51
|
Kanaan R, Medlej-Hashim M, Jounblat R, Pilecki B, Sorensen GL. Microfibrillar-associated protein 4 in health and disease. Matrix Biol 2022; 111:1-25. [DOI: 10.1016/j.matbio.2022.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/04/2022] [Accepted: 05/24/2022] [Indexed: 10/18/2022]
|
52
|
Shahri JJ, Saberianpour S, Bayegi SN. Comparison of tissue biomarkers in arterial and vein (arteriovenous fistula) aneurysms. Phlebology 2022; 37:289-295. [DOI: 10.1177/02683555211070189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Introduction and objectives Aneurysms are distinguished by inflammation, matrix degradation, and apoptosis of smooth muscle cells. In this study, specialized aneurysms tissue markers including venous and arterial aneurysms were studied. Material and methods The present cross-sectional study was conducted throughout January–September 2021. Tissue samples were collected during surgery. Hematoxylin and eosin (H&E) stains, have been utilized to identify different aneurysm types and the morphologic alterations that serve as the foundation for aneurysm diagnosis. Measurement of collagen type III, IV, CCR2, metalloproteinase (2 and 13), and granzyme K was done by ELISA method. Results were presented as the mean ± standard deviation and analyzed by t tests (Graph Pad Prism 8.4.3.686) Results During the period from January to September 2021, 14 patients with peripheral venous and arterial aneurysms were referred to Alavi Vascular Surgery Hospital and underwent surgery. Of these, 10 patients were matched and remained available for study. The level of type 3 collagen was significantly reduced in arterial aneurysm compared to venous aneurysm ( p < 0.05). Granzyme K in arterial aneurysm showed increase compared to venous aneurysm ( p < 0.05). Metalloproteinase 2 in arterial aneurysms higher than venous aneurysm ( p < 0.001). Metalloproteinase 13 in arterial aneurysm also showed increase compared to venous aneurysm ( p < 0.05). Conclusion Results of this study shows differences in the level of tissue biomarkers in arterial and vein (arteriovenous fistula) aneurysms.
Collapse
Affiliation(s)
- Jamal J Shahri
- Vascular and Endovascular Surgery Research Center, Mashhad Medical University, Mashhad, Iran
| | - Shirin Saberianpour
- Vascular and Endovascular Surgery Research Center, Mashhad Medical University, Mashhad, Iran
| | - Saeed N Bayegi
- Vascular and Endovascular Surgery Research Center, Mashhad Medical University, Mashhad, Iran
| |
Collapse
|
53
|
Ji W, Wen J, Lin W, He P, Hou B, Quan S. Comparing the Characteristics of Amniotic Membrane-, Endometrium-, and Urinary-Derived ECMs and Their Effects on Endometrial Regeneration in a Rat Uterine Injury Model. Front Bioeng Biotechnol 2022; 10:861496. [PMID: 35497362 PMCID: PMC9043350 DOI: 10.3389/fbioe.2022.861496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
The decellularized extracellular matrices (d-ECMs) currently utilized to repair endometrial injuries are derived from three tissue sources, the endometrium (dE-ECM), placental amniotic membrane (dA-ECM), and urinary (dU-ECM). Notably, the structures of dU-ECM and dE-ECM are similar. These d-ECMs are derived from different tissues, and their specific roles in endometrial injury repair remain unclear. This study aimed to analyse the characteristics of the tissue microstructures and compositions to confirm specific differences among the three ECM types. And using a rat model of endometrial injury, the effects of all the matrices after implantation in vivo on the promotion of endometrial regeneration were analysed. After decellularization, dE-ECM had more residual active factors than the other two ECM types, while dA-ECM had significantly less DNA, α-Gal antigen components and extracellular matrix components than the other two groups. Although the three ECMs had no effect on the proliferation of stromal cells in vitro, dA-ECM may have increased the sensitivity of stromal cells to oestradiol (E2) responses. In vivo experiments confirmed the promotional effect of dA-ECM on endometrial regeneration. For example, the endometrial thickness, collagen deposition, endometrial tissue regeneration, vascular regeneration and pregnancy outcomes were significantly better in this group than in the other two groups. These findings might be associated with the excellent immune tolerance of dA-ECM. Therefore, when selecting a d-ECM for the treatment of endometrial injury, dE-ECM, which has the strongest tissue specificity, is not the preferred choice. Controlling the inflammatory responses in local lesions at the early stage may be a prerequisite for ECMs to exert their functions.
Collapse
Affiliation(s)
- Wanqing Ji
- Department of Gynecology and Obstetrics, NanFang Hospital, Southern Medical University, Guangzhou, China,Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jiaming Wen
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Weige Lin
- Guangdong Maoming Health Vocational College, Maoming, China
| | - Ping He
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Bo Hou
- Department of Neurosurgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,*Correspondence: Bo Hou, ; Song Quan,
| | - Song Quan
- Department of Gynecology and Obstetrics, NanFang Hospital, Southern Medical University, Guangzhou, China,*Correspondence: Bo Hou, ; Song Quan,
| |
Collapse
|
54
|
Zhang N, Schumacher A, Fink B, Bauer M, Zenclussen AC, Meyer N. Insights into Early-Pregnancy Mechanisms: Mast Cells and Chymase CMA1 Shape the Phenotype and Modulate the Functionality of Human Trophoblast Cells, Vascular Smooth-Muscle Cells and Endothelial Cells. Cells 2022; 11:cells11071158. [PMID: 35406722 PMCID: PMC8997408 DOI: 10.3390/cells11071158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 01/27/2023] Open
Abstract
Spiral-artery (SA) remodeling is a fundamental process during pregnancy that involves the action of cells of the initial vessel, such as vascular smooth-muscle cells (VSMCs) and endothelial cells, but also maternal immune cells and fetal extravillous trophoblast cells (EVTs). Mast cells (MCs), and specifically chymase-expressing cells, have been identified as key to a sufficient SA-remodeling process in vivo. However, the mechanisms are still unclear. The purpose of this study is to evaluate the effects of the MC line HMC-1 and recombinant human chymase (rhuCMA1) on human primary uterine vascular smooth-muscle cells (HUtSMCs), a human trophoblast cell line (HTR8/SV-neo), and human umbilical-vein endothelial cells (HUVEC) in vitro. Both HMC-1 and rhuCMA1 stimulated migration, proliferation, and changed protein expression in HUtSMCs. HMC-1 increased proliferation, migration, and changed gene expression of HTR8/SVneo cells, while rhuCMA treatment led to increased migration and decreased expression of tissue inhibitors of matrix metalloproteinases. Additionally, rhuCMA1 enhanced endothelial-cell-tube formation. Collectively, we identified possible mechanisms by which MCs/rhuCMA1 promote SA remodeling. Our findings are relevant to the understanding of this crucial step in pregnancy and thus of the dysregulated pathways that can lead to pregnancy complications such as fetal growth restriction and preeclampsia.
Collapse
Affiliation(s)
- Ningjuan Zhang
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, 04318 Leipzig, Germany; (N.Z.); (A.S.); (B.F.); (M.B.); (A.C.Z.)
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, University Leipzig, 04103 Leipzig, Germany
| | - Anne Schumacher
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, 04318 Leipzig, Germany; (N.Z.); (A.S.); (B.F.); (M.B.); (A.C.Z.)
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, University Leipzig, 04103 Leipzig, Germany
| | - Beate Fink
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, 04318 Leipzig, Germany; (N.Z.); (A.S.); (B.F.); (M.B.); (A.C.Z.)
| | - Mario Bauer
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, 04318 Leipzig, Germany; (N.Z.); (A.S.); (B.F.); (M.B.); (A.C.Z.)
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, 04318 Leipzig, Germany; (N.Z.); (A.S.); (B.F.); (M.B.); (A.C.Z.)
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, University Leipzig, 04103 Leipzig, Germany
| | - Nicole Meyer
- Department of Environmental Immunology, UFZ-Helmholtz Centre for Environmental Research Leipzig-Halle, 04318 Leipzig, Germany; (N.Z.); (A.S.); (B.F.); (M.B.); (A.C.Z.)
- Perinatal Immunology, Saxonian Incubator for Clinical Translation (SIKT), Medical Faculty, University Leipzig, 04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-341-235-1542
| |
Collapse
|
55
|
Long Non-Coding RNAs Might Regulate Phenotypic Switch of Vascular Smooth Muscle Cells Acting as ceRNA: Implications for In-Stent Restenosis. Int J Mol Sci 2022; 23:ijms23063074. [PMID: 35328496 PMCID: PMC8952224 DOI: 10.3390/ijms23063074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
Coronary in-stent restenosis is a late complication of angioplasty. It is a multifactorial process that involves vascular smooth muscle cells (VSMCs), endothelial cells, and inflammatory and genetic factors. In this study, the transcriptomic landscape of VSMCs’ phenotypic switch process was assessed under stimuli resembling stent injury. Co-cultured contractile VSMCs and endothelial cells were exposed to a bare metal stent and platelet-derived growth factor (PDGF-BB) 20 ng/mL. Migratory capacity (wound healing assay), proliferative capacity, and cell cycle analysis of the VSMCs were performed. RNAseq analysis of contractile vs. proliferative VSMCs was performed. Gene differential expression (DE), identification of new long non-coding RNA candidates (lncRNAs), gene ontology (GO), and pathway enrichment (KEGG) were analyzed. A competing endogenous RNA network was constructed, and significant lncRNA–miRNA–mRNA axes were selected. VSMCs exposed to “stent injury” conditions showed morphologic changes, with proliferative and migratory capacities progressing from G0-G1 cell cycle phase to S and G2-M. RNAseq analysis showed DE of 1099, 509 and 64 differentially expressed mRNAs, lncRNAs, and miRNAs, respectively. GO analysis of DE genes showed significant enrichment in collagen and extracellular matrix organization, regulation of smooth muscle cell proliferation, and collagen biosynthetic process. The main upregulated nodes in the lncRNA-mediated ceRNA network were PVT1 and HIF1-AS2, with downregulation of ACTA2-AS1 and MIR663AHG. The PVT1 ceRNA axis appears to be an attractive target for in-stent restenosis diagnosis and treatment.
Collapse
|
56
|
Khare HA, Døssing KBV, Ringgaard L, Christensen E, Urbak L, Sillesen H, Ripa RS, Binderup T, Pedersen SF, Kjaer A. In vivo detection of urokinase-type plasminogen activator receptor (uPAR) expression in arterial atherogenesis using [64Cu]Cu-DOTA-AE105 positron emission tomography (PET). Atherosclerosis 2022; 352:103-111. [DOI: 10.1016/j.atherosclerosis.2022.03.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/23/2022] [Accepted: 03/25/2022] [Indexed: 12/21/2022]
|
57
|
Role of Integrins in Modulating Smooth Muscle Cell Plasticity and Vascular Remodeling: From Expression to Therapeutic Implications. Cells 2022; 11:cells11040646. [PMID: 35203297 PMCID: PMC8870356 DOI: 10.3390/cells11040646] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 02/06/2023] Open
Abstract
Smooth muscle cells (SMCs), present in the media layer of blood vessels, are crucial in maintaining vascular homeostasis. Upon vascular injury, SMCs show a high degree of plasticity, undergo a change from a “contractile” to a “synthetic” phenotype, and play an essential role in the pathophysiology of diseases including atherosclerosis and restenosis. Integrins are cell surface receptors, which are involved in cell-to-cell binding and cell-to-extracellular-matrix interactions. By binding to extracellular matrix components, integrins trigger intracellular signaling and regulate several of the SMC function, including proliferation, migration, and phenotypic switching. Although pharmacological approaches, including antibodies and synthetic peptides, have been effectively utilized to target integrins to limit atherosclerosis and restenosis, none has been commercialized yet. A clear understanding of how integrins modulate SMC biology is essential to facilitate the development of integrin-based interventions to combat atherosclerosis and restenosis. Herein, we highlight the importance of integrins in modulating functional properties of SMCs and their implications for vascular pathology.
Collapse
|
58
|
Vascular Pathobiology: Atherosclerosis and Large Vessel Disease. Cardiovasc Pathol 2022. [DOI: 10.1016/b978-0-12-822224-9.00006-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
59
|
Increased Risk of Aortic Dissection with Perlecan Deficiency. Int J Mol Sci 2021; 23:ijms23010315. [PMID: 35008739 PMCID: PMC8745340 DOI: 10.3390/ijms23010315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/24/2021] [Accepted: 12/25/2021] [Indexed: 12/22/2022] Open
Abstract
Perlecan (HSPG2), a basement membrane-type heparan sulfate proteoglycan, has been implicated in the development of aortic tissue. However, its role in the development and maintenance of the aortic wall remains unknown. Perlecan-deficient mice (Hspg2−/−-Tg: Perl KO) have been found to show a high frequency (15–35%) of aortic dissection (AD). Herein, an analysis of the aortic wall of Perl KO mice revealed that perlecan deficiency caused thinner and partially torn elastic lamina. Compared to the control aortic tissue, perlecan-deficient aortic tissue showed a significant decrease in desmosine content and an increase in soluble tropoelastin levels, implying the presence of immature elastic fibers in Perl KO mice. Furthermore, the reduced expression of the smooth muscle cell contractile proteins actin and myosin in perlecan-deficient aortic tissue may explain the risk of AD. This study showed that a deficiency in perlecan, which is localized along the elastic lamina and at the interface between elastin and fibrillin-1, increased the risk of AD, largely due to the immaturity of extracellular matrix in the aortic tissue. Overall, we proposed a new model of AD that considers the deficiency of extracellular molecule perlecan as a risk factor.
Collapse
|
60
|
Vatner SF, Zhang J, Vyzas C, Mishra K, Graham RM, Vatner DE. Vascular Stiffness in Aging and Disease. Front Physiol 2021; 12:762437. [PMID: 34950048 PMCID: PMC8688960 DOI: 10.3389/fphys.2021.762437] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/26/2021] [Indexed: 01/01/2023] Open
Abstract
The goal of this review is to provide further understanding of increased vascular stiffness with aging, and how it contributes to the adverse effects of major human diseases. Differences in stiffness down the aortic tree are discussed, a topic requiring further research, because most prior work only examined one location in the aorta. It is also important to understand the divergent effects of increased aortic stiffness between males and females, principally due to the protective role of female sex hormones prior to menopause. Another goal is to review human and non-human primate data and contrast them with data in rodents. This is particularly important for understanding sex differences in vascular stiffness with aging as well as the changes in vascular stiffness before and after menopause in females, as this is controversial. This area of research necessitates studies in humans and non-human primates, since rodents do not go through menopause. The most important mechanism studied as a cause of age-related increases in vascular stiffness is an alteration in the vascular extracellular matrix resulting from an increase in collagen and decrease in elastin. However, there are other mechanisms mediating increased vascular stiffness, such as collagen and elastin disarray, calcium deposition, endothelial dysfunction, and the number of vascular smooth muscle cells (VSMCs). Populations with increased longevity, who live in areas called “Blue Zones,” are also discussed as they provide additional insights into mechanisms that protect against age-related increases in vascular stiffness. Such increases in vascular stiffness are important in mediating the adverse effects of major cardiovascular diseases, including atherosclerosis, hypertension and diabetes, but require further research into their mechanisms and treatment.
Collapse
Affiliation(s)
- Stephen F Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers University - New Jersey Medical School, Newark, NJ, United States
| | - Jie Zhang
- Department of Cell Biology and Molecular Medicine, Rutgers University - New Jersey Medical School, Newark, NJ, United States
| | - Christina Vyzas
- Department of Cell Biology and Molecular Medicine, Rutgers University - New Jersey Medical School, Newark, NJ, United States
| | - Kalee Mishra
- Department of Cell Biology and Molecular Medicine, Rutgers University - New Jersey Medical School, Newark, NJ, United States
| | - Robert M Graham
- Victor Chang Cardiac Research Institute, University of New South Wales, Darlinghurst, NSW, Australia
| | - Dorothy E Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers University - New Jersey Medical School, Newark, NJ, United States
| |
Collapse
|
61
|
Pozzo CFSD, Sielski MS, de Campos Vidal B, Werneck CC, Vicente CP. A collagen I derived matricryptin increases aorta vascular wall remodeling after induced thrombosis in mouse. Thromb Res 2021; 209:59-68. [PMID: 34871983 DOI: 10.1016/j.thromres.2021.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 11/27/2022]
Abstract
Matricryptins are collagen fragments proteolytically released from the extracellular matrix (ECM) with biological activity that can regulate several processes involved in ECM remodeling. Vessel wall matrix reorganization after lesion is important to the recovery of vascular function. This study aimed to analyze the effect of the peptide p1158/59 (Lindsey, 2015) on thrombosis, neointimal formation, and vascular remodeling of C57BL6 mice abdominal aorta. We used a FeCl3 induced vascular injury mice model and analyzed thrombus size, neointima formation, gelatinase activities in situ, re-endothelization, and collagen fibers organization on the arterial wall using polarization microscopy. As result, we observed that 2 days after injury the treatment with p1158/59 increased thrombus size and gelatinase activity, vascular lesion and it did not recover the endothelium loss induced by the chemical injury. We also observed that the peptide increased neointima growth and collagen birefringence, indicating collagen fibers reorganization. It also promoted increased re-endothelization and decreased activity of gelatinases 14 days after injury. Thus, we conclude that the peptide p1158/59 impaired the initial thrombosis recovery 2 days after injury but was able to induce vascular ECM remodeling after 14 days, improving vessel re-endothelization, collagen fibers deposition, and organization.
Collapse
Affiliation(s)
| | - Micheli Severo Sielski
- Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Benedicto de Campos Vidal
- Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Claudio C Werneck
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Cristina Pontes Vicente
- Department of Structural and Functional Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
62
|
Wang Y, Zhang X, Wen Y, Li S, Lu X, Xu R, Li C. Endoplasmic Reticulum-Mitochondria Contacts: A Potential Therapy Target for Cardiovascular Remodeling-Associated Diseases. Front Cell Dev Biol 2021; 9:774989. [PMID: 34858991 PMCID: PMC8631538 DOI: 10.3389/fcell.2021.774989] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular remodeling occurs in cardiomyocytes, collagen meshes, and vascular beds in the progress of cardiac insufficiency caused by a variety of cardiac diseases such as chronic ischemic heart disease, chronic overload heart disease, myocarditis, and myocardial infarction. The morphological changes that occur as a result of remodeling are the critical pathological basis for the occurrence and development of serious diseases and also determine morbidity and mortality. Therefore, the inhibition of remodeling is an important approach to prevent and treat heart failure and other related diseases. The endoplasmic reticulum (ER) and mitochondria are tightly linked by ER-mitochondria contacts (ERMCs). ERMCs play a vital role in different signaling pathways and provide a satisfactory structural platform for the ER and mitochondria to interact and maintain the normal function of cells, mainly by involving various cellular life processes such as lipid metabolism, calcium homeostasis, mitochondrial function, ER stress, and autophagy. Studies have shown that abnormal ERMCs may promote the occurrence and development of remodeling and participate in the formation of a variety of cardiovascular remodeling-associated diseases. This review focuses on the structure and function of the ERMCs, and the potential mechanism of ERMCs involved in cardiovascular remodeling, indicating that ERMCs may be a potential target for new therapeutic strategies against cardiovascular remodeling-induced diseases.
Collapse
Affiliation(s)
- Yu Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China.,Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinrong Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ya Wen
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sixuan Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaohui Lu
- Emergency Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ran Xu
- Jinan Tianqiao People's Hospital, Jinan, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
63
|
Jin X, Zhang Y, Zhang X, Li Y, Xu M, Liu K, Ru J, Ma C, Yao Y, He Y, Gao J. An Adipose-Derived Injectable Sustained-Release Collagen Scaffold of Adipokines Prepared Through a Fast Mechanical Processing Technique for Preventing Skin Photoaging in Mice. Front Cell Dev Biol 2021; 9:722427. [PMID: 34631708 PMCID: PMC8497903 DOI: 10.3389/fcell.2021.722427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/02/2021] [Indexed: 12/11/2022] Open
Abstract
Ultraviolet A (UVA) radiation is the major contributor to skin photoaging, associated with increased collagen degradation and reactive oxygen species (ROS) expression. Adipokines have been proven as promising therapeutic agents for skin photoaging. However, adipokine therapy is generally limited by the short in vivo release duration and biological instability. Therefore, developing a treatment that provides a sustained release of adipokines and enhanced therapeutic effects is desirable. In this study, we developed a novel mechanical processing technique to extract adipose tissue-derived ECM components, named the "adipose collagen fragment" (ACF). The physical characterization, injectability, collagen components, residual DNA/RNA and adipokine release pattern of ACF were identified in vitro. L929 cells were treated with ACF or phosphate-buffered saline for 24 h after UVA irradiation in vitro. The expression of senescence-associated xβ-galactosidase (SA-β-gal), ROS and antioxidase were investigated. Then, we evaluated its therapeutic efficacy by injecting ACF and phosphate-buffered saline, as a control, into the dermis of photoaging nude mice and harvesting skin samples at weeks 1, 2, and 4 after treatment for assessment. The content of adipokines released from ACF was identified in vivo. The collagen synthesis and collagen degradation in ACF implants were evaluated by immune staining. Dermal thickness, fibroblast expression, collagen synthesis, ROS level, antioxidase expression, capillary density, and apoptotic cell number were evaluated by histological assessment, immune staining, and polymerase chain reaction in the skin samples. We demonstrated that ACF is the concentrated adipose extracellular matrix collagen fragment without viable cells and can be injected through fine needles. The lower expression of SA-β-gal, ROS and higher expression of antioxidase were observed in the ACF-treated group. ACF undergoes collagen degradation and promotes neocollagen synthesis in ACF implants. Meanwhile, ACF serves as a sustained-release system of adipokines and exhibits a significantly higher therapeutic effect on mouse skin photoaging by enhancing angiogenesis, antioxidant abilities, antiapoptotic activities, and collagen synthesis through sustainedly releasing adipokines. To sum up, ACF is an adipokines-enriched, sustained-release extracellular matrix collagen scaffold that can prevent UVA-induced skin photoaging in mice. ACF may serve as a novel autologous skin filler for skin rejuvenation applications in the clinic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yao Yao
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunfan He
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianhua Gao
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
64
|
Recent advances in cardiovascular stent for treatment of in-stent restenosis: Mechanisms and strategies. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
65
|
Pasha M, Wooldridge AL, Kirschenman R, Spaans F, Davidge ST, Cooke CLM. Altered Vascular Adaptations to Pregnancy in a Rat Model of Advanced Maternal Age. Front Physiol 2021; 12:718568. [PMID: 34393831 PMCID: PMC8356803 DOI: 10.3389/fphys.2021.718568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/07/2021] [Indexed: 12/20/2022] Open
Abstract
Advanced maternal age (≥35 years old) increases the risk of pregnancy complications such as preeclampsia and fetal growth restriction. We previously demonstrated vascular dysfunction and abnormal pregnancy outcomes in a rat model of advanced maternal age. However, vascular adaptations to pregnancy in aging were not studied. We hypothesize that advanced maternal age is associated with a more vasoconstrictive phenotype due to reduced nitric oxide (NO) and increased activity of matrix metalloproteinases (MMPs), contributing to impaired vascular adaptations to pregnancy. A rat model of advanced maternal age was used: young (4 months) and aged (9.5 months; ∼35 years in humans) non-pregnant and pregnant rats. On gestational day 20 (term = 22 days; non-pregnant rats were aged-matched), blood pressure and heart rate were measured (tail cuff plethysmography) and vascular function was assessed in mesenteric arteries (wire myography). Endothelium-dependent relaxation to methylcholine (MCh) was assessed in the presence/absence of nitric oxide synthase inhibitor (L-NAME), or inhibitors of endothelium-dependent hyperpolarization (EDH; apamin and TRAM-34). Vasoconstriction responses to big endothelin-1 (bigET-1), in the presence/absence of MMPs-inhibitor (GM6001) or endothelin converting enzyme (ECE-1) inhibitor (CGS35066), in addition, ET-1 responsiveness, were measured. Blood pressure was elevated only in aged non-pregnant rats (p < 0.001) compared to all other groups. MCh responses were not different, however, L-NAME decreased maximum vasodilation in young (p < 0.01) and aged pregnant rats (p < 0.001), and decreased MCh sensitivity in young non-pregnant rats (p < 0.01), without effects in aged non-pregnant rats. EDH contribution to relaxation was similar in young non-pregnant, and aged non-pregnant and pregnant rats, while EDH-mediated relaxation was absent in young pregnant rats (p < 0.001). BigET-1 responses were enhanced in aged non-pregnant (p < 0.01) and pregnant rats (p < 0.05). No significant changes in bigET-1 conversion occurred in the presence of MMP-inhibitor, whereas ECE-1 inhibition reduced bigET-1 constriction in aged rats (p < 0.01). No differences in ET-1 sensitivity were observed. In conclusion, contrary to our hypothesis, reduced blood pressure, and an increased EDH-dependent contribution to vasodilation suggest a compensatory mechanism that may reflect beneficial adaptations in these aged rats that were able to maintain pregnancy. These data increase our understanding of how the vascular adaptive pathways in pregnancy compensate for advanced maternal age.
Collapse
Affiliation(s)
- Mazhar Pasha
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Amy L. Wooldridge
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Raven Kirschenman
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Floor Spaans
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Sandra T. Davidge
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Christy-Lynn M. Cooke
- Department of Obstetrics and Gynecology, University of Alberta, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
66
|
Leptin in Atherosclerosis: Focus on Macrophages, Endothelial and Smooth Muscle Cells. Int J Mol Sci 2021; 22:ijms22115446. [PMID: 34064112 PMCID: PMC8196747 DOI: 10.3390/ijms22115446] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing adipose tissue mass in obesity directly correlates with elevated circulating leptin levels. Leptin is an adipokine known to play a role in numerous biological processes including regulation of energy homeostasis, inflammation, vascular function and angiogenesis. While physiological concentrations of leptin may exhibit multiple beneficial effects, chronically elevated pathophysiological levels or hyperleptinemia, characteristic of obesity and diabetes, is a major risk factor for development of atherosclerosis. Hyperleptinemia results in a state of selective leptin resistance such that while beneficial metabolic effects of leptin are dampened, deleterious vascular effects of leptin are conserved attributing to vascular dysfunction. Leptin exerts potent proatherogenic effects on multiple vascular cell types including macrophages, endothelial cells and smooth muscle cells; these effects are mediated via an interaction of leptin with the long form of leptin receptor, abundantly expressed in atherosclerotic plaques. This review provides a summary of recent in vivo and in vitro studies that highlight a role of leptin in the pathogenesis of atherosclerotic complications associated with obesity and diabetes.
Collapse
|
67
|
Santos ARMP, Jang Y, Son I, Kim J, Park Y. Recapitulating Cardiac Structure and Function In Vitro from Simple to Complex Engineering. MICROMACHINES 2021; 12:mi12040386. [PMID: 33916254 PMCID: PMC8067203 DOI: 10.3390/mi12040386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Cardiac tissue engineering aims to generate in vivo-like functional tissue for the study of cardiac development, homeostasis, and regeneration. Since the heart is composed of various types of cells and extracellular matrix with a specific microenvironment, the fabrication of cardiac tissue in vitro requires integrating technologies of cardiac cells, biomaterials, fabrication, and computational modeling to model the complexity of heart tissue. Here, we review the recent progress of engineering techniques from simple to complex for fabricating matured cardiac tissue in vitro. Advancements in cardiomyocytes, extracellular matrix, geometry, and computational modeling will be discussed based on a technology perspective and their use for preparation of functional cardiac tissue. Since the heart is a very complex system at multiscale levels, an understanding of each technique and their interactions would be highly beneficial to the development of a fully functional heart in cardiac tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Jongseong Kim
- Correspondence: (J.K.); (Y.P.); Tel.: +82-10-8858-7260 (J.K.); +82-10-4260-6460 (Y.P.)
| | - Yongdoo Park
- Correspondence: (J.K.); (Y.P.); Tel.: +82-10-8858-7260 (J.K.); +82-10-4260-6460 (Y.P.)
| |
Collapse
|
68
|
Xie Z, Chen J, Wang C, Zhang J, Wu Y, Yan X. Current knowledge of Krüppel-like factor 5 and vascular remodeling: providing insights for therapeutic strategies. J Mol Cell Biol 2021; 13:79-90. [PMID: 33493334 PMCID: PMC8104942 DOI: 10.1093/jmcb/mjaa080] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/23/2020] [Accepted: 12/08/2020] [Indexed: 12/18/2022] Open
Abstract
Vascular remodeling is a pathological basis of various disorders. Therefore, it is necessary to understand the occurrence, prevention, and treatment of vascular remodeling. Krüppel-like factor 5 (KLF5) has been identified as a significant factor in cardiovascular diseases during the last two decades. This review provides a mechanism network of function and regulation of KLF5 in vascular remodeling based on newly published data and gives a summary of its potential therapeutic applications. KLF5 modulates numerous biological processes, which play essential parts in the development of vascular remodeling, such as cell proliferation, phenotype switch, extracellular matrix deposition, inflammation, and angiogenesis by altering downstream genes and signaling pathways. Considering its essential functions, KLF5 could be developed as a potent therapeutic target in vascular disorders.
Collapse
Affiliation(s)
- Ziyan Xie
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Junye Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Chenyu Wang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jiahao Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yanxiang Wu
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaowei Yan
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
69
|
van Gastel J, Leysen H, Boddaert J, Vangenechten L, Luttrell LM, Martin B, Maudsley S. Aging-related modifications to G protein-coupled receptor signaling diversity. Pharmacol Ther 2020; 223:107793. [PMID: 33316288 DOI: 10.1016/j.pharmthera.2020.107793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Aging is a highly complex molecular process, affecting nearly all tissue systems in humans and is the highest risk factor in developing neurodegenerative disorders such as Alzheimer's and Parkinson's disease, cardiovascular disease and Type 2 diabetes mellitus. The intense complexity of the aging process creates an incentive to develop more specific drugs that attenuate or even reverse some of the features of premature aging. As our current pharmacopeia is dominated by therapeutics that target members of the G protein-coupled receptor (GPCR) superfamily it may be prudent to search for effective anti-aging therapeutics in this fertile domain. Since the first demonstration of GPCR-based β-arrestin signaling, it has become clear that an enhanced appreciation of GPCR signaling diversity may facilitate the creation of therapeutics with selective signaling activities. Such 'biased' ligand signaling profiles can be effectively investigated using both standard molecular biological techniques as well as high-dimensionality data analyses. Through a more nuanced appreciation of the quantitative nature across the multiple dimensions of signaling bias that drugs possess, researchers may be able to further refine the efficacy of GPCR modulators to impact the complex aberrations that constitute the aging process. Identifying novel effector profiles could expand the effective pharmacopeia and assist in the design of precision medicines. This review discusses potential non-G protein effectors, and specifically their potential therapeutic suitability in aging and age-related disorders.
Collapse
Affiliation(s)
- Jaana van Gastel
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Hanne Leysen
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Jan Boddaert
- Molecular Pathology Group, Faculty of Medicine and Health Sciences, Laboratory of Cell Biology and Histology, Antwerp, Belgium
| | - Laura Vangenechten
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Louis M Luttrell
- Division of Endocrinology, Diabetes & Medical Genetics, Medical University of South Carolina, USA
| | - Bronwen Martin
- Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; Faculty of Pharmacy, Biomedical and Veterinary Science, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|