygotene (more clearly seen in barley). Toward the end of meiosis I, as the SC starts to disassemble, we show that extensive chromosome axis remodeling results in the formation of characteristic "tinsel-like" structures in both wheat and barley. By using a mutant (des10) that is severely compromised in polymerization of ZYP1during synapsis, we show that tinsel structure formation during SC dissolution is not dependant on full synapsis and may relate instead to changes in expansion stress. Our observations highlight a potentially new role for ASYNAPSIS1 (ASY1) in desynapsis, in addition to chromosome synapsis and cohesion.
Collapse
Affiliation(s)
- Isabelle Colas
- Cell and Molecular Sciences, The James Hutton InstituteDundee, United Kingdom
| | - Benoit Darrier
- Institut National de la Recherche Agronomique UMR 1095, Génétique, Diversité & Ecophysiologie des CéréalesClermont-Ferrand, France
- Université Clermont Auvergne–UBPAubière, France
| | - Mikel Arrieta
- Cell and Molecular Sciences, The James Hutton InstituteDundee, United Kingdom
| | - Sybille U. Mittmann
- Cell and Molecular Sciences, The James Hutton InstituteDundee, United Kingdom
- Division of Plant Sciences, University of Dundee at The James Hutton InstituteDundee, United Kingdom
| | - Luke Ramsay
- Cell and Molecular Sciences, The James Hutton InstituteDundee, United Kingdom
| | - Pierre Sourdille
- Institut National de la Recherche Agronomique UMR 1095, Génétique, Diversité & Ecophysiologie des CéréalesClermont-Ferrand, France
| | - Robbie Waugh
- Cell and Molecular Sciences, The James Hutton InstituteDundee, United Kingdom
- Division of Plant Sciences, University of Dundee at The James Hutton InstituteDundee, United Kingdom
| |
Collapse
|
65
|
|
66
|
Katsumata K, Nishi E, Afrin S, Narusawa K, Yamamoto A. Position matters: multiple functions of LINC-dependent chromosome positioning during meiosis. Curr Genet 2017; 63:1037-1052. [PMID: 28493118 DOI: 10.1007/s00294-017-0699-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/14/2017] [Accepted: 04/29/2017] [Indexed: 10/19/2022]
Abstract
Chromosome positioning is crucial for multiple chromosomal events, including DNA replication, repair, and recombination. The linker of nucleoskeleton and cytoskeleton (LINC) complexes, which consist of conserved nuclear membrane proteins, were shown to control chromosome positioning and facilitate various biological processes by interacting with the cytoskeleton. However, the precise functions and regulation of LINC-dependent chromosome positioning are not fully understood. During meiosis, the LINC complexes induce clustering of telomeres, forming the bouquet chromosome arrangement, which promotes homologous chromosome pairing. In fission yeast, the bouquet forms through LINC-dependent clustering of telomeres at the spindle pole body (SPB, the centrosome equivalent in fungi) and detachment of centromeres from the SPB-localized LINC. It was recently found that, in fission yeast, the bouquet contributes to formation of the spindle and meiotic centromeres, in addition to homologous chromosome pairing, and that centromere detachment is linked to telomere clustering, which is crucial for proper spindle formation. Here, we summarize these findings and show that the bouquet chromosome arrangement also contributes to nuclear fusion during karyogamy. The available evidence suggests that these functions are universal among eukaryotes. The findings demonstrate that LINC-dependent chromosome positioning performs multiple functions and controls non-chromosomal as well as chromosomal events, and that the chromosome positioning is stringently regulated for its functions. Thus, chromosome positioning plays a much broader role and is more strictly regulated than previously thought.
Collapse
Affiliation(s)
- Kazuhiro Katsumata
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Eriko Nishi
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Sadia Afrin
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Kaoru Narusawa
- Department of Chemistry, Faculty of Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Ayumu Yamamoto
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan.
- Department of Chemistry, Faculty of Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
67
|
The Nucleoporin Nup2 Contains a Meiotic-Autonomous Region that Promotes the Dynamic Chromosome Events of Meiosis. Genetics 2017; 206:1319-1337. [PMID: 28455351 DOI: 10.1534/genetics.116.194555] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 04/17/2017] [Indexed: 11/18/2022] Open
Abstract
Meiosis is a specialized cellular program required to create haploid gametes from diploid parent cells. Homologous chromosomes pair, synapse, and recombine in a dynamic environment that accommodates gross chromosome reorganization and significant chromosome motion, which are critical for normal chromosome segregation. In Saccharomyces cerevisiae, Ndj1 is a meiotic telomere-associated protein required for physically attaching telomeres to proteins embedded in the nuclear envelope. In this study, we identified additional proteins that act at the nuclear periphery from meiotic cell extracts, including Nup2, a nonessential nucleoporin with a known role in tethering interstitial chromosomal loci to the nuclear pore complex. We found that deleting NUP2 affects meiotic progression and spore viability, and gives increased levels of recombination intermediates and products. We identified a previously uncharacterized 125 aa region of Nup2 that is necessary and sufficient for its meiotic function, thus behaving as a meiotic autonomous region (MAR). Nup2-MAR forms distinct foci on spread meiotic chromosomes, with a subset overlapping with Ndj1 foci. Localization of Nup2-MAR to meiotic chromosomes does not require Ndj1, nor does Ndj1 localization require Nup2, suggesting these proteins function in different pathways, and their interaction is weak or indirect. Instead, several severe synthetic phenotypes are associated with the nup2Δ ndj1Δ double mutant, including delayed turnover of recombination joint molecules, and a failure to undergo nuclear divisions without also arresting the meiotic program. These data suggest Nup2 and Ndj1 support partially overlapping functions that promote two different levels of meiotic chromosome organization necessary to withstand a dynamic stage of the eukaryotic life cycle.
Collapse
|
68
|
Zhou L, Han J, Chen Y, Wang Y, Liu YG. Bivalent Formation 1, a plant-conserved gene, encodes an OmpH/coiled-coil motif-containing protein required for meiotic recombination in rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2163-2174. [PMID: 28369589 PMCID: PMC5447885 DOI: 10.1093/jxb/erx077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Meiosis is essential for eukaryotic sexual reproduction and plant fertility. In comparison with over 80 meiotic genes identified in Arabidopsis, there are only ~30 meiotic genes characterized in rice (Oryza sativa L.). Many genes involved in the regulation of meiotic progression remain to be determined. In this study, we identified a sterile rice mutant and cloned a new meiotic gene, OsBVF1 (Bivalent Formation 1) by map-based cloning. Molecular genetics and cytological approaches were carried out to address the function of OsBVF1 in meiosis. Phylogenetic analyses were used to study the evolution of OsBVF1 and its homologs in plant species. Here we showed that the bvf1 male meiocytes were defective in formation of meiotic double strand break, thereby resulting in a failure of bivalent formation in diakinesis and unequal chromosome segregation in anaphase I. The causal gene, OsBVF1, encodes a unique OmpH/coiled-coil motif-containing protein and its homologs are highly conserved in the plant kingdom and seem to be a single-copy gene in the majority of plant species. Our study demonstrates that OsBVF1 is a novel plant-conserved factor involved in meiotic recombination in rice, providing a new insight into understanding of meiotic progression regulation.
Collapse
Affiliation(s)
- Lian Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 510642 Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, 510642 Guangzhou, China
- College of Life Sciences, South China Agricultural University, 510642 Guangzhou, China
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438 Shanghai, China
| | - Jingluan Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 510642 Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, 510642 Guangzhou, China
- College of Life Sciences, South China Agricultural University, 510642 Guangzhou, China
| | - Yuanling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 510642 Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, 510642 Guangzhou, China
- College of Life Sciences, South China Agricultural University, 510642 Guangzhou, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, 200438 Shanghai, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 510642 Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, 510642 Guangzhou, China
- College of Life Sciences, South China Agricultural University, 510642 Guangzhou, China
| |
Collapse
|
69
|
Pereira HS, Delgado M, Viegas W, Rato JM, Barão A, Caperta AD. Rye (Secale cereale) supernumerary (B) chromosomes associated with heat tolerance during early stages of male sporogenesis. ANNALS OF BOTANY 2017; 119:325-337. [PMID: 27818381 PMCID: PMC5314639 DOI: 10.1093/aob/mcw206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/03/2016] [Accepted: 08/23/2016] [Indexed: 05/11/2023]
Abstract
BACKGROUND AND AIMS Rye supernumerary (B) chromosomes have an accumulation mechanism involving the B subtelomeric domain highly enriched in D1100- and E3900-related sequences. In this work, the effects of heat stress during the early stages of male meiosis in 0B and +B plants were studied. METHODS In-depth cytological analyses of chromatin structure and behaviour were performed on staged rye meiocytes utilizing DAPI, fluorescence in situ hybridization and 5-methylcytosine immune labelling. Quantitative real-time PCR was used to measure heat effects on the expression of the Hsp101 gene as well as the 3·9- and 2·7-kb E3900 forms in various tissues and meiotic stages. KEY RESULTS AND CONCLUSIONS Quantitative real-time PCR established that heat induced equal up-regulation of the Hsp101 gene in 0B and 2B plants, with a marked peak in anthers with meiocytes staged at pachytene. Heat also resulted in significant up-regulation of E3900-related transcripts, especially at pachytene and for the truncated 2·7-kb form of E3900. Cytological heat-induced anomalies in prophase I, measured as the frequency of anomalous meiocytes, were significantly greater in 0B plants. Whereas telomeric sequences were widely distributed in a manner close to normal in the majority of 2B pachytene cells, most 0B meiocytes displayed abnormally clustered telomeres after chromosome pairing had occurred. Relevantly, bioinformatic analysis revealed a significantly high-density heat responsive cis regulatory sequence on E3900, clearly supporting stress-induced response of transcription for the truncated variant. Taken together, these results are the first indication that rye B chromosomes have implications on heat tolerance and may protect meiocytes against heat stress-induced damage.
Collapse
Affiliation(s)
- H Sofia Pereira
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Margarida Delgado
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Wanda Viegas
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - João M Rato
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Augusta Barão
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Ana D Caperta
- Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia (ISA), Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
70
|
Abstract
Acquisition of oocyte polarity involves complex translocation and aggregation of intracellular organelles, RNAs, and proteins, along with strict posttranscriptional regulation. While much is still unknown regarding the formation of the animal-vegetal axis, an early marker of polarity, animal models have contributed to our understanding of these early processes controlling normal oogenesis and embryo development. In recent years, it has become clear that proteins with self-assembling properties are involved in assembling discrete subcellular compartments or domains underlying subcellular asymmetries in the early mitotic and meiotic cells of the female germline. These include asymmetries in duplication of the centrioles and formation of centrosomes and assembly of the organelle and RNA-rich Balbiani body, which plays a critical role in oocyte polarity. Notably, at specific stages of germline development, these transient structures in oocytes are temporally coincident and align with asymmetries in the position and arrangement of nuclear components, such as the nuclear pore and the chromosomal bouquet and the centrioles and cytoskeleton in the cytoplasm. Formation of these critical, transient structures and arrangements involves microtubule pathways, intrinsically disordered proteins (proteins with domains that tend to be fluid or lack a rigid ordered three-dimensional structure ranging from random coils, globular domains, to completely unstructured proteins), and translational repressors and activators. This review aims to examine recent literature and key players in oocyte polarity.
Collapse
Affiliation(s)
- Mara Clapp
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA
| | - Florence L Marlow
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA.
- Department of Neuroscience, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY, USA.
- Department of Cell, Developmental and Regenerative Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY, 10029-6574, USA.
| |
Collapse
|
71
|
Sepsi A, Higgins JD, Heslop-Harrison JSP, Schwarzacher T. CENH3 morphogenesis reveals dynamic centromere associations during synaptonemal complex formation and the progression through male meiosis in hexaploid wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:235-249. [PMID: 27624968 DOI: 10.1111/tpj.13379] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/04/2016] [Accepted: 09/08/2016] [Indexed: 05/02/2023]
Abstract
During meiosis, centromeres in some species undergo a series of associations, but the processes and progression to homologous pairing is still a matter of debate. Here, we aimed to correlate meiotic centromere dynamics and early telomere behaviour to the progression of synaptonemal complex (SC) construction in hexaploid wheat (2n = 42) by triple immunolabelling of CENH3 protein marking functional centromeres, and SC proteins ASY1 (unpaired lateral elements) and ZYP1 (central elements in synapsed chromosomes). We show that single or multiple centromere associations formed in meiotic interphase undergo a progressive polarization (clustering) at the nuclear periphery in early leptotene, leading to formation of the telomere bouquet. Critically, immunolabelling shows the dynamics of these presynaptic centromere associations and a structural reorganization of the centromeric chromatin coinciding with key events of synapsis initiation from the subtelomeric regions. As short stretches of subtelomeric synapsis emerged at early zygotene, centromere clusters lost their strong polarization, gradually resolving as individual centromeres indicated by more than 21 CENH3 foci associated with unpaired lateral elements. Only following this centromere depolarization were homologous chromosome arms connected, as observed by the alignment and fusion of interstitial ZYP1 loci elongating at zygotene so synapsis at centromeres is a continuation of the interstitial synapsis. Our results thus reveal that centromere associations are a component of the timing and progression of chromosome synapsis, and the gradual release of the individual centromeres from the clusters correlates with the elongation of interstitial synapsis between the corresponding homologues.
Collapse
Affiliation(s)
- Adél Sepsi
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - James D Higgins
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | | | - Trude Schwarzacher
- Department of Genetics, University of Leicester, University Road, Leicester, LE1 7RH, UK
| |
Collapse
|
72
|
Li JY, Pan LQ, Miao JJ, Xu RY, Xu WJ. De novo assembly and characterization of the ovarian transcriptome reveal mechanisms of the final maturation stage in Chinese scallop Chlamys farreri. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 20:118-124. [DOI: 10.1016/j.cbd.2016.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 12/14/2022]
|
73
|
Abstract
Meiosis, the mechanism of creating haploid gametes, is a complex cellular process observed across sexually reproducing organisms. Fundamental to meiosis is the process of homologous recombination, whereby DNA double-strand breaks are introduced into the genome and are subsequently repaired to generate either noncrossovers or crossovers. Although homologous recombination is essential for chromosome pairing during prophase I, the resulting crossovers are critical for maintaining homolog interactions and enabling accurate segregation at the first meiotic division. Thus, the placement, timing, and frequency of crossover formation must be exquisitely controlled. In this review, we discuss the proteins involved in crossover formation, the process of their formation and designation, and the rules governing crossovers, all within the context of the important landmarks of prophase I. We draw together crossover designation data across organisms, analyze their evolutionary divergence, and propose a universal model for crossover regulation.
Collapse
Affiliation(s)
- Stephen Gray
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York 14853; ,
| | - Paula E Cohen
- Department of Biomedical Sciences and Center for Reproductive Genomics, Cornell University, Ithaca, New York 14853; ,
| |
Collapse
|
74
|
A Taz1- and Microtubule-Dependent Regulatory Relationship between Telomere and Centromere Positions in Bouquet Formation Secures Proper Meiotic Divisions. PLoS Genet 2016; 12:e1006304. [PMID: 27611693 PMCID: PMC5017736 DOI: 10.1371/journal.pgen.1006304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/17/2016] [Indexed: 01/01/2023] Open
Abstract
During meiotic prophase, telomeres cluster, forming the bouquet chromosome arrangement, and facilitate homologous chromosome pairing. In fission yeast, bouquet formation requires switching of telomere and centromere positions. Centromeres are located at the spindle pole body (SPB) during mitotic interphase, and upon entering meiosis, telomeres cluster at the SPB, followed by centromere detachment from the SPB. Telomere clustering depends on the formation of the microtubule-organizing center at telomeres by the linker of nucleoskeleton and cytoskeleton complex (LINC), while centromere detachment depends on disassembly of kinetochores, which induces meiotic centromere formation. However, how the switching of telomere and centromere positions occurs during bouquet formation is not fully understood. Here, we show that, when impaired telomere interaction with the LINC or microtubule disruption inhibited telomere clustering, kinetochore disassembly-dependent centromere detachment and accompanying meiotic centromere formation were also inhibited. Efficient centromere detachment required telomere clustering-dependent SPB recruitment of a conserved telomere component, Taz1, and microtubules. Furthermore, when artificial SPB recruitment of Taz1 induced centromere detachment in telomere clustering-defective cells, spindle formation was impaired. Thus, detachment of centromeres from the SPB without telomere clustering causes spindle impairment. These findings establish novel regulatory mechanisms, which prevent concurrent detachment of telomeres and centromeres from the SPB during bouquet formation and secure proper meiotic divisions. Meiosis is a type of cell division, that generates haploid gametes and is essential for sexual reproduction. During meiosis, telomeres cluster on a small region of the nuclear periphery, forming a conserved chromosome arrangement referred to as the “bouquet”. Because the bouquet arrangement facilitates homologous chromosome pairing, which is essential for proper meiotic chromosome segregation, it is of great importance to understand how the bouquet arrangement is formed. In fission yeast, the bouquet arrangement requires switching of telomere and centromere positions. During mitosis, centromeres are located at the fungal centrosome called the spindle pole body (SPB). Upon entering meiosis, telomeres cluster at the SPB, and centromeres become detached from the SPB, forming the bouquet arrangement. In this study, we show that centromere detachment is linked with telomere clustering. When telomere clustering was inhibited, centromere detachment was also inhibited. This regulatory relationship depended on a conserved telomere component, Taz1, and microtubules. Furthermore, we show that the regulatory relationship is crucial for proper meiotic divisions when telomere clustering is defective. Our findings reveal a hitherto unknown regulatory relationship between meiotic telomere and centromere positions in bouquet formation, which secures proper meiotic divisions.
Collapse
|
75
|
Ren H, Ferguson K, Kirkpatrick G, Vinning T, Chow V, Ma S. Altered Crossover Distribution and Frequency in Spermatocytes of Infertile Men with Azoospermia. PLoS One 2016; 11:e0156817. [PMID: 27273078 PMCID: PMC4894629 DOI: 10.1371/journal.pone.0156817] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/19/2016] [Indexed: 11/25/2022] Open
Abstract
During meiosis, homologous chromosomes pair to facilitate the exchange of DNA at crossover sites along the chromosomes. The frequency and distribution of crossover formation are tightly regulated to ensure the proper progression of meiosis. Using immunofluorescence techniques, our group and others have studied the meiotic proteins in spermatocytes of infertile men, showing that this population displays a reduced frequency of crossovers compared to fertile men. An insufficient number of crossovers is thought to promote chromosome missegregation, in which case the faulty cell may face meiotic arrest or contribute to the production of aneuploid sperm. Increasing evidence in model organisms has suggested that the distribution of crossovers may also be important for proper chromosome segregation. In normal males, crossovers are shown to be rare near centromeres and telomeres, while frequent in subtelomeric regions. Our study aims to characterize the crossover distribution in infertile men with non-obstructive (NOA) and obstructive azoospermia (OA) along chromosomes 13, 18 and 21. Eight of the 16 NOA men and five of the 21 OA men in our study displayed reduced crossover frequency compared to control fertile men. Seven NOA men and nine OA men showed altered crossover distributions on at least one of the chromosome arms studied compared to controls. We found that although both NOA and OA men displayed altered crossover distributions, NOA men may be at a higher risk of suffering both altered crossover frequencies and distributions compared to OA men. Our data also suggests that infertile men display an increase in crossover formation in regions where they are normally inhibited, specifically near centromeres and telomeres. Finally, we demonstrated a decrease in crossovers near subtelomeres, as well as increased average crossover distance to telomeres in infertile men. As telomere-guided mechanisms are speculated to play a role in crossover formation in subtelomeres, future studies linking crossover distribution with telomere integrity and sperm aneuploidy may provide new insight into the mechanisms underlying male infertility.
Collapse
MESH Headings
- Adult
- Aneuploidy
- Azoospermia/epidemiology
- Azoospermia/genetics
- Case-Control Studies
- Chromosome Segregation
- Chromosomes, Human, Pair 13
- Chromosomes, Human, Pair 18
- Chromosomes, Human, Pair 21
- Crossing Over, Genetic
- Humans
- Incidence
- Infertility, Male/epidemiology
- Infertility, Male/genetics
- Male
- Meiosis/genetics
- Middle Aged
- Recombination, Genetic
- Semen Analysis/statistics & numerical data
- Spermatocytes/metabolism
Collapse
Affiliation(s)
- He Ren
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, B.C., Canada
| | - Kyle Ferguson
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, B.C., Canada
| | - Gordon Kirkpatrick
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, B.C., Canada
| | - Tanya Vinning
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, B.C., Canada
| | - Victor Chow
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, B.C., Canada
| | - Sai Ma
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, B.C., Canada
- * E-mail:
| |
Collapse
|
76
|
Ortiz R, Kouznetsova A, Echeverría-Martínez OM, Vázquez-Nin GH, Hernández-Hernández A. The width of the lateral element of the synaptonemal complex is determined by a multilayered organization of its components. Exp Cell Res 2016; 344:22-29. [PMID: 27090018 DOI: 10.1016/j.yexcr.2016.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/22/2016] [Accepted: 03/27/2016] [Indexed: 01/22/2023]
Abstract
The synaptonemal complex (SC) is a proteinaceous structure that holds the homologous chromosomes in close proximity while they exchange genetic material in a process known as meiotic recombination. This meiotic recombination leads to genetic variability in sexually reproducing organisms. The ultrastructure of the SC is studied by electron microscopy and it is observed as a tripartite structure. Two lateral elements (LE) separated by a central region (CR) confer its classical tripartite organization. The LEs are the anchoring platform for the replicated homologous chromosomes to properly exchange genetic material with one another. An accurate assembly of the LE is indispensable for the proper completion of meiosis. Ultrastructural studies suggested that the LE is organized as a multilayered unit. However, no validation of this model has been previously provided. In this ultrastructural study, by using mice with different genetic backgrounds that affect the LE width, we provide further evidence that support a multilayered organization of the LE. Additionally, we provide data suggesting additional roles of the different cohesin complex components in the structure of the LEs of the SC.
Collapse
Affiliation(s)
- Rosario Ortiz
- Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México, México DF 04510, México.
| | - Anna Kouznetsova
- Department of Cell and Molecular Biology, Karolinska Institutet, Berzelius väg 35, 171 77 Stockholm, Sweden.
| | - Olga M Echeverría-Martínez
- Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México, México DF 04510, México.
| | - Gerardo H Vázquez-Nin
- Laboratorio de Microscopía Electrónica, Facultad de Ciencias, Universidad Nacional Autónoma de México, México DF 04510, México.
| | - Abrahan Hernández-Hernández
- Department of Cell and Molecular Biology, Karolinska Institutet, Berzelius väg 35, 171 77 Stockholm, Sweden.
| |
Collapse
|
77
|
Gao J, Yang X, Djekidel MN, Wang Y, Xi P, Zhang MQ. Developing bioimaging and quantitative methods to study 3D genome. QUANTITATIVE BIOLOGY 2016. [DOI: 10.1007/s40484-016-0065-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
78
|
Rodriguez-Granados NY, Ramirez-Prado JS, Veluchamy A, Latrasse D, Raynaud C, Crespi M, Ariel F, Benhamed M. Put your 3D glasses on: plant chromatin is on show. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3205-21. [PMID: 27129951 DOI: 10.1093/jxb/erw168] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The three-dimensional organization of the eukaryotic nucleus and its chromosomal conformation have emerged as important features in the complex network of mechanisms behind gene activity and genome connectivity dynamics, which can be evidenced in the regionalized chromosomal spatial distribution and the clustering of diverse genomic regions with similar expression patterns. The development of chromatin conformation capture (3C) techniques has permitted the elucidation of commonalities between the eukaryotic phyla, as well as important differences among them. The growing number of studies in the field performed in plants has shed light on the structural and regulatory features of these organisms. For instance, it has been proposed that plant chromatin can be arranged into different conformations such as Rabl, Rosette-like, and Bouquet, and that both short- and long-range chromatin interactions occur in Arabidopsis. In this review, we compile the current knowledge about chromosome architecture characteristics in plants, as well as the molecular events and elements (including long non-coding RNAs, histone and DNA modifications, chromatin remodeling complexes, and transcription factors) shaping the genome three-dimensional conformation. Furthermore, we discuss the developmental outputs of genome topology-mediated gene expression regulation. It is becoming increasingly clear that new tools and techniques with higher resolution need to be developed and implemented in Arabidopsis and other model plants in order to better understand chromosome architecture dynamics, from an integrative perspective with other fields of plant biology such as development, stress biology, and finally agriculture.
Collapse
Affiliation(s)
- Natalia Y Rodriguez-Granados
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Juan S Ramirez-Prado
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Alaguraj Veluchamy
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - David Latrasse
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| | - Cécile Raynaud
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| | - Federico Ariel
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| | - Moussa Benhamed
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, University Paris-Sud, University of Evry, University Paris-Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, Batiment 630, 91405 Orsay, France
| |
Collapse
|
79
|
A few of our favorite things: Pairing, the bouquet, crossover interference and evolution of meiosis. Semin Cell Dev Biol 2016; 54:135-48. [PMID: 26927691 DOI: 10.1016/j.semcdb.2016.02.024] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/22/2016] [Indexed: 12/20/2022]
Abstract
Meiosis presents many important mysteries that await elucidation. Here we discuss two such aspects. First, we consider how the current meiotic program might have evolved. We emphasize the central feature of this program: how homologous chromosomes find one another ("pair") so as to create the connections required for their regular segregation at Meiosis I. Points of emphasis include the facts that: (i) the classical "bouquet stage" is not required for initial homolog contacts in the current evolved meiotic program; and (ii) diverse observations point to commonality between molecules that mediate meiotic inter-homolog interactions and molecules that are integral to centromeres and/or to microtubule organizing centers (a.k.a. spindle pole bodies or centrosomes). Second, we provide an overview of the classical phenomenon of crossover (CO) interference in an effort to bridge the gap between description on the one hand versus logic and mechanism on the other.
Collapse
|
80
|
Zickler D, Espagne E. Sordaria, a model system to uncover links between meiotic pairing and recombination. Semin Cell Dev Biol 2016; 54:149-57. [PMID: 26877138 DOI: 10.1016/j.semcdb.2016.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 02/08/2016] [Indexed: 11/20/2022]
Abstract
The mycelial fungus Sordaria macrospora was first used as experimental system for meiotic recombination. This review shows that it provides also a powerful cytological system for dissecting chromosome dynamics in wild-type and mutant meioses. Fundamental cytogenetic findings include: (1) the identification of presynaptic alignment as a key step in pairing of homologous chromosomes. (2) The discovery that biochemical complexes that mediate recombination at the DNA level concomitantly mediate pairing of homologs. (3) This pairing process involves not only resolution but also avoidance of chromosomal entanglements and the resolution system includes dissolution of constraining DNA recombination interactions, achieved by a unique role of Mlh1. (4) Discovery that the central components of the synaptonemal complex directly mediate the re-localization of the recombination proteins from on-axis to in-between homologue axis positions. (5) Identification of putative STUbL protein Hei10 as a structure-based signal transduction molecule that coordinates progression and differentiation of recombinational interactions at multiple stages. (6) Discovery that a single interference process mediates both nucleation of the SC and designation of crossover sites, thereby ensuring even spacing of both features. (7) Discovery of local modulation of sister-chromatid cohesion at sites of crossover recombination.
Collapse
Affiliation(s)
- Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France.
| | - Eric Espagne
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| |
Collapse
|
81
|
Abstract
Linear eukaryotic chromosomes are capped by the telomeres, which consist of highly repetitive nucleotide sequences bound by several telomere-specific proteins. While the general role of telomeres is to protect chromosomes from degradation and end-to-end fusion, during meiosis they are assigned with a distinct and without doubt highly fascinating function. During meiosis, telomeres attach to the nuclear envelope and mediate characteristic chromosome movements, essential for correct haploidization of the genome. Here, we provide elaborate tools to study telomeres in mammalian meiotic germ cells, which include (co-)immunofluorescence staining procedures on cell spreads and paraffin-embedded tissues. We provide detailed procedures for fluorescence labeling of telomeric DNA (Telo-FISH) to visualize telomeres at the light microscopic level, which we often use in combination with immunofluorescence staining of meiotic proteins. We also present a protocol for detection of telomeric DNA at the electron microscopic level (EM-ISH). We finally describe how meiotic telomeres can be visualized by common electron microscopic methods and how they can be analyzed at the ultrastructural level by immunogold labeling of telomere components or associated structures.
Collapse
Affiliation(s)
- Jana Link
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.,Department of Chromosome Biology, Max F. Perutz Laboratories (MFPL), Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Manfred Alsheimer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
82
|
Cooper TJ, Garcia V, Neale MJ. Meiotic DSB patterning: A multifaceted process. Cell Cycle 2016; 15:13-21. [PMID: 26730703 PMCID: PMC4825777 DOI: 10.1080/15384101.2015.1093709] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/12/2015] [Indexed: 11/25/2022] Open
Abstract
Meiosis is a specialized two-step cell division responsible for genome haploidization and the generation of genetic diversity during gametogenesis. An integral and distinctive feature of the meiotic program is the evolutionarily conserved initiation of homologous recombination (HR) by the developmentally programmed induction of DNA double-strand breaks (DSBs). The inherently dangerous but essential act of DSB formation is subject to multiple forms of stringent and self-corrective regulation that collectively ensure fruitful and appropriate levels of genetic exchange without risk to cellular survival. Within this article we focus upon an emerging element of this control--spatial regulation--detailing recent advances made in understanding how DSBs are evenly distributed across the genome, and present a unified view of the underlying patterning mechanisms employed.
Collapse
Affiliation(s)
- Tim J. Cooper
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Valerie Garcia
- Centre de Recherche en Cancérologie de Marseille, Marseille, France
| | - Matthew J. Neale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
83
|
Meiotic cohesin-based chromosome structure is essential for homologous chromosome pairing in Schizosaccharomyces pombe. Chromosoma 2015; 125:205-14. [PMID: 26511279 PMCID: PMC4830870 DOI: 10.1007/s00412-015-0551-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 10/07/2015] [Accepted: 10/09/2015] [Indexed: 11/30/2022]
Abstract
Chromosome structure is dramatically altered upon entering meiosis to establish chromosomal architectures necessary for the successful progression of meiosis-specific events. An early meiotic event involves the replacement of the non-SMC mitotic cohesins with their meiotic equivalents in most part of the chromosome, forming an axis on meiotic chromosomes. We previously demonstrated that the meiotic cohesin complex is required for chromosome compaction during meiotic prophase in the fission yeast Schizosaccharomyces pombe. These studies revealed that chromosomes are elongated in the absence of the meiotic cohesin subunit Rec8 and shortened in the absence of the cohesin-associated protein Pds5. In this study, using super-resolution structured illumination microscopy, we found that Rec8 forms a linear axis on chromosomes, which is required for the organized axial structure of chromatin during meiotic prophase. In the absence of Pds5, the Rec8 axis is shortened whereas chromosomes are widened. In rec8 or pds5 mutants, the frequency of homologous chromosome pairing is reduced. Thus, Rec8 and Pds5 play an essential role in building a platform to support the chromosome architecture necessary for the spatial alignment of homologous chromosomes.
Collapse
|
84
|
Christophorou N, Rubin T, Bonnet I, Piolot T, Arnaud M, Huynh JR. Microtubule-driven nuclear rotations promote meiotic chromosome dynamics. Nat Cell Biol 2015; 17:1388-400. [PMID: 26458247 DOI: 10.1038/ncb3249] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/03/2015] [Indexed: 11/09/2022]
Abstract
At the onset of meiosis, each chromosome needs to find its homologue and pair to ensure proper segregation. In Drosophila, pairing occurs during the mitotic cycles preceding meiosis. Here we show that germ cell nuclei undergo marked movements during this developmental window. We demonstrate that microtubules and Dynein are driving nuclear rotations and are required for centromere pairing and clustering. We further found that Klaroid (SUN) and Klarsicht (KASH) co-localize with centromeres at the nuclear envelope and are required for proper chromosome motions and pairing. We identified Mud (NuMA in vertebrates) as co-localizing with centromeres, Klarsicht and Klaroid. Mud is also required to maintain the integrity of the nuclear envelope and for the correct assembly of the synaptonemal complex. Our findings reveal a mechanism for chromosome pairing in Drosophila, and indicate that microtubules, centrosomes and associated proteins play a crucial role in the dynamic organization of chromosomes inside the nucleus.
Collapse
Affiliation(s)
- Nicolas Christophorou
- Department of Genetics and Developmental Biology, Institut Curie, F-75248 Paris, France.,CNRS UMR3215, Inserm, U934 F-75248 Paris, France
| | - Thomas Rubin
- Department of Genetics and Developmental Biology, Institut Curie, F-75248 Paris, France.,CNRS UMR3215, Inserm, U934 F-75248 Paris, France
| | - Isabelle Bonnet
- Laboratoire Physico-Chimie, Institut Curie, F-75248 Paris, France.,CNRS UMR 168, UPMC, F-75248 Paris, France
| | - Tristan Piolot
- Department of Genetics and Developmental Biology, Institut Curie, F-75248 Paris, France.,CNRS UMR3215, Inserm, U934 F-75248 Paris, France
| | - Marion Arnaud
- Department of Genetics and Developmental Biology, Institut Curie, F-75248 Paris, France.,CNRS UMR3215, Inserm, U934 F-75248 Paris, France
| | - Jean-René Huynh
- Department of Genetics and Developmental Biology, Institut Curie, F-75248 Paris, France.,CNRS UMR3215, Inserm, U934 F-75248 Paris, France
| |
Collapse
|
85
|
Specks J, Nieto-Soler M, Lopez-Contreras AJ, Fernandez-Capetillo O. Modeling the study of DNA damage responses in mice. Methods Mol Biol 2015; 1267:413-37. [PMID: 25636482 DOI: 10.1007/978-1-4939-2297-0_21] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Damaged DNA has a profound impact on mammalian health and overall survival. In addition to being the source of mutations that initiate cancer, the accumulation of toxic amounts of DNA damage can cause severe developmental diseases and accelerate aging. Therefore, understanding how cells respond to DNA damage has become one of the most intense areas of biomedical research in the recent years. However, whereas most mechanistic studies derive from in vitro or in cellulo work, the impact of a given mutation on a living organism is largely unpredictable. For instance, why BRCA1 mutations preferentially lead to breast cancer whereas mutations compromising mismatch repair drive colon cancer is still not understood. In this context, evaluating the specific physiological impact of mutations that compromise genome integrity has become crucial for a better dimensioning of our knowledge. We here describe the various technologies that can be used for modeling mutations in mice and provide a review of the genes and pathways that have been modeled so far in the context of DNA damage responses.
Collapse
Affiliation(s)
- Julia Specks
- Genomic Instability Group, Spanish National Cancer Research Center (CNIO), C/Melchor Fernandez Almagro, 3, E-28029, Madrid, Spain
| | | | | | | |
Collapse
|
86
|
Zhang B, Xu M, Bian S, Hou L, Tang D, Li Y, Gu M, Cheng Z, Yu H. Global Identification of Genes Specific for Rice Meiosis. PLoS One 2015; 10:e0137399. [PMID: 26394329 PMCID: PMC4578934 DOI: 10.1371/journal.pone.0137399] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 08/17/2015] [Indexed: 11/23/2022] Open
Abstract
The leptotene-zygotene transition is a major step in meiotic progression during which pairing between homologous chromosomes is initiated and double strand breaks occur. OsAM1, a homologue of maize AM1 and Arabidopsis SWI1, encodes a protein with a coiled-coil domain in its central region that is required for the leptotene-zygotene transition during rice meiosis. To gain more insight into the role of OsAM1 in rice meiosis and identify additional meiosis-specific genes, we characterized the transcriptomes of young panicles of Osam1 mutant and wild-type rice plants using RNA-Seq combined with bioinformatic and statistical analyses. As a result, a total of 25,750 and 28,455 genes were expressed in young panicles of wild-type and Osam1 mutant plants, respectively, and 4,400 differentially expressed genes (DEGs; log2 Ratio ≥ 1, FDR ≤ 0.05) were identified. Of these DEGs, four known rice meiosis-specific genes were detected, and 22 new putative meiosis-related genes were found by mapping these DEGs to reference biological pathways in the KEGG database. We identified eight additional well-conserved OsAM1-responsive rice meiotic genes by comparing our RNA-Seq data with known meiotic genes in Arabidopsis and fission yeast.
Collapse
Affiliation(s)
- Bingwei Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modem Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Meng Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modem Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Shiquan Bian
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modem Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Lili Hou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modem Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Ding Tang
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yafei Li
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Minghong Gu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modem Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Zhukuan Cheng
- State Key Laboratory of Plant Genomics and Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hengxiu Yu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modem Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
- * E-mail:
| |
Collapse
|
87
|
Lambing C, Osman K, Nuntasoontorn K, West A, Higgins JD, Copenhaver GP, Yang J, Armstrong SJ, Mechtler K, Roitinger E, Franklin FCH. Arabidopsis PCH2 Mediates Meiotic Chromosome Remodeling and Maturation of Crossovers. PLoS Genet 2015; 11:e1005372. [PMID: 26182244 PMCID: PMC4504720 DOI: 10.1371/journal.pgen.1005372] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 06/19/2015] [Indexed: 11/30/2022] Open
Abstract
Meiotic chromosomes are organized into linear looped chromatin arrays by a protein axis localized along the loop-bases. Programmed remodelling of the axis occurs during prophase I of meiosis. Structured illumination microscopy (SIM) has revealed dynamic changes in the chromosome axis in Arabidopsis thaliana and Brassica oleracea. We show that the axis associated protein ASY1 is depleted during zygotene concomitant with synaptonemal complex (SC) formation. Study of an Atpch2 mutant demonstrates this requires the conserved AAA+ ATPase, PCH2, which localizes to the sites of axis remodelling. Loss of PCH2 leads to a failure to deplete ASY1 from the axes and compromizes SC polymerisation. Immunolocalization of recombination proteins in Atpch2 indicates that recombination initiation and CO designation during early prophase I occur normally. Evidence suggests that CO interference is initially functional in the mutant but there is a defect in CO maturation following designation. This leads to a reduction in COs and a failure to form COs between some homologous chromosome pairs leading to univalent chromosomes at metaphase I. Genetic analysis reveals that CO distribution is also affected in some chromosome regions. Together these data indicate that the axis remodelling defect in Atpch2 disrupts normal patterned formation of COs. In the reproductive cells of many eukaryotes, a process called meiosis generates haploid gametes. During meiosis, homologous parental chromosomes (homologs) recombine forming crossovers (CO) that provide genetic variation. CO formation generates physical links called chiasmata, which are essential for accurate homolog segregation. CO control designates a sub-set of recombination precursors that will mature to form at least one chiasma between each homolog pair. Recombination is accompanied by extensive chromosome reorganization. Formation of a proteinaceous axis organizes the pairs of sister chromatids of each homolog into conjoined linear looped chromatin arrays. Pairs of homologs then align and synapse becoming closely associated along their length by a protein structure, the synaptonemal complex (SC). The SC is disassembled at the end of prophase I and recombination is completed. We have investigated the link between recombination and chromosome remodelling by analysing the role of a protein, PCH2, which we show is required for remodelling of the chromosome axis during SC formation. In wild type, immunolocalization reveals depletion of the axis-associated signal of the axis component, ASY1, along synapsed regions of the chromosomes. In the absence of PCH2, the ASY1 signal is not depleted from the chromosome axis and the SC does not form normally. Although this defect in chromosome remodelling has no obvious effect on CO designation, CO maturation is perturbed such that the formation of at least one CO per homolog pair no longer occurs.
Collapse
Affiliation(s)
- Christophe Lambing
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Kim Osman
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Komsun Nuntasoontorn
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Allan West
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - James D. Higgins
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Gregory P. Copenhaver
- Department of Biology and Carolina Center for Genome Scientists, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jianhua Yang
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Susan J. Armstrong
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | | | - F. Chris H. Franklin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail:
| |
Collapse
|
88
|
Zickler D, Kleckner N. Recombination, Pairing, and Synapsis of Homologs during Meiosis. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a016626. [PMID: 25986558 DOI: 10.1101/cshperspect.a016626] [Citation(s) in RCA: 543] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recombination is a prominent feature of meiosis in which it plays an important role in increasing genetic diversity during inheritance. Additionally, in most organisms, recombination also plays mechanical roles in chromosomal processes, most notably to mediate pairing of homologous chromosomes during prophase and, ultimately, to ensure regular segregation of homologous chromosomes when they separate at the first meiotic division. Recombinational interactions are also subject to important spatial patterning at both early and late stages. Recombination-mediated processes occur in physical and functional linkage with meiotic axial chromosome structure, with interplay in both directions, before, during, and after formation and dissolution of the synaptonemal complex (SC), a highly conserved meiosis-specific structure that links homolog axes along their lengths. These diverse processes also are integrated with recombination-independent interactions between homologous chromosomes, nonhomology-based chromosome couplings/clusterings, and diverse types of chromosome movement. This review provides an overview of these diverse processes and their interrelationships.
Collapse
Affiliation(s)
- Denise Zickler
- Institut de Génétique et Microbiologie, UMR 8621, Université Paris-Sud, 91405 Orsay, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
89
|
Mézard C, Jahns MT, Grelon M. Where to cross? New insights into the location of meiotic crossovers. Trends Genet 2015; 31:393-401. [PMID: 25907025 DOI: 10.1016/j.tig.2015.03.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/16/2015] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
Abstract
During meiosis, the repair of induced DNA double-strand breaks (DSBs) produces crossovers (COs). COs are essential for the proper segregation of homologous chromosomes at the first meiotic division. In addition, COs generate new combinations of genetic markers in the progeny. CO localization is tightly controlled, giving rise to patterns that are specific to each species. The underlying mechanisms governing CO location, however, are poorly understood. Recent studies highlight the complexity of the multiple interconnected factors involved in shaping the CO landscape and demonstrate that the mechanisms that control CO distribution can vary from species to species. Here, we provide an overview of the recent findings related to CO distribution and discuss their impact on our understanding of the control of meiotic recombination.
Collapse
Affiliation(s)
- Christine Mézard
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Marina Tagliaro Jahns
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Mathilde Grelon
- INRA, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France.
| |
Collapse
|
90
|
Link J, Jahn D, Alsheimer M. Structural and functional adaptations of the mammalian nuclear envelope to meet the meiotic requirements. Nucleus 2015; 6:93-101. [PMID: 25674669 PMCID: PMC4615672 DOI: 10.1080/19491034.2015.1004941] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Numerous studies in the past years provided definite evidence that the nuclear envelope is much more than just a simple barrier. It rather constitutes a multifunctional platform combining structural and dynamic features to fulfill many fundamental functions such as chromatin organization, regulation of transcription, signaling, but also structural duties like maintaining general nuclear architecture and shape. One additional and, without doubt, highly impressive aspect is the recently identified key function of selected nuclear envelope components in driving meiotic chromosome dynamics, which in turn is essential for accurate recombination and segregation of the homologous chromosomes. Here, we summarize the recent work identifying new key players in meiotic telomere attachment and movement and discuss the latest advances in our understanding of the actual function of the meiotic nuclear envelope.
Collapse
Affiliation(s)
- Jana Link
- a Department of Cell and Developmental Biology ; Biocenter University Würzburg ; Würzburg , Germany
| | | | | |
Collapse
|
91
|
Elucidation of synaptonemal complex organization by super-resolution imaging with isotropic resolution. Proc Natl Acad Sci U S A 2015; 112:2029-33. [PMID: 25646409 DOI: 10.1073/pnas.1414814112] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Synaptonemal complexes (SCs) are meiosis-specific multiprotein complexes that are essential for synapsis, recombination, and segregation of homologous chromosomes, but the molecular organization of SCs remains unclear. We used immunofluorescence labeling in combination with super-resolution imaging and average position determination to investigate the molecular architecture of SCs. Combination of 2D super-resolution images recorded from different areas of the helical ladder-like structure allowed us to reconstruct the 3D molecular organization of the mammalian SC with isotropic resolution. The central element is composed of two parallel cables at a distance of ∼ 100 nm, which are oriented perpendicular to two parallel cables of the lateral element arranged at a distance of ∼ 220 nm. The two parallel cable elements form twisted helical structures that are connected by transversal filaments by their N and C termini. A single-cell preparation generates sufficient localizations to compile a 3D model of the SC with nanometer precision.
Collapse
|
92
|
Varas J, Graumann K, Osman K, Pradillo M, Evans DE, Santos JL, Armstrong SJ. Absence of SUN1 and SUN2 proteins in Arabidopsis thaliana leads to a delay in meiotic progression and defects in synapsis and recombination. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 81:329-46. [PMID: 25412930 DOI: 10.1111/tpj.12730] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/25/2014] [Accepted: 11/17/2014] [Indexed: 05/21/2023]
Abstract
The movement of chromosomes during meiosis involves location of their telomeres at the inner surface of the nuclear envelope. Sad1/UNC-84 (SUN) domain proteins are inner nuclear envelope proteins that are part of complexes linking cytoskeletal elements with the nucleoskeleton, connecting telomeres to the force-generating mechanism in the cytoplasm. These proteins play a conserved role in chromosome dynamics in eukaryotes. Homologues of SUN domain proteins have been identified in several plant species. In Arabidopsis thaliana, two proteins that interact with each other, named AtSUN1 and AtSUN2, have been identified. Immunolocalization using antibodies against AtSUN1 and AtSUN2 proteins revealed that they were associated with the nuclear envelope during meiotic prophase I. Analysis of the double mutant Atsun1-1 Atsun2-2 has revealed severe meiotic defects, namely a delay in the progression of meiosis, absence of full synapsis, the presence of unresolved interlock-like structures, and a reduction in the mean cell chiasma frequency. We propose that in Arabidopsis thaliana, overlapping functions of SUN1 and SUN2 ensure normal meiotic recombination and synapsis.
Collapse
Affiliation(s)
- Javier Varas
- Departamento de Genética, Facultad de Biología, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | | | | | | | | | | | | |
Collapse
|
93
|
Li H, Meng F, Guo C, Wang Y, Xie X, Zhu T, Zhou S, Ma H, Shan H, Kong H. MeioBase: a comprehensive database for meiosis. FRONTIERS IN PLANT SCIENCE 2014; 5:728. [PMID: 25566299 PMCID: PMC4267189 DOI: 10.3389/fpls.2014.00728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/01/2014] [Indexed: 06/04/2023]
Abstract
Meiosis is a special type of cell division process necessary for the sexual reproduction of all eukaryotes. The ever expanding meiosis research calls for an effective and specialized database that is not readily available yet. To fill this gap, we have developed a knowledge database MeioBase (http://meiosis.ibcas.ac.cn), which is comprised of two core parts, Resources and Tools. In the Resources part, a wealth of meiosis data collected by curation and manual review from published literatures and biological databases are integrated and organized into various sections, such as Cytology, Pathway, Species, Interaction, and Expression. In the Tools part, some useful tools have been integrated into MeioBase, such as Search, Download, Blast, Comparison, My Favorites, Submission, and Advice. With a simplified and efficient web interface, users are able to search against the database with gene model IDs or keywords, and batch download the data for local investigation. We believe that MeioBase can greatly facilitate the researches related to meiosis.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Fanrui Meng
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Chunce Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan UniversityShanghai, China
| | - Xiaojing Xie
- Shanghai Key Lab of Intelligent Information Processing and School of Computer Science, Fudan UniversityShanghai, China
| | - Tiansheng Zhu
- Shanghai Key Lab of Intelligent Information Processing and School of Computer Science, Fudan UniversityShanghai, China
| | - Shuigeng Zhou
- Shanghai Key Lab of Intelligent Information Processing and School of Computer Science, Fudan UniversityShanghai, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering, Institute of Plant Biology, Institute of Biodiversity Science, Center for Evolutionary Biology, School of Life Sciences, Fudan UniversityShanghai, China
- Institutes of Biomedical Sciences, Fudan UniversityShanghai, China
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of SciencesBeijing, China
| |
Collapse
|
94
|
The dissection of meiotic chromosome movement in mice using an in vivo electroporation technique. PLoS Genet 2014; 10:e1004821. [PMID: 25502938 PMCID: PMC4263375 DOI: 10.1371/journal.pgen.1004821] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/14/2014] [Indexed: 12/31/2022] Open
Abstract
During meiosis, the rapid movement of telomeres along the nuclear envelope (NE) facilitates pairing/synapsis of homologous chromosomes. In mammals, the mechanical properties of chromosome movement and the cytoskeletal structures responsible for it remain poorly understood. Here, applying an in vivo electroporation (EP) technique in live mouse testis, we achieved the quick visualization of telomere, chromosome axis and microtubule organizing center (MTOC) movements. For the first time, we defined prophase sub-stages of live spermatocytes morphologically according to GFP-TRF1 and GFP-SCP3 signals. We show that rapid telomere movement and subsequent nuclear rotation persist from leptotene/zygotene to pachytene, and then decline in diplotene stage concomitant with the liberation of SUN1 from telomeres. Further, during bouquet stage, telomeres are constrained near the MTOC, resulting in the transient suppression of telomere mobility and nuclear rotation. MTs are responsible for these movements by forming cable-like structures on the NE, and, probably, by facilitating the rail-tacking movements of telomeres on the MT cables. In contrast, actin regulates the oscillatory changes in nuclear shape. Our data provide the mechanical scheme for meiotic chromosome movement throughout prophase I in mammals. Meiosis is a special type of cell division for gametogenesis, errors in which cause several genetic disorders such as infertility and Down syndrome. In meiotic prophase I, chromosomes are tethered to the nuclear envelope (NE) through telomeres, and move rapidly along the NE to get homologs aligned and juxtaposed. Following homologous recombination and synapsis, the bivalent chromosome structure is established, which promotes genetic varieties, and also ensures accurate chromosome segregation in following anaphase I. Although there have been extensive studies addressing meiotic chromosome dynamics in yeast and worms, the same in mammalian meiosis remains largely elusive. Here, we utilized an in vivo electroporation (EP) technique to visualize chromosome movement in live mouse spermatocytes. We, for the first time, define the meiotic sub-stages in live cells based on telomeres and chromosome axis morphologies, and reveal chromosome movements regulated in a stage-specific manner. Putting the live-observations together with our cytological observations in fixed cells, we propose that meiotic chromosome movements in mammals are mediated by the rail-tracking movement of telomeres along the MT cables surrounding the meiotic nucleus.
Collapse
|
95
|
Synaptonemal complex extension from clustered telomeres mediates full-length chromosome pairing in Schmidtea mediterranea. Proc Natl Acad Sci U S A 2014; 111:E5159-68. [PMID: 25404302 DOI: 10.1073/pnas.1420287111] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the 1920s, József Gelei proposed that chromosome pairing in flatworms resulted from the formation of a telomere bouquet followed by the extension of synapsis from telomeres at the base of the bouquet, thus facilitating homolog pairing in a processive manner. A modern interpretation of Gelei's model postulates that the synaptonemal complex (SC) is nucleated close to the telomeres and then extends progressively along the full length of chromosome arms. We used the easily visible meiotic chromosomes, a well-characterized genome, and RNAi in the sexual biotype of the planarian Schmidtea mediterranea to test that hypothesis. By identifying and characterizing S. mediterranea homologs of genes encoding synaptonemal complex protein 1 (SYCP1), the topoisomerase-like protein SPO11, and RAD51, a key player in homologous recombination, we confirmed that SC formation begins near the telomeres and progresses along chromosome arms during zygotene. Although distal regions pair at the time of bouquet formation, pairing of a unique interstitial locus is not observed until the formation of full-length SC at pachytene. Moreover, neither full extension of the SC nor homologous pairing is dependent on the formation of double-strand breaks. These findings validate Gelei's speculation that full-length pairing of homologous chromosomes is mediated by the extension of the SC formed near the telomeres. S. mediterranea thus becomes the first organism described (to our knowledge) that forms a canonical telomere bouquet but does not require double-strand breaks for synapsis between homologous chromosomes. However, the initiation of SC formation at the base of the telomere bouquet, which then is followed by full-length homologous pairing in planarian spermatocytes, is not observed in other species and may not be conserved.
Collapse
|
96
|
Viera A, Alsheimer M, Gómez R, Berenguer I, Ortega S, Symonds CE, Santamaría D, Benavente R, Suja JA. CDK2 regulates nuclear envelope protein dynamics and telomere attachment in mouse meiotic prophase. J Cell Sci 2014; 128:88-99. [PMID: 25380821 DOI: 10.1242/jcs.154922] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In most organisms, telomeres attach to the nuclear envelope at the onset of meiosis to promote the crucial processes of pairing, recombination and synapsis during prophase I. This attachment of meiotic telomeres is mediated by the specific distribution of several nuclear envelope components that interact with the attachment plates of the synaptonemal complex. We have determined by immunofluorescence and electron microscopy that the ablation of the kinase CDK2 alters the nuclear envelope in mouse spermatocytes, and that the proteins SUN1, KASH5 (also known as CCDC155) and lamin C2 show an abnormal cap-like distribution facing the centrosome. Strikingly, some telomeres are not attached to the nuclear envelope but remain at the nuclear interior where they are associated with SUN1 and with nuclear-envelope-detached vesicles. We also demonstrate that mouse testis CDK2 phosphorylates SUN1 in vitro. We propose that during mammalian prophase I the kinase CDK2 is a key factor governing the structure of the nuclear envelope and the telomere-led chromosome movements essential for homolog pairing.
Collapse
Affiliation(s)
- Alberto Viera
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Manfred Alsheimer
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, D-97074 Würzburg, Germany
| | - Rocío Gómez
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Inés Berenguer
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Sagrario Ortega
- Biotechnology Program, Centro Nacional de Investigaciones Oncológicas, E-28029 Madrid, Spain
| | - Catherine E Symonds
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, E-28029 Madrid, Spain
| | - David Santamaría
- Molecular Oncology Program, Centro Nacional de Investigaciones Oncológicas, E-28029 Madrid, Spain
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, D-97074 Würzburg, Germany
| | - José A Suja
- Unidad de Biología Celular, Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
97
|
Jahn D, Schramm S, Benavente R, Alsheimer M. Dynamic properties of meiosis-specific lamin C2 and its impact on nuclear envelope integrity. Nucleus 2014. [DOI: 10.4161/nucl.11800] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
98
|
Sato-Carlton A, Li X, Crawley O, Testori S, Martinez-Perez E, Sugimoto A, Carlton PM. Protein phosphatase 4 promotes chromosome pairing and synapsis, and contributes to maintaining crossover competence with increasing age. PLoS Genet 2014; 10:e1004638. [PMID: 25340746 PMCID: PMC4207613 DOI: 10.1371/journal.pgen.1004638] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/15/2014] [Indexed: 11/18/2022] Open
Abstract
Prior to the meiotic divisions, dynamic chromosome reorganizations including pairing, synapsis, and recombination of maternal and paternal chromosome pairs must occur in a highly regulated fashion during meiotic prophase. How chromosomes identify each other's homology and exclusively pair and synapse with their homologous partners, while rejecting illegitimate synapsis with non-homologous chromosomes, remains obscure. In addition, how the levels of recombination initiation and crossover formation are regulated so that sufficient, but not deleterious, levels of DNA breaks are made and processed into crossovers is not understood well. We show that in Caenorhabditis elegans, the highly conserved Serine/Threonine protein phosphatase PP4 homolog, PPH-4.1, is required independently to carry out four separate functions involving meiotic chromosome dynamics: (1) synapsis-independent chromosome pairing, (2) restriction of synapsis to homologous chromosomes, (3) programmed DNA double-strand break initiation, and (4) crossover formation. Using quantitative imaging of mutant strains, including super-resolution (3D-SIM) microscopy of chromosomes and the synaptonemal complex, we show that independently-arising defects in each of these processes in the absence of PPH-4.1 activity ultimately lead to meiotic nondisjunction and embryonic lethality. Interestingly, we find that defects in double-strand break initiation and crossover formation, but not pairing or synapsis, become even more severe in the germlines of older mutant animals, indicating an increased dependence on PPH-4.1 with increasing maternal age. Our results demonstrate that PPH-4.1 plays multiple, independent roles in meiotic prophase chromosome dynamics and maintaining meiotic competence in aging germlines. PP4's high degree of conservation suggests it may be a universal regulator of meiotic prophase chromosome dynamics. Meiosis creates gametes by distributing diploid genomes containing homologous chromosome pairs into daughter cells that receive only one of each chromosome. To segregate correctly at the first meiotic division, chromosomes must pair and synapse with their homologous partners, and undergo crossover recombination, which requires breaking and repairing the DNA strands of all chromosomes. How chromosomes recognize their partners, and how a cell controls the amount of DNA breakage and recombination that occurs, are open questions. In this study, we observed meiosis in the nematode Caenorhabditis elegans to examine the role of Protein Phosphatase 4 (PP4). We found that in the absence of PP4, chromosomes often paired and synapsed with non-homologous chromosomes, or synapsed with themselves by folding in half. Additionally, without PP4 activity, the number of DNA breaks and of crossover recombination events were both independently reduced. The latter two defects became even worse with increasing age, indicating that older animals require PP4 to a greater extent. These findings shed light on how protein phosphorylation controls meiotic events, and demonstrate unanticipated, important roles for PP4.
Collapse
Affiliation(s)
- Aya Sato-Carlton
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan
| | - Xuan Li
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan
| | - Oliver Crawley
- MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London, United Kingdom
| | - Sarah Testori
- MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London, United Kingdom
| | - Enrique Martinez-Perez
- MRC Clinical Sciences Centre, Imperial College Faculty of Medicine, London, United Kingdom
| | - Asako Sugimoto
- Laboratory of Developmental Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Peter M. Carlton
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
99
|
Duroc Y, Lemhemdi A, Larchevêque C, Hurel A, Cuacos M, Cromer L, Horlow C, Armstrong SJ, Chelysheva L, Mercier R. The kinesin AtPSS1 promotes synapsis and is required for proper crossover distribution in meiosis. PLoS Genet 2014; 10:e1004674. [PMID: 25330379 PMCID: PMC4199493 DOI: 10.1371/journal.pgen.1004674] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
Meiotic crossovers (COs) shape genetic diversity by mixing homologous chromosomes at each generation. CO distribution is a highly regulated process. CO assurance forces the occurrence of at least one obligatory CO per chromosome pair, CO homeostasis smoothes out the number of COs when faced with variation in precursor number and CO interference keeps multiple COs away from each other along a chromosome. In several organisms, it has been shown that cytoskeleton forces are transduced to the meiotic nucleus via KASH- and SUN-domain proteins, to promote chromosome synapsis and recombination. Here we show that the Arabidopsis kinesin AtPSS1 plays a major role in chromosome synapsis and regulation of CO distribution. In Atpss1 meiotic cells, chromosome axes and DNA double strand breaks (DSBs) appear to form normally but only a variable portion of the genome synapses and is competent for CO formation. Some chromosomes fail to form the obligatory CO, while there is an increased CO density in competent regions. However, the total number of COs per cell is unaffected. We further show that the kinesin motor domain of AtPSS1 is required for its meiotic function, and that AtPSS1 interacts directly with WIP1 and WIP2, two KASH-domain proteins. Finally, meiocytes missing AtPSS1 and/or SUN proteins show similar meiotic defects suggesting that AtPSS1 and SUNs act in the same pathway. This suggests that forces produced by the AtPSS1 kinesin and transduced by WIPs/SUNs, are required to authorize complete synapsis and regulate maturation of recombination intermediates into COs. We suggest that a form of homeostasis applies, which maintains the total number of COs per cell even if only a part of the genome is competent for CO formation. In species that reproduce sexually, diploid individuals have two copies of each chromosome, inherited from their father and mother. During a special cell division called meiosis, these two sets of chromosomes are mixed by homologous recombination to give genetically unique chromosomes that will be transmitted to the next generation. Homologous recombination processes are highly controlled in terms of number and localization of events within and among chromosomes. Disruption of this control (a lack of or improper positioning of homologous recombination events) causes deleterious chromosome associations in the offspring. Using the model plant Arabidopsis thaliana we reveal here that the AtPSS1 gene is required for proper localization of these homologous recombination events along the genome. We also show that AtPSS1, which belongs to a family of proteins able to move along the cytoskeleton, is likely part of a module that allows cytoplasmic forces to be transmitted through the nucleus envelope to promote chromosome movements during homologous recombination progression.
Collapse
Affiliation(s)
- Yann Duroc
- The French National Institute for Agricultural Research (INRA), Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Afef Lemhemdi
- The French National Institute for Agricultural Research (INRA), Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Cécile Larchevêque
- The French National Institute for Agricultural Research (INRA), Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Aurélie Hurel
- The French National Institute for Agricultural Research (INRA), Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Maria Cuacos
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Laurence Cromer
- The French National Institute for Agricultural Research (INRA), Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Christine Horlow
- The French National Institute for Agricultural Research (INRA), Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Susan J. Armstrong
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Liudmila Chelysheva
- The French National Institute for Agricultural Research (INRA), Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
| | - Raphael Mercier
- The French National Institute for Agricultural Research (INRA), Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- AgroParisTech, Institut Jean-Pierre Bourgin, UMR 1318, ERL CNRS 3559, Saclay Plant Sciences, RD10, Versailles, France
- * E-mail:
| |
Collapse
|
100
|
Calderón MDC, Rey MD, Cabrera A, Prieto P. The subtelomeric region is important for chromosome recognition and pairing during meiosis. Sci Rep 2014; 4:6488. [PMID: 25270583 PMCID: PMC4180820 DOI: 10.1038/srep06488] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/10/2014] [Indexed: 12/26/2022] Open
Abstract
The process of meiosis results in the formation of haploid daughter cells, each of which inherit a half of the diploid parental cells' genetic material. The ordered association of homologues (identical chromosomes) is a critical prerequisite for a successful outcome of meiosis. Homologue recognition and pairing are initiated at the chromosome ends, which comprise the telomere dominated by generic repetitive sequences, and the adjacent subtelomeric region, which harbours chromosome-specific sequences. In many organisms telomeres are responsible for bringing the ends of the chromosomes close together during early meiosis, but little is known regarding the role of the subtelomeric region sequence during meiosis. Here, the observation of homologue pairing between a pair of Hordeum chilense chromosomes lacking the subtelomeric region on one chromosome arm indicates that the subtelomeric region is important for the process of homologous chromosome recognition and pairing.
Collapse
Affiliation(s)
- María del Carmen Calderón
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Apartado 4084, E-14080 Córdoba, Spain
| | - María-Dolores Rey
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Apartado 4084, E-14080 Córdoba, Spain
| | - Adoración Cabrera
- Department of Genetics, ETSIAM, University of Córdoba, Campus de Excelencia Internacional Agroalimentario, CeiA3, 14071 Córdoba, Spain
| | - Pilar Prieto
- Plant Breeding Department, Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), Apartado 4084, E-14080 Córdoba, Spain
| |
Collapse
|