51
|
Boen JRA, Gevaert AB, De Keulenaer GW, Van Craenenbroeck EM, Segers VFM. The role of endothelial miRNAs in myocardial biology and disease. J Mol Cell Cardiol 2019; 138:75-87. [PMID: 31756323 DOI: 10.1016/j.yjmcc.2019.11.151] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/12/2019] [Accepted: 11/14/2019] [Indexed: 01/08/2023]
Abstract
The myocardium is a highly structured pluricellular tissue which is governed by an intricate network of intercellular communication. Endothelial cells are the most abundant cell type in the myocardium and exert crucial roles in both healthy myocardium and during myocardial disease. In the last decade, microRNAs have emerged as new actors in the regulation of cellular function in almost every cell type. Here, we review recent evidence on the regulatory function of different microRNAs expressed in endothelial cells, also called endothelial microRNAs, in healthy and diseased myocardium. Endothelial microRNA emerged as modulators of angiogenesis in the myocardium, they are implicated in the paracrine role of endothelial cells in regulating cardiac contractility and homeostasis, and interfere in the crosstalk between endothelial cells and cardiomyocytes.
Collapse
Affiliation(s)
- Jente R A Boen
- Research group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Andreas B Gevaert
- Research group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Cardiology, Antwerp University Hospital (UZA), Wilrijkstraat 10, Edegem, Belgium.
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Cardiology, ZNA Middelheim Hospital, Lindendreef 1, 2020 Antwerp, Belgium.
| | - Emeline M Van Craenenbroeck
- Research group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Cardiology, Antwerp University Hospital (UZA), Wilrijkstraat 10, Edegem, Belgium.
| | - Vincent F M Segers
- Department of Cardiology, Antwerp University Hospital (UZA), Wilrijkstraat 10, Edegem, Belgium; Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
52
|
De Keulenaer GW, Feyen E, Dugaucquier L, Shakeri H, Shchendrygina A, Belenkov YN, Brink M, Vermeulen Z, Segers VFM. Mechanisms of the Multitasking Endothelial Protein NRG-1 as a Compensatory Factor During Chronic Heart Failure. Circ Heart Fail 2019; 12:e006288. [DOI: 10.1161/circheartfailure.119.006288] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Heart failure is a complex syndrome whose phenotypic presentation and disease progression depends on a complex network of adaptive and maladaptive responses. One of these responses is the endothelial release of NRG (neuregulin)-1—a paracrine growth factor activating ErbB2 (erythroblastic leukemia viral oncogene homolog B2), ErbB3, and ErbB4 receptor tyrosine kinases on various targets cells. NRG-1 features a multitasking profile tuning regenerative, inflammatory, fibrotic, and metabolic processes. Here, we review the activities of NRG-1 on different cell types and organs and their implication for heart failure progression and its comorbidities. Although, in general, effects of NRG-1 in heart failure are compensatory and beneficial, translation into therapies remains unaccomplished both because of the complexity of the underlying pathways and because of the challenges in the development of therapeutics (proteins, peptides, small molecules, and RNA-based therapies) for tyrosine kinase receptors. Here, we give an overview of the complexity to be faced and how it may be tackled.
Collapse
Affiliation(s)
- Gilles W. De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
- Department of Cardiology, ZNA Hospital, Antwerp, Belgium (G.W.D.K.)
| | - Eline Feyen
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
| | - Lindsey Dugaucquier
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
| | - Hadis Shakeri
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
| | - Anastasia Shchendrygina
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation (A.S., Y.N.B.)
| | - Yury N. Belenkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation (A.S., Y.N.B.)
| | - Marijke Brink
- Department of Biomedicine, University Hospital Basel, University of Basel, Switzerland (M.B.)
| | - Zarha Vermeulen
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
| | - Vincent F. M. Segers
- Laboratory of Physiopharmacology, University of Antwerp, Belgium (G.W.D.K., E.F., L.D., H.S., Z.V., V.F.M.S.)
- Department of Cardiology, University Hospital Antwerp, Edegem, Belgium (V.F.M.S.)
| |
Collapse
|
53
|
Segers VFM, Gevaert AB, Boen JRA, Van Craenenbroeck EM, De Keulenaer GW. Epigenetic regulation of intercellular communication in the heart. Am J Physiol Heart Circ Physiol 2019; 316:H1417-H1425. [DOI: 10.1152/ajpheart.00038.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The myocardium is a highly structured tissue consisting of different cell types including cardiomyocytes, endothelial cells, fibroblasts, smooth muscle cells, inflammatory cells, and stem cells. Microvascular endothelial cells are the most abundant cell type in the myocardium and play crucial roles during cardiac development, in normal adult myocardium, and during myocardial diseases such as heart failure. In the last decade, epigenetic changes have been described regulating cellular function in almost every cell type in the organism. Here, we review recent evidence on different epigenetic changes that regulate intercellular communication in normal myocardium and during myocardial diseases, including cardiac remodeling. Epigenetic changes influence many intercellular communication signaling systems, including the nitric oxide, angiotensin, and endothelin signaling systems. In this review, we go beyond discussing classic endothelial function (for instance nitric oxide secretion) and will discuss epigenetic regulation of intercellular communication.
Collapse
Affiliation(s)
- Vincent F. M. Segers
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
| | - Andreas B. Gevaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium
| | - Jente R. A. Boen
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium
| | - Emeline M. Van Craenenbroeck
- Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium
| | - Gilles W. De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Ziekenhuisnetwerk Antwerpen, Hospital, Antwerp, Belgium
| |
Collapse
|
54
|
Yi XM, Chen Y, Tu GJ. Neuregulin‑1 impacting bone marrow mesenchymal stem cell migration is conducive to functional recovery following spinal cord injury. Mol Med Rep 2019; 20:41-48. [PMID: 31115509 PMCID: PMC6580016 DOI: 10.3892/mmr.2019.10217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 10/15/2018] [Indexed: 11/30/2022] Open
Abstract
The present study was designed to investigate the effect of neuregulin-1 (NRG1) on the migration of rat bone marrow mesenchymal stem cells (BMSCs) and evaluate the role of NRG1 in the functional recovery following spinal cord injury (SCI). Firstly, the effect of NRG1 on the mRNA expression of Snail in the BMSCs was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis; secondly, the BMSCs were transfected with a Snail-overexpression plasmid (pBabe-puro-Snail) and the expression levels of Snail and matrix metalloptoreinase-2 (MMP-2) were detected by RT-qPCR and western blot analyses; thirdly, the cell proliferation and migration of BMSCs modified with pBabe-puro-Snail were detected by methyl thiazolyl tetrazolium and migration assays, respectively; finally, functional recovery of SCI was assessed using the Basso, Beattie, and Bresnahan rating scales. The results showed that NRG1 concentration-dependently promoted the expression of Snail with a peak at 40 ng/ml and 48 h; NRG1 enhanced the promoting effect of Snail on the expression of MMP-2; the overexpression of Snail did not enhance the cell growth of the BMSCs. The NRG1-modified BMSCs promoted the functional recovery of SCI. These results suggested that NRG1 significantly promoted the expression of MMP-2 by upregulating the expression of Snail, and enhanced cell migration of the BMSCs conducive to the functional recovery of SCI.
Collapse
Affiliation(s)
- Xi-Meng Yi
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yi Chen
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Guan-Jun Tu
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
55
|
Vermeulen Z, Mateiu L, Dugaucquier L, De Keulenaer GW, Segers VFM. Cardiac endothelial cell transcriptome in neonatal, adult, and remodeling hearts. Physiol Genomics 2019; 51:186-196. [PMID: 30978160 DOI: 10.1152/physiolgenomics.00002.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cardiac microvascular endothelial cells (CMVECs) are the most numerous cells in the myocardium and orchestrate cardiogenesis during development, regulate adult cardiac function, and modulate pathophysiology of heart failure. It has been shown that the transcriptome of CMVECs differs from other endothelial cell types, but transcriptomic changes in cardiac endothelial cells during cardiac maturation and cardiac remodeling have not been studied. CMVECs were isolated from rat hearts based on CD31 expression and were immediately processed for RNA sequencing. We compared gene expression levels from primary CMVECs of neonatal hearts, normal adult hearts, and infarcted hearts. Between neonatal and adult CMVECs, 6,838 genes were differentially expressed, indicating that CMVECs undergo a substantial transformation during postnatal cardiac growth. A large fraction of genes upregulated in neonatal CMVECs are part of mitosis pathways, whereas a large fraction of genes upregulated in adult CMVECs are part of cellular response, secretory, signaling, and cell adhesion pathways. Between CMVECs of normal adult hearts and infarcted hearts, 159 genes were differentially expressed. We found a limited degree of overlap (55 genes) between the differentially expressed genes in neonatal and infarcted-hearts. Of 46 significantly upregulated genes in the infarcted heart, 46% were also upregulated in neonatal hearts relative to sham. Of 113 significantly downregulated genes in the infarcted-hearts, 30% were also downregulated in neonatal hearts relative to sham. These data demonstrate that CMVECs undergo dramatic changes from neonatal to adult and more subtle changes between normal state and cardiac remodeling.
Collapse
Affiliation(s)
- Zarha Vermeulen
- Laboratory of Physiopharmacology, University of Antwerp , Antwerp , Belgium
| | - Ligia Mateiu
- VIB Center for Molecular Neurology, University of Antwerp, Wilrijk, Antwerp , Belgium
| | | | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp , Antwerp , Belgium.,Department of Cardiology, Middelheim Hospital , Antwerp , Belgium
| | - Vincent F M Segers
- Laboratory of Physiopharmacology, University of Antwerp , Antwerp , Belgium.,Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
| |
Collapse
|
56
|
Gogiraju R, Bochenek ML, Schäfer K. Angiogenic Endothelial Cell Signaling in Cardiac Hypertrophy and Heart Failure. Front Cardiovasc Med 2019; 6:20. [PMID: 30895179 PMCID: PMC6415587 DOI: 10.3389/fcvm.2019.00020] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/14/2019] [Indexed: 12/30/2022] Open
Abstract
Endothelial cells are, by number, one of the most abundant cell types in the heart and active players in cardiac physiology and pathology. Coronary angiogenesis plays a vital role in maintaining cardiac vascularization and perfusion during physiological and pathological hypertrophy. On the other hand, a reduction in cardiac capillary density with subsequent tissue hypoxia, cell death and interstitial fibrosis contributes to the development of contractile dysfunction and heart failure, as suggested by clinical as well as experimental evidence. Although the molecular causes underlying the inadequate (with respect to the increased oxygen and energy demands of the hypertrophied cardiomyocyte) cardiac vascularization developing during pathological hypertrophy are incompletely understood. Research efforts over the past years have discovered interesting mediators and potential candidates involved in this process. In this review article, we will focus on the vascular changes occurring during cardiac hypertrophy and the transition toward heart failure both in human disease and preclinical models. We will summarize recent findings in transgenic mice and experimental models of cardiac hypertrophy on factors expressed and released from cardiomyocytes, pericytes and inflammatory cells involved in the paracrine (dys)regulation of cardiac angiogenesis. Moreover, we will discuss major signaling events of critical angiogenic ligands in endothelial cells and their possible disturbance by hypoxia or oxidative stress. In this regard, we will particularly highlight findings on negative regulators of angiogenesis, including protein tyrosine phosphatase-1B and tumor suppressor p53, and how they link signaling involved in cell growth and metabolic control to cardiac angiogenesis. Besides endothelial cell death, phenotypic conversion and acquisition of myofibroblast-like characteristics may also contribute to the development of cardiac fibrosis, the structural correlate of cardiac dysfunction. Factors secreted by (dysfunctional) endothelial cells and their effects on cardiomyocytes including hypertrophy, contractility and fibrosis, close the vicious circle of reciprocal cell-cell interactions within the heart during pathological hypertrophy remodeling.
Collapse
Affiliation(s)
- Rajinikanth Gogiraju
- Center for Cardiology, Cardiology I, Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site RheinMain (Mainz), Mainz, Germany
| | - Magdalena L Bochenek
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site RheinMain (Mainz), Mainz, Germany
| | - Katrin Schäfer
- Center for Cardiology, Cardiology I, Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.,Center for Translational Vascular Biology, University Medical Center Mainz, Mainz, Germany.,Deutsches Zentrum für Herz-Kreislauf-Forschung e.V., Partner Site RheinMain (Mainz), Mainz, Germany
| |
Collapse
|
57
|
de Boer RA, De Keulenaer G, Bauersachs J, Brutsaert D, Cleland JG, Diez J, Du XJ, Ford P, Heinzel FR, Lipson KE, McDonagh T, Lopez-Andres N, Lunde IG, Lyon AR, Pollesello P, Prasad SK, Tocchetti CG, Mayr M, Sluijter JPG, Thum T, Tschöpe C, Zannad F, Zimmermann WH, Ruschitzka F, Filippatos G, Lindsey ML, Maack C, Heymans S. Towards better definition, quantification and treatment of fibrosis in heart failure. A scientific roadmap by the Committee of Translational Research of the Heart Failure Association (HFA) of the European Society of Cardiology. Eur J Heart Fail 2019; 21:272-285. [PMID: 30714667 PMCID: PMC6607480 DOI: 10.1002/ejhf.1406] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/28/2018] [Accepted: 12/03/2018] [Indexed: 12/19/2022] Open
Abstract
Fibrosis is a pivotal player in heart failure development and progression. Measurements of (markers of) fibrosis in tissue and blood may help to diagnose and risk stratify patients with heart failure, and its treatment may be effective in preventing heart failure and its progression. A lack of pathophysiological insights and uniform definitions has hampered the research in fibrosis and heart failure. The Translational Research Committee of the Heart Failure Association discussed several aspects of fibrosis in their workshop. Early insidious perturbations such as subclinical hypertension or inflammation may trigger first fibrotic events, while more dramatic triggers such as myocardial infarction and myocarditis give rise to full blown scar formation and ongoing fibrosis in diseased hearts. Aging itself is also associated with a cardiac phenotype that includes fibrosis. Fibrosis is an extremely heterogeneous phenomenon, as several stages of the fibrotic process exist, each with different fibrosis subtypes and a different composition of various cells and proteins — resulting in a very complex pathophysiology. As a result, detection of fibrosis, e.g. using current cardiac imaging modalities or plasma biomarkers, will detect only specific subforms of fibrosis, but cannot capture all aspects of the complex fibrotic process. Furthermore, several anti‐fibrotic therapies are under investigation, but such therapies generally target aspecific aspects of the fibrotic process and suffer from a lack of precision. This review discusses the mechanisms and the caveats and proposes a roadmap for future research.
Collapse
Affiliation(s)
- Rudolf A de Boer
- University Medical Center Groningen, University of Groningen, Department of Cardiology, Groningen, The Netherlands
| | | | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, Hannover, Germany
| | - Dirk Brutsaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - John G Cleland
- Robertson Centre for Biostatistics & Clinical Trials, University of Glasgow, Glasgow, UK
| | - Javier Diez
- Program of Cardiovascular Diseases, Center for Applied Medical Research, Departments of Nephrology, and Cardiology and Cardiac Surgery, University Clinic, University of Navarra, Pamplona, Spain
| | - Xiao-Jun Du
- Baker Heart and Diabetes Institute, Melbourne, Australia
| | | | - Frank R Heinzel
- Department of Cardiology, Campus Virchow-Klinikum, Charite Universitaetsmedizin Berlin, Berlin, Germany
| | | | | | - Natalia Lopez-Andres
- Cardiovascular Translational Research, Navarrabiomed, Complejo Hospitalario de Navarra, Universidad Publica de Navarra, Idisna, Spain
| | - Ida G Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Alexander R Lyon
- Royal Brompton Hospital, and Imperial College London, London, UK
| | | | | | - Carlo G Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Manuel Mayr
- The James Black Centre, King's College, University of London, London, UK
| | - Joost P G Sluijter
- University Medical Centre Utrecht, Experimental Cardiology Laboratory, UMC Utrecht Regenerative Medicine Center, University Utrecht, Utrecht, The Netherlands
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany.,DZHK (German Center for Cardiovascular Research) partner site Berlin, Berlin, Germany
| | - Carsten Tschöpe
- Department of Cardiology, Campus Virchow-Klinikum, Charite Universitaetsmedizin Berlin, Berlin, Germany
| | - Faiez Zannad
- Centre d'Investigation Clinique, CHU de Nancy, Nancy, France
| | - Wolfram-Hubertus Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research) partner site Göttingen, Göttingen, Germany
| | - Frank Ruschitzka
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Gerasimos Filippatos
- Heart Failure Unit, Department of Cardiology, School of Medicine, Athens University Hospital Attikon, National and Kapodistrian University of Athens, Athens, Greece
| | - Merry L Lindsey
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center and Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA
| | - Christoph Maack
- Comprehensive Heart Failure Centre, University and University Hospital Würzburg, Würzburg, Germany
| | - Stephane Heymans
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.,Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium.,The Netherlands Heart Institute, Nl-HI, Utrecht, The Netherlands
| |
Collapse
|
58
|
Warbrick I, Rabkin SW. Effect of the peptides Relaxin, Neuregulin, Ghrelin and Glucagon-like peptide-1, on cardiomyocyte factors involved in the molecular mechanisms leading to diastolic dysfunction and/or heart failure with preserved ejection fraction. Peptides 2019; 111:33-41. [PMID: 29807087 DOI: 10.1016/j.peptides.2018.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 02/08/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents an important cardiac condition because of its increasing prevalence, resistance to treatment and high associated morbidity and mortality. Two of the major mechanisms responsible for HFpEF are impaired cardiomyocyte sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA2a), which is responsible for calcium reuptake into the SR, and cardiac fibroblasts/myofibroblasts that produce collagen or myocardial fibrosis. Phospholamban (PLB), in the SR and endoplasmic reticulum, is the primary regulator of SERCA2a in the heart and acts as a reversible inhibitor of SERCA2a. Glucagon-like peptide-1, a 30 amino acid peptide, improves diastolic function through increasing SERCA2a expression and activity as well as by decreasing phosphorylation of Ryanodine receptors. It also enhances collagen production through enhanced procollagen IalphaI/IIIalphaI, connective tissue growth factor, fibronectin, TGF-β3 as well as Interleukin -10, -1beta, and -6 gene expression. Relaxin-2, a two chain, 53 amino acid peptide, increases Ser16- and Thr17-phosphorylation levels of PLB, thereby relieving SERCA2a of its inhibition. H3 Relaxin inhibits TGF-β1-stimulated collagen deposition through H3 relaxin-induced increases in pSmad2. Neuregulin-1, an epidermal growth factor, induces nitric oxide and PI-3 kinase activation that enhance SERCA2 activity. Neuregulin-1 was associated with less myocardial macrophage infiltration and cytokine expression reducing collagen deposition. Ghrelin, a 28 amino acid peptide, improves SERCA2a function by inducing PLB phosphorylation. Ghrelin also reduces cardiac fibrosis. In summary, Glucagon-like peptide-1, Relaxin-2, Neuregulin-1, and Ghrelin each modify calcium dynamics, collagen expression, and myocardial fibrosis through attenuation of deleterious signaling cascades, and induction of adaptive pathways, representing potential therapeutic targets for HFpEF.
Collapse
Affiliation(s)
| | - Simon W Rabkin
- University of British Columbia, Canada; Department of Medicine (Cardiology), Canada.
| |
Collapse
|
59
|
Adão R, Mendes-Ferreira P, Maia-Rocha C, Santos-Ribeiro D, Rodrigues PG, Vidal-Meireles A, Monteiro-Pinto C, Pimentel LD, Falcão-Pires I, De Keulenaer GW, Leite-Moreira AF, Brás-Silva C. Neuregulin-1 attenuates right ventricular diastolic stiffness in experimental pulmonary hypertension. Clin Exp Pharmacol Physiol 2018; 46:255-265. [PMID: 30339273 DOI: 10.1111/1440-1681.13043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/28/2022]
Abstract
We have previously shown that treatment with recombinant human neuregulin-1 (rhNRG-1) improves pulmonary arterial hypertension (PAH) in a monocrotaline (MCT)-induced animal model, by decreasing pulmonary arterial remodelling and endothelial dysfunction, as well as by restoring right ventricular (RV) function. Additionally, rhNRG-1 treatment showed direct myocardial anti-remodelling effects in a model of pressure loading of the RV without PAH. This work aimed to study the intrinsic cardiac effects of rhNRG-1 on experimental PAH and RV pressure overload, and more specifically on diastolic stiffness, at both the ventricular and cardiomyocyte level. We studied the effects of chronic rhNRG-1 treatment on ventricular passive stiffness in RV and LV samples from MCT-induced PAH animals and in the RV from animals with compensated and decompensated RV hypertrophy, through a mild and severe pulmonary artery banding (PAB). We also measured passive tension in isolated cardiomyocytes and quantified the expression of myocardial remodelling-associated genes and calcium handling proteins. Chronic rhNRG-1 treatment decreased passive tension development in RV and LV isolated from animals with MCT-induced PAH. This decrease was associated with increased phospholamban phosphorylation, and with attenuation of the expression of cardiac maladaptive remodelling markers. Finally, we showed that rhNRG-1 therapy decreased RV remodelling and cardiomyocyte passive tension development in PAB-induced RV hypertrophy animals, without compromising cardiac function, pointing to cardiac-specific effects in both hypertrophy stages. In conclusion, we demonstrated that rhNRG-1 treatment decreased RV intrinsic diastolic stiffness, through the improvement of calcium handling and cardiac remodelling signalling.
Collapse
Affiliation(s)
- Rui Adão
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Pedro Mendes-Ferreira
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Carolina Maia-Rocha
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Diana Santos-Ribeiro
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Patrícia Gonçalves Rodrigues
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - André Vidal-Meireles
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Cláudia Monteiro-Pinto
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Luís D Pimentel
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Inês Falcão-Pires
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | | | - Adelino F Leite-Moreira
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Carmen Brás-Silva
- Department of Surgery and Physiology, UnIC-Cardiovascular Research Centre, Faculty of Medicine, University of Porto, Porto, Portugal.,Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
60
|
Pascual-Gil S, Abizanda G, Iglesias E, Garbayo E, Prósper F, Blanco-Prieto MJ. NRG1 PLGA MP locally induce macrophage polarisation toward a regenerative phenotype in the heart after acute myocardial infarction. J Drug Target 2018; 27:573-581. [DOI: 10.1080/1061186x.2018.1531417] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- S. Pascual-Gil
- Pharmacy and Pharmaceutical Technology Department, School of Pharmacy, Universidad de Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
| | - G. Abizanda
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
- Hematology Service and Area of Cell Therapy, Clínica Universidad de Navarra, Foundation for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | - E. Iglesias
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
- Hematology Service and Area of Cell Therapy, Clínica Universidad de Navarra, Foundation for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | - E. Garbayo
- Pharmacy and Pharmaceutical Technology Department, School of Pharmacy, Universidad de Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
| | - F. Prósper
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
- Hematology Service and Area of Cell Therapy, Clínica Universidad de Navarra, Foundation for Applied Medical Research, Universidad de Navarra, Pamplona, Spain
| | - M. J. Blanco-Prieto
- Pharmacy and Pharmaceutical Technology Department, School of Pharmacy, Universidad de Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, IdiSNA, Pamplona, Spain
| |
Collapse
|
61
|
Shakeri H, Lemmens K, Gevaert AB, De Meyer GRY, Segers VFM. Cellular senescence links aging and diabetes in cardiovascular disease. Am J Physiol Heart Circ Physiol 2018; 315:H448-H462. [PMID: 29750567 DOI: 10.1152/ajpheart.00287.2018] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aging is a powerful independent risk factor for cardiovascular diseases such as atherosclerosis and heart failure. Concomitant diabetes mellitus strongly reinforces this effect of aging on cardiovascular disease. Cellular senescence is a fundamental mechanism of aging and appears to play a crucial role in the onset and prognosis of cardiovascular disease in the context of both aging and diabetes. Senescent cells are in a state of cell cycle arrest but remain metabolically active by secreting inflammatory factors. This senescence-associated secretory phenotype is a trigger of chronic inflammation, oxidative stress, and decreased nitric oxide bioavailability. A complex interplay between these three mechanisms results in age- and diabetes-associated cardiovascular damage. In this review, we summarize current knowledge on cellular senescence and its secretory phenotype, which might be the missing link between aging and diabetes contributing to cardiovascular disease.
Collapse
Affiliation(s)
- Hadis Shakeri
- Laboratory of Physiopharmacology, University of Antwerp , Antwerp , Belgium
| | - Katrien Lemmens
- Laboratory of Physiopharmacology, University of Antwerp , Antwerp , Belgium
| | - Andreas B Gevaert
- Laboratory of Physiopharmacology, University of Antwerp , Antwerp , Belgium.,Laboratory for Cellular and Molecular Cardiology, Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp , Antwerp , Belgium
| | - Vincent F M Segers
- Laboratory of Physiopharmacology, University of Antwerp , Antwerp , Belgium.,Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
| |
Collapse
|
62
|
Segers VFM, Brutsaert DL, De Keulenaer GW. Cardiac Remodeling: Endothelial Cells Have More to Say Than Just NO. Front Physiol 2018; 9:382. [PMID: 29695980 PMCID: PMC5904256 DOI: 10.3389/fphys.2018.00382] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/28/2018] [Indexed: 12/12/2022] Open
Abstract
The heart is a highly structured organ consisting of different cell types, including myocytes, endothelial cells, fibroblasts, stem cells, and inflammatory cells. This pluricellularity provides the opportunity of intercellular communication within the organ, with subsequent optimization of its function. Intercellular cross-talk is indispensable during cardiac development, but also plays a substantial modulatory role in the normal and failing heart of adults. More specifically, factors secreted by cardiac microvascular endothelial cells modulate cardiac performance and either positively or negatively affect cardiac remodeling. The role of endothelium-derived small molecules and peptides—for instance NO or endothelin-1—has been extensively studied and is relatively well defined. However, endothelial cells also secrete numerous larger proteins. Information on the role of these proteins in the heart is scattered throughout the literature. In this review, we will link specific proteins that modulate cardiac contractility or cardiac remodeling to their expression by cardiac microvascular endothelial cells. The following proteins will be discussed: IL-6, periostin, tenascin-C, thrombospondin, follistatin-like 1, frizzled-related protein 3, IGF-1, CTGF, dickkopf-3, BMP-2 and−4, apelin, IL-1β, placental growth factor, LIF, WISP-1, midkine, and adrenomedullin. In the future, it is likely that some of these proteins can serve as markers of cardiac remodeling and that the concept of endothelial function and dysfunction might have to be redefined as we learn more about other factors secreted by ECs besides NO.
Collapse
Affiliation(s)
- Vincent F M Segers
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
| | - Dirk L Brutsaert
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
| | - Gilles W De Keulenaer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.,Department of Cardiology, Middelheim Hospital, Antwerp, Belgium
| |
Collapse
|
63
|
Cardiovascular Disease: An Introduction. BIOMATHEMATICAL AND BIOMECHANICAL MODELING OF THE CIRCULATORY AND VENTILATORY SYSTEMS 2018. [PMCID: PMC7123129 DOI: 10.1007/978-3-319-89315-0_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cardiovascular disease (CVD) is a collective term designating all types of affliction affecting the blood circulatory system, including the heart and vasculature, which, respectively, displaces and conveys the blood.
Collapse
|