51
|
Ji K, Shan J, Wang X, Tan X, Hou J, Liu Y, Song Y. Rational design of near-infrared fluorescent probes for superoxide anion radical: Enhancement of self-stability and sensitivity by self-immolative linker. Free Radic Biol Med 2021; 167:36-44. [PMID: 33711416 DOI: 10.1016/j.freeradbiomed.2021.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 01/09/2023]
Abstract
Fluorescent imaging of cellular superoxide anion radical (O2•-) is of great significance to investigate reactive oxygen species-related pathophysiological processes and drug metabolism. However, the application of this technique is far away from maximum partially due to the lack of suitable probes. In this work, we propose a new strategy for design of near-infrared (NIR) O2•- fluorescent probes in which p-cresol is used as a self-immolative linker to conjugate the NIR fluorophore DDAO (9H-1,3-Dichloro-7-hydroxy-9,9-dimethylacridine-2-one) with the O2•--sensing group (i.e., trifluoromethanesulfonate). The introduction of self-immolative linker effectively increases the self-stability of these probes under physiological conditions. Importantly, the electron-withdrawing halogen substituents on the linker greatly enhance the sensitivity of the probes to O2•-. As such, the representative probe DLS4 exhibits high self-stability over a broad range of pHs (5.0-8.5), high selectivity as well as excellent sensitivity to O2•- with a detection limit (LOD) of 7.3 nM and 720-fold fluorescence enhancement upon reaction with O2•-. Moreover, DLS4 enables imaging of O2•- generation in PMA-stimulated RAW 264.7 cells and HeLa cells, and the fluorescence intensities are proportional to the PMA concentrations. In addition, the doxorubicin-induced cytotoxicity of H9c2 cells was also evaluated using DLS4. The present study provides a novel strategy for molecular design of small-molecule O2•- fluorescent probes and the resulting probes show great potential as reliable tools to study the development and progression of O2•--related diseases and drug metabolism in various systems.
Collapse
Affiliation(s)
- Kaiyun Ji
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China; Jincheng General Hospital, Jincheng, Shanxi Province, 048000, PR China
| | - Jinpeng Shan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Xing Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China; Tianjin Eye Hospital, Tianjin, 300020, PR China
| | - Xiaoli Tan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Jingli Hou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Yangping Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China
| | - Yuguang Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, PR China.
| |
Collapse
|
52
|
Bagchi AK, Malik A, Akolkar G, Zimmer A, Belló-Klein A, De Angelis K, Jassal DS, Fini MA, Stenmark KR, Singal PK. Study of ER stress and apoptotic proteins in the heart and tumor exposed to doxorubicin. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119039. [PMID: 33857568 DOI: 10.1016/j.bbamcr.2021.119039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 11/29/2022]
Abstract
Although a high cumulative dose of Doxorubicin (Dox) is known to cause cardiotoxicity, there is still a lack of understanding of the subcellular basis of this drug-induced cardiomyopathy. Differential effects of Dox on mitochondria and endoplasmic reticulum (ER) were examined in cardiomyocytes, tumor cells, implanted tumors and hearts of normal as well as tumor-bearing animals. Dox increased mitochondrial (Mito) Bax activation at 3 h in the cardiomyocyte without change in the DNA damage inducible transcriptor-3 (DDIT3) expression in the ER. Increased DDIT3 in these Dox-treated cardiomyocytes at 24 h suggested that increased MitoBax may have promoted ER stress related changes in DDIT3. Dissociation of immunoglobulin-binding protein (Bip) from activating transcription factor 6 (ATF6)-Bip complex in the ER was observed as an adaptive response to Dox. In contrast, breast cancer MCF7 cells showed an ER stress response to Dox with increased DDIT3 as early as 3 h which may have triggered a positive feedback activation of ATF6 at 12 and 24 h and promoted Calnexin. At these later time points, increased Bax activation in cancer cells suggested that MitoBax may be controlled by DDIT3 or by Calnexin. DDIT3 response in tumors was evoked by Dox, however this response was inversely correlated with increased Bip and Bax expression in hearts from tumor bearing animals. It is suggested that in Dox-induced cardiotoxicity both mitochondrial and ER stresses play an integral role through a mutual interaction where an inhibition of DDIT3 or Calnexin may also be crucial to achieve Dox resistance in cardiomyocytes.
Collapse
Affiliation(s)
- Ashim K Bagchi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Akshi Malik
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Gauri Akolkar
- Cardiac Function Laboratory, University of Ottawa Heart Institute, Ottawa, Canada
| | - Alexsandra Zimmer
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriane Belló-Klein
- Laboratório de Fisiologia Cardiovascular, Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Katia De Angelis
- Departamento de Fisiologia, Universidade Federal de Sao Paulo, Sao Paulo, Brazil
| | - Davinder S Jassal
- Section of Cardiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Mehdi A Fini
- Division of Pulmonary and Critical Care, Department of Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Denver, USA
| | - Kurt R Stenmark
- Division of Pulmonary and Critical Care, Department of Medicine, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Denver, USA
| | - Pawan K Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
53
|
Varghese SS, Eekhoudt CR, Jassal DS. Mechanisms of anthracycline-mediated cardiotoxicity and preventative strategies in women with breast cancer. Mol Cell Biochem 2021; 476:3099-3109. [PMID: 33835331 DOI: 10.1007/s11010-021-04152-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/01/2021] [Indexed: 12/17/2022]
Abstract
While anthracyclines (ACs) are a class of chemotherapeutic agents that have improved the prognosis of many women with breast cancer, it is one of the most cardiotoxic agents used to treat cancer. Despite their reported dose-dependent cardiotoxicity, AC-based chemotherapy has become the mainstay of breast cancer therapy due to its efficacy. Elucidating the mechanisms of anthracycline-mediated cardiotoxicity and associated therapeutic interventions continue to be the main focus in the field of cardio-oncology. Herein, we summarized the current literature surrounding the mechanisms of anthracycline-induced cardiotoxicity, including the role of topoisomerase II inhibition, generation of reactive oxygen species, and elevations in free radicals. Furthermore, this review highlights the molecular mechanisms of potential cardioprotective interventions in this setting. The benefits of pharmaceuticals, including dexrazoxane, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, beta-blockers, statins, and antioxidants in this setting, are reviewed. Finally, the mechanisms of emerging preventative interventions within this patient population including nutraceuticals and aerobic exercise are explored.
Collapse
Affiliation(s)
- Sonu S Varghese
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Cameron R Eekhoudt
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Davinder S Jassal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada. .,Section of Cardiology, Department of Internal Medicine, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada. .,Department of Radiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
54
|
Protection against Doxorubicin-Induced Cardiotoxicity through Modulating iNOS/ARG 2 Balance by Electroacupuncture at PC6. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6628957. [PMID: 33824696 PMCID: PMC8007344 DOI: 10.1155/2021/6628957] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 12/16/2022]
Abstract
Background Doxorubicin (DOX) is a commonly used chemotherapeutic drug but is limited in clinical applications by its cardiotoxicity. Neiguan acupoint (PC6) is a well-recognized acupoint for the treatment of cardiothoracic disease. However, whether acupuncture at PC6 could be effective in preventing DOX-induced cardiotoxicity is still unknown. Methods A set of experiments were performed with myocardial cells, wild type, inducible nitric oxide synthase knockout (iNOS-/-), and myocardial-specific ablation arginase 2 (Myh6-ARG 2-/-) mice. We investigated the protective effect and the underlying mechanisms for electroacupuncture (EA) against DOX-induced cardiotoxicity by echocardiography, immunostaining, biochemical analysis, and molecular biotechnology in vivo and in vitro analysis. Results We found that DOX-mediated nitric oxide (NO) production was positively correlated with the iNOS level but has a negative correlation with the arginase 2 (ARG 2) level in both myocardial cells and tissues. Meanwhile, EA at PC6 alleviated cardiac dysfunction and cardiac hypertrophy in DOX-treated mice. EA at PC6 blocked the upregulation of NO production in accompanied with the downregulated iNOS and upregulated ARG 2 levels in myocardial tissue induced by DOX. Furthermore, knockout iNOS prevented cardiotoxicity and EA treatment did not cause the further improvement of cardiac function in iNOS-/- mice treated by DOX. In contrast, deficiency of myocardial ARG 2 aggravated DOX-induced cardiotoxicity and reduced EA protective effect. Conclusion These results suggest that EA treatment at PC6 can prevent DOX-induced cardiotoxicity through modulating NO production by modulating the iNOS/ARG 2 balance in myocardial cells.
Collapse
|
55
|
Panday S, Kar S, Kavdia M. How does ascorbate improve endothelial dysfunction? - A computational analysis. Free Radic Biol Med 2021; 165:111-126. [PMID: 33497797 DOI: 10.1016/j.freeradbiomed.2021.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/23/2020] [Accepted: 01/14/2021] [Indexed: 01/02/2023]
Abstract
Low levels of ascorbate (Asc) are observed in cardiovascular and neurovascular diseases. Asc has therapeutic potential for the treatment of endothelial dysfunction, which is characterized by a reduction in nitric oxide (NO) bioavailability and increased oxidative stress in the vasculature. However, the potential mechanisms remain poorly understood for the Asc mitigation of endothelial dysfunction. In this study, we developed an endothelial cell based computational model integrating endothelial cell nitric oxide synthase (eNOS) biochemical pathway with downstream reactions and interactions of oxidative stress, tetrahydrobiopterin (BH4) synthesis and biopterin ratio ([BH4]/[TBP]), Asc and glutathione (GSH). We quantitatively analyzed three Asc mediated mechanisms that are reported to improve/maintain endothelial cell function. The mechanisms include the reduction of •BH3 to BH4, direct scavenging of superoxide (O2•-) and peroxynitrite (ONOO-) and increasing eNOS activity. The model predicted that Asc at 0.1-100 μM concentrations improved endothelial cell NO production, total biopterin and biopterin ratio in a dose dependent manner and the extent of cellular oxidative stress. Asc increased BH4 availability and restored eNOS coupling under oxidative stress conditions. Asc at concentrations of 1-10 mM reduced O2•- and ONOO- levels and could act as an antioxidant. We predicted that glutathione peroxidase and peroxiredoxin in combination with GSH and Asc can restore eNOS coupling and NO production under oxidative stress conditions. Asc supplementation may be used as an effective therapeutic strategy when BH4 levels are depleted. This study provides detailed understanding of the mechanism responsible and the optimal cellular Asc levels for improvement in endothelial dysfunction.
Collapse
Affiliation(s)
- Sheetal Panday
- Department of Biomedical Engineering, Wayne State University, Detroit, 48202, MI, USA
| | - Saptarshi Kar
- College of Engineering and Technology, American University of the Middle East, Kuwait
| | - Mahendra Kavdia
- Department of Biomedical Engineering, Wayne State University, Detroit, 48202, MI, USA.
| |
Collapse
|
56
|
Xiao L, Xu SJ, Liu C, Wang J, Hu B, Xu HG. Sod2 and catalase improve pathological conditions of intervertebral disc degeneration by modifying human adipose-derived mesenchymal stem cells. Life Sci 2021; 267:118929. [PMID: 33359244 DOI: 10.1016/j.lfs.2020.118929] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/29/2020] [Accepted: 12/14/2020] [Indexed: 01/12/2023]
Abstract
OBJECTIVE To investigate if the modification of human adipose-derived mesenchymal stem cells (hADSCs) by the antioxidants superoxide dismutase 2 (Sod2) and catalase (Cat) can attenuate the pathological conditions of intervertebral disc degeneration (IVD). METHODS In vitro, MTT assay and qRT-PCR was used to detect cell proliferation and gene expressions in hADSCs transduced with Ad-null (an adenovirus vector containing no transgene expression cassette), Ad-Sod2 (recombinant adenovirus Sod2) and Ad-Cat. IVD mouse models were generated by needle puncture and treated with hADSCs with/without Ad-null/Ad-Sod2/Ad-Cat. X-ray evaluation, magnetic resonance imaging (MRI) analysis, histological analysis, immunohistochemistry, Western blots, ELISAs and qRT-PCR were performed. RESULTS hADSCs transduced with Ad-Sod2 and Ad-Cat showed enhanced cell proliferation with the upregulation of SOX9, ACAN, and COL2. In vivo, IVD mice injected with hADSCs showed increased disc height index, MRI index and mean T2 intensities, as well as the attenuated histologic grading of the annulus fibrosus (AF) and NP accompanied by the upregulation of GAG and COL2, which were further improved in the Ad-Sod2 hADSC + IVD and Ad-Cat hADSC + IVD groups. Furthermore, the increased expression of IL-1β, IL-6 and TNF-α was reduced in IVD mice injected with hADSCs. Compared with the hADSC + IVD group, the Ad-Sod2 hADSC/Ad-Cat hADSC + IVD groups had lower expression of pro-inflammatory factors. CONCLUSION Modification of hADSCs by the antioxidants Sod2 and Cat improved the pathological condition of intervertebral disc tissues with increased GAG and COL2 expression, as well as reduced inflammation, thereby demonstrating a therapeutic effect in IVD.
Collapse
Affiliation(s)
- Liang Xiao
- Reseach center of Spine Surgery, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Department of Spine Surgery, Yijishan Hospital, The First Affliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, China
| | - Shu-Juan Xu
- Reseach center of Spine Surgery, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Department of Spine Surgery, Yijishan Hospital, The First Affliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, China
| | - Chen Liu
- Reseach center of Spine Surgery, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Department of Spine Surgery, Yijishan Hospital, The First Affliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, China
| | - Jing Wang
- Reseach center of Spine Surgery, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Department of Spine Surgery, Yijishan Hospital, The First Affliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, China
| | - Bo Hu
- Reseach center of Spine Surgery, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Department of Spine Surgery, Yijishan Hospital, The First Affliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, China
| | - Hong-Guang Xu
- Reseach center of Spine Surgery, Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Department of Spine Surgery, Yijishan Hospital, The First Affliated Hospital of Wannan Medical College, Wuhu, Anhui, 241001, China.
| |
Collapse
|
57
|
Yarmohammadi F, Rezaee R, Haye AW, Karimi G. Endoplasmic reticulum stress in doxorubicin-induced cardiotoxicity may be therapeutically targeted by natural and chemical compounds: A review. Pharmacol Res 2020; 164:105383. [PMID: 33348022 DOI: 10.1016/j.phrs.2020.105383] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
Doxorubicin (DOX) is a chemotherapeutic agent with marked, dose-dependent cardiotoxicity that leads to tachycardia, atrial and ventricular arrhythmia, and irreversible heart failure. Induction of the endoplasmic reticulum (ER) which plays a major role in protein folding and calcium homeostasis was reported as a key contributor to cardiac complications of DOX. This article reviews several chemical compounds that have been shown to regulate DOX-induced inflammation, apoptosis, and autophagy via inhibition of ER stress signaling pathways, such as the IRE1α/ASK1/JNK, IRE1α/JNK/Beclin-1, and CHOP pathways.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Haye
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, United States
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
58
|
Cheng F, Jiang W, Xiong X, Chen J, Xiong Y, Li Y. Ethanol Extract of Chinese Hawthorn (Crataegus pinnatifida) Fruit Reduces Inflammation and Oxidative Stress in Rats with Doxorubicin-Induced Chronic Heart Failure. Med Sci Monit 2020; 26:e926654. [PMID: 33232307 PMCID: PMC7697658 DOI: 10.12659/msm.926654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Chinese hawthorn (Crataegus pinnatifida) fruit is a traditional Chinese medicine for treatment of digestive system and cardiovascular diseases. The fruit contains polyphenol compounds, such as epicatechin, that have anti-inflammatory activity. This study aimed to investigate the effects of an alcohol extract of hawthorn fruit (HAE) on inflammation and oxidative stress in rats with doxorubicin-induced chronic heart failure (CHF). Material/Methods Rats were intraperitoneally injected with doxorubicin to induce CHF and subsequently treated with HAE intragastrically once daily for 6 weeks. At the end of the experiment, echocardiographic and hemodynamic parameters were assessed, and enzyme-linked immunoassays were used to detect the levels of cardiac injury markers (brain natriuretic peptide, creatine kinase-MB, aspartate aminotransferase, lactate dehydrogenase, copeptin, and adrenomedullin), oxidative stress markers (glutathione peroxidase and malondialdehyde), and inflammatory cytokines (interleukin [IL]-6, IL-8, IL-1β, and tumor necrosis factor-α). The IL-1β, IL-6, glutathione peroxidase-1, and catalase mRNA levels were also measured by quantitative real-time polymerase chain reaction. Results Our findings indicated that HAE exerts a cardioprotective effect, as shown by improved echocardiographic and hemodynamic parameters, decreased activity of serum myocardial enzymes, reduced serum levels of CHF markers, and inhibited inflammatory response in cardiac tissue. In addition, HAE treatment downregulated the mRNA expression of IL-1β and tumor necrosis factor-α and upregulated the mRNA expression of glutathione peroxidase-1 and catalase compared with untreated doxorubicin-induced CHF rats. Conclusions HAE shows promise for the prevention and treatment of CHF. The cardioprotective effect of HAE appears to be related to inhibition of both the inflammatory response and oxidative stress in vivo.
Collapse
Affiliation(s)
- Fangzhou Cheng
- Department of Cardiology, Shenzhen Yantian People's Hospital, ShenzhenShenzhen, Guangdong, China (mainland)
| | - Wenlong Jiang
- Department of Cardiology, Shenzhen Yantian People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Xiaoshuan Xiong
- Department of Cardiology, Shenzhen Yantian People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Juan Chen
- Department of Cardiology, Shenzhen Yantian People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Yunzhi Xiong
- Department of Cardiology, Shenzhen Yantian People's Hospital, Shenzhen, Guangdong, China (mainland)
| | - Yinghong Li
- The Central Laboratory, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China (mainland)
| |
Collapse
|
59
|
African Vegetables ( Clerodendrum volibile Leaf and Irvingia gabonensis Seed Extracts) Effectively Mitigate Trastuzumab-Induced Cardiotoxicity in Wistar Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9535426. [PMID: 33178389 PMCID: PMC7644299 DOI: 10.1155/2020/9535426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Trastuzumab (TZM) is a humanized monoclonal antibody that has been approved for the clinical management of HER2-positive metastatic breast and gastric cancers but its use is limited by its cumulative dose and off-target cardiotoxicity. Unfortunately, till date, there is no approved antidote to this off-target toxicity. Therefore, an acute study was designed at investigating the protective potential and mechanism(s) of CVE and IGE in TZM-induced cardiotoxicity utilizing cardiac enzyme and oxidative stress markers and histopathological endpoints. 400 mg/kg/day CVE and IGE dissolved in 5% DMSO in sterile water were investigated in Wistar rats injected with 2.25 mg/kg/day/i.p. route of TZM for 7 days, using serum cTnI and LDH, complete lipid profile, cardiac tissue oxidative stress markers assays, and histopathological examination of TZM-intoxicated heart tissue. Results showed that 400 mg/kg/day CVE and IGE profoundly attenuated increases in the serum cTnI and LDH levels but caused no significant alterations in the serum lipids and weight gain pattern in the treated rats. CVE and IGE profoundly attenuated alterations in the cardiac tissue oxidative stress markers' activities while improving TZM-associated cardiac histological lesions. These results suggest that CVE and IGE could be mediating its cardioprotection via antioxidant, free radical scavenging, and antithrombotic mechanisms, thus, highlighting the therapeutic potentials of CVE and IGE in the management of TZM-mediated cardiotoxicity.
Collapse
|
60
|
Abstract
Vitamin C (Vit C) is an ideal antioxidant as it is easily available, water soluble, very potent, least toxic, regenerates other antioxidants particularly Vit E, and acts as a cofactor for different enzymes. It has received much attention due to its ability in limiting reactive oxygen species, oxidative stress, and nitrosative stress, as well as it helps to maintain some of the normal metabolic functions of the cell. However, over 140 clinical trials using Vit C in different pathological conditions such as myocardial infarction, gastritis, diabetes, hypertension, stroke, and cancer have yielded inconsistent results. Such a divergence calls for new strategies to establish practical significance of Vit C in heart failure or even in its prevention. For a better understanding of Vit C functioning, it is important to revisit its transport across the cell membrane and subcellular interactions. In this review, we have highlighted some historical details of Vit C and its transporters in the heart with a particular focus on heart failure in cancer chemotherapy.
Collapse
|
61
|
6-Methoxymellein Isolated from Carrot ( Daucus carota L.) Targets Breast Cancer Stem Cells by Regulating NF-κB Signaling. Molecules 2020; 25:molecules25194374. [PMID: 32977636 PMCID: PMC7583823 DOI: 10.3390/molecules25194374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022] Open
Abstract
The presence of breast cancer stem cells (BCSCs) induces the aggressive progression and recurrence of breast cancer. These cells are drug resistant, have the capacity to self-renew and differentiate and are involved in recurrence and metastasis, suggesting that targeting BCSCs may improve treatment efficacy. In this report, methanol extracts of carrot root were purified by means of silica gel, Sephadex LH-20, and preparative high-performance liquid chromatography to isolate a compound targeting mammosphere formation. We isolated the compound 6-methoxymellein, which inhibits the proliferation and migration of breast cancer cells, reduces mammosphere growth, decreases the proportion of CD44+/CD24− cells in breast cancer cells and decreases the expression of stemness-associated proteins c-Myc, Sox-2 and Oct4. 6-Methoxymellein reduces the nuclear localization of nuclear factor-κB (NF-κB) subunit p65 and p50. Subsequently, 6-methoxymellein decreases the mRNA transcription and secretion of IL-6 and IL-8. Our data suggest that 6-methoxymellein may be an anticancer agent that inhibits BCSCs via NF-κB/IL-6 and IL-8 regulation.
Collapse
|
62
|
Clayton ZS, Brunt VE, Hutton DA, VanDongen NS, D’Alessandro A, Reisz JA, Ziemba BP, Seals DR. Doxorubicin-Induced Oxidative Stress and Endothelial Dysfunction in Conduit Arteries Is Prevented by Mitochondrial-Specific Antioxidant Treatment. JACC: CARDIOONCOLOGY 2020; 2:475-488. [PMID: 33073250 PMCID: PMC7561020 DOI: 10.1016/j.jaccao.2020.06.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Doxorubicin (DOXO) chemotherapy increases risk for cardiovascular disease in part by inducing endothelial dysfunction in conduit arteries. However, the mechanisms mediating DOXO-associated endothelial dysfunction in (intact) arteries and treatment strategies are not established. Objectives We tested the hypothesis that DOXO impairs endothelial function in conduit arteries via excessive mitochondrial reactive oxygen species (ROS) and that these effects could be prevented by treatment with a mitochondrial-targeted antioxidant (MitoQ). Methods Endothelial function (endothelium-dependent dilation [EDD] to acetylcholine) and vascular mitochondrial ROS were assessed 4 weeks following administration (10 mg/kg intraperitoneal injection) of DOXO. A separate cohort of mice received chronic (4 weeks) oral supplementation with MitoQ (drinking water) for 4 weeks following DOXO. Results EDD in isolated pressurized carotid arteries was 55% lower 4 weeks following DOXO (peak EDD, DOXO: 42 ± 7% vs. sham: 94 ± 3%; p = 0.006). Vascular mitochondrial ROS was 52% higher and manganese (mitochondrial) superoxide dismutase was 70% lower after DOXO versus sham (p = 0.0008). Endothelial function was rescued by administration of the mitochondrial-targeted antioxidant, MitoQ, to the perfusate. Exposure to plasma from DOXO-treated mice increased mitochondrial ROS in cultured endothelial cells. Analyses of plasma showed differences in oxidative stress-related metabolites and a marked reduction in vascular endothelial growth factor A in DOXO mice, and restoring vascular endothelial growth factor A to sham levels normalized mitochondrial ROS in endothelial cells incubated with plasma from DOXO mice. Oral MitoQ supplementation following DOXO prevented the reduction in EDD (97 ± 1%; p = 0.002 vs. DOXO alone) by ameliorating mitochondrial ROS suppression of EDD. Conclusions DOXO-induced endothelial dysfunction in conduit arteries is mediated by excessive mitochondrial ROS and ameliorated by mitochondrial-specific antioxidant treatment. Mitochondrial ROS is a viable therapeutic target for mitigating arterial dysfunction with DOXO.
Collapse
Affiliation(s)
- Zachary S. Clayton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Vienna E. Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - David A. Hutton
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Nicholas S. VanDongen
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Angelo D’Alessandro
- Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado, USA
| | - Julie A. Reisz
- Department of Medicine, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado, USA
| | - Brian P. Ziemba
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Douglas R. Seals
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, USA
- Address for correspondence: Dr. Douglas R. Seals, Department of Integrative Physiology, University of Colorado Boulder, 1725 Pleasant Street, 354 UCB, Boulder, Colorado 80309.
| |
Collapse
|
63
|
Asselin CY, Lam A, Cheung DYC, Eekhoudt CR, Zhu A, Mittal I, Mayba A, Solati Z, Edel A, Austria JA, Aukema HM, Ravandi A, Thliveris J, Singal PK, Pierce GN, Niraula S, Jassal DS. The Cardioprotective Role of Flaxseed in the Prevention of Doxorubicin- and Trastuzumab-Mediated Cardiotoxicity in C57BL/6 Mice. J Nutr 2020; 150:2353-2363. [PMID: 32510147 DOI: 10.1093/jn/nxaa144] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/20/2020] [Accepted: 04/28/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Although the combination of doxorubicin (DOX) and trastuzumab (TRZ) reduces the progression and recurrence of breast cancer, these anticancer drugs are associated with significant cardiotoxic side effects. OBJECTIVE We investigated whether prophylactic administration of flaxseed (FLX) and its bioactive components, α-linolenic acid (ALA) and secoisolariciresinol diglucoside (SDG), would be cardioprotective against DOX + TRZ-mediated cardiotoxicity in a chronic in vivo female murine model. METHODS Wild-type C57BL/6 female mice (10-12 wk old) received daily prophylactic treatment with one of the following diets: 1) regular control (RC) semi-purified diet; 2) 10% FLX diet; 3) 4.4% ALA diet; or 4) 0.44% SDG diet for a total of 6 wks. Within each arm, mice received 3 weekly injections of 0.9% saline or a combination of DOX [8 mg/(kg.wk)] and TRZ [3 mg/(kg.wk)] starting at the end of week 3. The main outcome was to evaluate the effects of FLX, ALA, and SDG on cardiovascular remodeling and markers of apoptosis, inflammation, and mitochondrial dysfunction. Significance between measurements was determined using a 4 (diet) × 2 (chemotherapy) × 2 (time) mixed factorial design with repeated measures. RESULTS In the RC + DOX + TRZ-treated mice at week 6 of the study, the left ventricular ejection fraction (LVEF) decreased by 50% compared with the baseline LVEF (P < 0.05). However, the prophylactic administration of the FLX, ALA, or SDG diet was partially cardioprotective, with mice in these treatment groups showing an ∼68% increase in LVEF compared with the RC + DOX + TRZ-treated group at week 6 (P < 0.05). Although markers of inflammation (nuclear transcription factor κB), apoptosis [poly (ADP-ribose) polymerase-1 and the ratio of BCL2-associated X protein to B-cell lymphoma-extra large], and mitochondrial dysfunction (BCL2-interacting protein 3) were significantly elevated by approximately 2-fold following treatment with RC + DOX + TRZ compared with treatment with RC + saline at week 6, prophylactic administration of FLX, ALA, or SDG partially downregulated these signaling pathways. CONCLUSION In a chronic in vivo female C57BL/6 mouse model of DOX + TRZ-mediated cardiotoxicity, FLX, ALA, and SDG were partially cardioprotective.
Collapse
Affiliation(s)
- Chantal Y Asselin
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada
| | - Amy Lam
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada
| | - David Y C Cheung
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada
| | - Cameron R Eekhoudt
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada
| | - Antonia Zhu
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada
| | - Ishika Mittal
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada
| | - Andrew Mayba
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada
| | - Zahra Solati
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada
| | - Andrea Edel
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada
| | - J Alejandro Austria
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada
| | - Harold M Aukema
- Department of Food and Human Nutritional Sciences, Faculty of Agriculture and Food Sciences, University of Manitoba, Manitoba, Canada
| | - Amir Ravandi
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada.,Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada
| | - James Thliveris
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada
| | - Pawan K Singal
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada
| | - Grant N Pierce
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada
| | - Saroj Niraula
- Section of Oncology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada
| | - Davinder S Jassal
- Institute of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada.,Section of Cardiology, Department of Internal Medicine, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada.,Department of Radiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Manitoba, Canada
| |
Collapse
|
64
|
Long G, Chen H, Wu M, Li Y, Gao L, Huang S, Zhang Y, Jia Z, Xia W. Antianemia Drug Roxadustat (FG-4592) Protects Against Doxorubicin-Induced Cardiotoxicity by Targeting Antiapoptotic and Antioxidative Pathways. Front Pharmacol 2020; 11:1191. [PMID: 32848792 PMCID: PMC7419679 DOI: 10.3389/fphar.2020.01191] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/22/2020] [Indexed: 12/25/2022] Open
Abstract
Doxorubicin (DOX) is broadly used in treating various malignant tumors. However, its cardiotoxicity limits its clinical use. Roxadustat (FG-4592) is a new hypoxia-inducible factor prolyl hydroxylase (HIF-PHD) inhibitor and has been approved for treating anemia in chronic kidney diseases (CKD) patients. However, the role of FG-4592 in DOX-induced cardiotoxicity remains unknown. In this study, mouse cardiac function was evaluated by echocardiography, plasma LDH/CK-MB, and heart HE staining. Cell viability, apoptosis, oxidative stress, inflammation, and HIF-target genes were evaluated in mouse cardiac tissue and cardiac cells exposed to DOX with FG-4592 pretreatment. DOX-sensitive HepG2 and MCF-7 cell lines were used to evaluate FG-4592 effect on the anticancer activity of DOX. We found that FG-4592 alleviated DOX-induced cardiotoxicity shown by the protection against cardiac dysfunction, cardiac apoptosis, and oxidative stress without the effect on inflammatory response. FG-4592 alone did not change the cardiac function, cardiomyocyte morphology, oxidative stress, and inflammation in vivo. FG-4592 could protect cardiomyocytes against DOX-induced apoptosis and ROS production in line with the upregulation of HIF-1α and its target genes of Bcl-2 and SOD2. Importantly, FG-4592 displayed anticancer property in cancer cells treated with or without DOX. These findings highlighted the protective effect of FG-4592 on DOX-induced cardiotoxicity possibly through upregulating HIF-1α and its target genes antagonizing apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Guangfeng Long
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hongbing Chen
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Mengying Wu
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yuanyuan Li
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Ling Gao
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Weiwei Xia
- Department of Clinical Laboratory, Children's Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China.,Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
65
|
Lv X, Zhu Y, Deng Y, Zhang S, Zhang Q, Zhao B, Li G. Glycyrrhizin improved autophagy flux via HMGB1-dependent Akt/mTOR signaling pathway to prevent Doxorubicin-induced cardiotoxicity. Toxicology 2020; 441:152508. [DOI: 10.1016/j.tox.2020.152508] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 05/14/2020] [Accepted: 06/03/2020] [Indexed: 12/30/2022]
|
66
|
Ma W, Wei S, Zhang B, Li W. Molecular Mechanisms of Cardiomyocyte Death in Drug-Induced Cardiotoxicity. Front Cell Dev Biol 2020; 8:434. [PMID: 32582710 PMCID: PMC7283551 DOI: 10.3389/fcell.2020.00434] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/08/2020] [Indexed: 01/08/2023] Open
Abstract
Homeostatic regulation of cardiomyocytes plays a crucial role in maintaining the normal physiological activity of cardiac tissue. Severe cardiotoxicity results in cardiac diseases including but not limited to arrhythmia, myocardial infarction and myocardial hypertrophy. Drug-induced cardiotoxicity limits or forbids further use of the implicated drugs. Such drugs that are currently available in the clinic include anti-tumor drugs (doxorubicin, cisplatin, trastuzumab, etc.), antidiabetic drugs (rosiglitazone and pioglitazone), and an antiviral drug (zidovudine). This review focused on cardiomyocyte death forms and related mechanisms underlying clinical drug-induced cardiotoxicity, including apoptosis, autophagy, necrosis, necroptosis, pryoptosis, and ferroptosis. The key proteins involved in cardiomyocyte death signaling were discussed and evaluated, aiming to provide a theoretical basis and target for the prevention and treatment of drug-induced cardiotoxicity in the clinical practice.
Collapse
Affiliation(s)
- Wanjun Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
67
|
Wang X, Wang Q, Li W, Zhang Q, Jiang Y, Guo D, Sun X, Lu W, Li C, Wang Y. TFEB-NF-κB inflammatory signaling axis: a novel therapeutic pathway of Dihydrotanshinone I in doxorubicin-induced cardiotoxicity. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:93. [PMID: 32448281 PMCID: PMC7245789 DOI: 10.1186/s13046-020-01595-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Doxorubicin is effective in a variety of solid and hematological malignancies. Unfortunately, clinical application of doxorubicin is limited due to a cumulative dose-dependent cardiotoxicity. Dihydrotanshinone I (DHT) is a natural product from Salvia miltiorrhiza Bunge with multiple anti-tumor activity and anti-inflammation effects. However, its anti-doxorubicin-induced cardiotoxicity (DIC) effect, either in vivo or in vitro, has not been elucidated yet. This study aims to explore the anti-inflammation effects of DHT against DIC, and to elucidate the potential regulatory mechanism. METHODS Effects of DHT on DIC were assessed in zebrafish, C57BL/6 mice and H9C2 cardiomyocytes. Echocardiography, histological examination, flow cytometry, immunochemistry and immunofluorescence were utilized to evaluate cardio-protective effects and anti-inflammation effects. mTOR agonist and lentivirus vector carrying GFP-TFEB were applied to explore the regulatory signaling pathway. RESULTS DHT improved cardiac function via inhibiting the activation of M1 macrophages and the excessive release of pro-inflammatory cytokines both in vivo and in vitro. The activation and nuclear localization of NF-κB were suppressed by DHT, and the effect was abolished by mTOR agonist with concomitant reduced expression of nuclear TFEB. Furthermore, reduced expression of nuclear TFEB is accompanied by up-regulated phosphorylation of IKKα/β and NF-κB, while TFEB overexpression reversed these changes. Intriguingly, DHT could upregulate nuclear expression of TFEB and reduce expressions of p-IKKα/β and p-NF-κB. CONCLUSIONS Our results demonstrated that DHT can be applied as a novel cardioprotective compound in the anti-inflammation management of DIC via mTOR-TFEB-NF-κB signaling pathway. The current study implicates TFEB-IKK-NF-κB signaling axis as a previously undescribed, druggable pathway for DIC.
Collapse
Affiliation(s)
- Xiaoping Wang
- grid.24695.3c0000 0001 1431 9176School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Qiyan Wang
- grid.24695.3c0000 0001 1431 9176School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Weili Li
- grid.24695.3c0000 0001 1431 9176School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Qian Zhang
- grid.24695.3c0000 0001 1431 9176School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Yanyan Jiang
- grid.24695.3c0000 0001 1431 9176School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Dongqing Guo
- grid.24695.3c0000 0001 1431 9176School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Xiaoqian Sun
- grid.24695.3c0000 0001 1431 9176School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Wenji Lu
- grid.24695.3c0000 0001 1431 9176School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Chun Li
- grid.24695.3c0000 0001 1431 9176Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Yong Wang
- grid.24695.3c0000 0001 1431 9176School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029 China ,grid.24695.3c0000 0001 1431 9176School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029 China
| |
Collapse
|
68
|
Irigenin treatment alleviates doxorubicin (DOX)-induced cardiotoxicity by suppressing apoptosis, inflammation and oxidative stress via the increase of miR-425. Biomed Pharmacother 2020; 125:109784. [PMID: 32092815 DOI: 10.1016/j.biopha.2019.109784] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/27/2019] [Accepted: 12/08/2019] [Indexed: 01/22/2023] Open
|
69
|
Fabiyi-Edebor TD. Vitamin C ameliorated cardiac autonomic neuropathy in type 2 diabetic rats. World J Diabetes 2020; 11:52-65. [PMID: 32180894 PMCID: PMC7061237 DOI: 10.4239/wjd.v11.i3.52] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/07/2019] [Accepted: 01/13/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Vitamin C (VC) is a common antioxidant with cell protection potentials. However, its possible protective effect on cardiac autonomic nerves from diabetic induced insults is yet to be explored.
AIM To investigate the effects of VC on diabetic cardiac autonomic neuropathy.
METHODS Thirty male Wistar rats were equally grouped into control, diabetic and diabetic + VC. Type 2 diabetes was induced with fructose diet and alloxan. VC (1 g/kg) was administered for 4 wk via oral canula. Blood pressure and heart rate were measured non-invasively using tail flick blood pressure monitor. Spectral analysis of heart rate variability (HRV) was used to assess cardiac autonomic neuropathy. Blood was collected from the ocular sinus for biochemical analysis. Urethane (1 g/kg-ip) was used for anaesthesia prior to HRV and cervical dislocation to harvest hearts. Intracardiac autonomic nerve was assessed using tyrosine hydroxylase immunohistochemistry on fixed heart sections.
RESULTS Results were analysed using ANOVA at α0.05. Unlike VC and control groups, diabetic rats showed significantly (P < 0.0001) reduced HRV, increased heart-rate and blood pressure, initial increase in cardiac tyrosine hydroxylase activities at week-2 and sparse activity at week-4 of diabetes. Furthermore, apolipoprotein B, Oxidative stress and inflammatory markers were significantly (P < 0.01) reduced in VC treated rats.
CONCLUSION VC possesses cardio-autonomic nerve protective potential and ameliorates the symptoms of cardiac autonomic neuropathy in type 2 diabetes. The possible mechanisms via which VC exert these effects may be via downregulation of oxidative stress, inflammation and apolipoprotein B.
Collapse
|
70
|
Hafez HM, Hassanein H. Montelukast ameliorates doxorubicin-induced cardiotoxicity via modulation of p-glycoprotein and inhibition of ROS-mediated TNF-α/NF-κB pathways. Drug Chem Toxicol 2020; 45:548-559. [DOI: 10.1080/01480545.2020.1730885] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Heba M. Hafez
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Hanaa Hassanein
- Department of Histology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
71
|
Audebrand A, Désaubry L, Nebigil CG. Targeting GPCRs Against Cardiotoxicity Induced by Anticancer Treatments. Front Cardiovasc Med 2020; 6:194. [PMID: 32039239 PMCID: PMC6993588 DOI: 10.3389/fcvm.2019.00194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/23/2019] [Indexed: 01/01/2023] Open
Abstract
Novel anticancer medicines, including targeted therapies and immune checkpoint inhibitors, have greatly improved the management of cancers. However, both conventional and new anticancer treatments induce cardiac adverse effects, which remain a critical issue in clinic. Cardiotoxicity induced by anti-cancer treatments compromise vasospastic and thromboembolic ischemia, dysrhythmia, hypertension, myocarditis, and cardiac dysfunction that can result in heart failure. Importantly, none of the strategies to prevent cardiotoxicity from anticancer therapies is completely safe and satisfactory. Certain clinically used cardioprotective drugs can even contribute to cancer induction. Since G protein coupled receptors (GPCRs) are target of forty percent of clinically used drugs, here we discuss the newly identified cardioprotective agents that bind GPCRs of adrenalin, adenosine, melatonin, ghrelin, galanin, apelin, prokineticin and cannabidiol. We hope to provoke further drug development studies considering these GPCRs as potential targets to be translated to treatment of human heart failure induced by anticancer drugs.
Collapse
Affiliation(s)
| | | | - Canan G. Nebigil
- Laboratory of CardioOncology and Therapeutic Innovation, CNRS, Illkirch, France
| |
Collapse
|
72
|
He H, Wang L, Qiao Y, Zhou Q, Li H, Chen S, Yin D, Huang Q, He M. Doxorubicin Induces Endotheliotoxicity and Mitochondrial Dysfunction via ROS/eNOS/NO Pathway. Front Pharmacol 2020; 10:1531. [PMID: 31998130 PMCID: PMC6965327 DOI: 10.3389/fphar.2019.01531] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/27/2019] [Indexed: 12/31/2022] Open
Abstract
Background: Doxorubicin (Dox) can induce endotheliotoxicity and damage the vascular endothelium (VE). The most principle mechanism might be excess reactive oxygen species (ROS) generation. Nevertheless, the characteristics of ROS generation, downstream mechanisms, and target organelles in Dox-induced endotheliotoxicity have yet to be elucidated. Methods and Results: In order to explore the related problems, the VE injury models were established in mice and human umbilical vein endothelial cells (HUVECs) by Dox-induced endotheliotoxicity. Results showed that the activities of lactate dehydrogenase (LDH) and creatine kinase of mice’s serum increased after injected Dox. The thoracic aortic strips’ endothelium-dependent dilation was significantly impaired, seen noticeable inflammatory changes, and brown TUNEL-positive staining in microscopy. After Dox-treated, HUVECs viability lowered, LDH and caspase-3 activities, and apoptotic cells increased. Both intracellular/mitochondrial ROS generation significantly increased, and intracellular ROS generation lagged behind mitochondria. HUVECs treated with Dox plus ciclosporin A (CsA) could basically terminate ROS burst, but plus edaravone (Eda) could only delay or inhibit, but could not completely cancel ROS burst. Meanwhile, the expression of endothelial nitric oxide synthase (eNOS) decreased, especially phosphorylation of eNOS significantly. Then nitric oxide content decreased, the mitochondrial function was impaired, mitochondrial membrane potential (MMP) impeded, mitochondrial swelled, mitochondrial permeability transition pore (mPTP) was opened, and cytochrome C was released from mitochondria into the cytosol. Conclusion: Dox produces excess ROS in the mitochondria, thereby weakens the MMP, opens mPTP, activates the ROS-induced ROS release mechanism, induces ROS burst, and leads to mitochondrial dysfunction, which in turn damages VE. Therefore, interrupting any step of the cycles, as mentioned above can end the related vicious cycle and prevent the occurrence and development of injury.
Collapse
Affiliation(s)
- Huan He
- Jiangxi Provincial Institute of Hypertension, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, China
| | - Liang Wang
- Department of Rehabilitation, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yang Qiao
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, China
| | - Qing Zhou
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, China
| | - Hongwei Li
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, China
| | - Shuping Chen
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang, China
| | - Dong Yin
- Jiangxi Provincial Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Huang
- Jiangxi Provincial Institute of Cardiovascular Diseases, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Ming He
- Jiangxi Provincial Institute of Hypertension, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
73
|
Cardioprotective effects of dapsone against doxorubicin-induced cardiotoxicity in rats. Cancer Chemother Pharmacol 2020; 85:563-571. [DOI: 10.1007/s00280-019-04019-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
|
74
|
Thyroxine Alleviates Energy Failure, Prevents Myocardial Cell Apoptosis, and Protects against Doxorubicin-Induced Cardiac Injury and Cardiac Dysfunction via the LKB1/AMPK/mTOR Axis in Mice. DISEASE MARKERS 2019; 2019:7420196. [PMID: 31929843 PMCID: PMC6935797 DOI: 10.1155/2019/7420196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/28/2019] [Accepted: 11/19/2019] [Indexed: 12/18/2022]
Abstract
Background Previous studies have demonstrated that energy failure is closely associated with cardiac injury. Doxorubicin (DOX) is a commonly used clinical chemotherapy drug that can mediate cardiac injury through a variety of mechanisms. Thyroxine is well known to play a critical role in energy generation; thus, this study is aimed at investigating whether thyroxine can attenuate DOX-induced cardiac injury by regulating energy generation. Methods First, the effect of DOX on adenosine diphosphate (ADP) and adenosine triphosphate (ATP) ratios in mice was assessed. In addition, thyroxine was given to mice before they were treated with DOX to investigate the effects of thyroxine on DOX-induced cardiac injury. Furthermore, to determine whether the liver kinase b1 (LKB1)/adenosine 5′-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) axis mediated the effect of thyroxine on DOX-induced cardiac injury, thyroxine was given to DOX-treated LKB1 knockout (KO) mice. Results DOX treatment time- and dose-dependently increased the ADP/ATP ratio. Thyroxine treatment also reduced lactate dehydrogenase (LDH) and creatine kinase myocardial band (CK-MB) levels in both serum and heart tissue and alleviated cardiac dysfunction in DOX-treated mice. Furthermore, thyroxine reversed DOX-induced reductions in LKB1 and AMPK phosphorylation; mitochondrial complex I, III, and IV activity; and mitochondrial swelling and reversed DOX-induced increases in mTOR pathway phosphorylation and myocardial cell apoptosis. These effects of thyroxine on DOX-treated mice were significantly attenuated by LKB1 KO. Conclusions Thyroxine alleviates energy failure, reduces myocardial cell apoptosis, and protects against DOX-induced cardiac injury via the LKB1/AMPK/mTOR axis in mice. Thyroxine may be a new agent for the clinical prevention of cardiac injury in tumor patients undergoing chemotherapy with DOX.
Collapse
|
75
|
Zhang YJ, Huang H, Liu Y, Kong B, Wang G. MD-1 Deficiency Accelerates Myocardial Inflammation and Apoptosis in Doxorubicin-Induced Cardiotoxicity by Activating the TLR4/MAPKs/Nuclear Factor kappa B (NF-κB) Signaling Pathway. Med Sci Monit 2019; 25:7898-7907. [PMID: 31636246 PMCID: PMC6820359 DOI: 10.12659/msm.919861] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/02/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Myocardial apoptosis and inflammation play important roles in doxorubicin (DOX)-caused cardiotoxicity. Our prior studies have characterized the effects of myeloid differentiation protein 1(MD-1) in pathological cardiac remodeling and myocardial ischemia/reperfusion (I/R) injury, but its participations and potential molecular mechanisms in DOX-caused cardiotoxicity remain unknown. MATERIAL AND METHODS In the present study, MD-1 knockout mice were generated, and a single intraperitoneal injection of DOX (15 mg/kg) was performed to elicit DOX-induced cardiotoxicity. Cardiac function, histological change, mitochondrial structure, myocardial death, apoptosis, inflammation, and molecular alterations were measured systemically. RESULTS The results showed that the protein and mRNA levels of MD-1 were dramatically downregulated in DOX-treated cardiomyocytes. DOX insult markedly accelerated cardiac dysfunction and injury, followed by enhancements of apoptosis and inflammation, all of which were further aggravated in MD-1 knockout mice. Mechanistically, the TLR4/MAPKs/NF-kappaB pathways, which were over-activated in MD-1-deficient mice, were significantly increased in DOX-damaged cardiomyocytes. Moreover, the abolishment of TLR4 or NF-kappaB via a specific inhibitor exerted protective effects against the adverse effects of MD-1 loss on DOX-caused cardiotoxicity. CONCLUSIONS Collectively, these findings suggest that MD-1 is a novel target for the treatment of DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Ying-Jun Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, P.R. China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, P.R. China
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, P.R. China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, P.R. China
| | - Guangji Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, P.R. China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, P.R. China
| |
Collapse
|
76
|
Huang PS, Wang CS, Yeh CT, Lin KH. Roles of Thyroid Hormone-Associated microRNAs Affecting Oxidative Stress in Human Hepatocellular Carcinoma. Int J Mol Sci 2019; 20:E5220. [PMID: 31640265 PMCID: PMC6834183 DOI: 10.3390/ijms20205220] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/17/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress occurs as a result of imbalance between the generation of reactive oxygen species (ROS) and antioxidant genes in cells, causing damage to lipids, proteins, and DNA. Accumulating damage of cellular components can trigger various diseases, including metabolic syndrome and cancer. Over the past few years, the physiological significance of microRNAs (miRNA) in cancer has been a focus of comprehensive research. In view of the extensive level of miRNA interference in biological processes, the roles of miRNAs in oxidative stress and their relevance in physiological processes have recently become a subject of interest. In-depth research is underway to specifically address the direct or indirect relationships of oxidative stress-induced miRNAs in liver cancer and the potential involvement of the thyroid hormone in these processes. While studies on thyroid hormone in liver cancer are abundantly documented, no conclusive information on the potential relationships among thyroid hormone, specific miRNAs, and oxidative stress in liver cancer is available. In this review, we discuss the effects of thyroid hormone on oxidative stress-related miRNAs that potentially have a positive or negative impact on liver cancer. Additionally, supporting evidence from clinical and animal experiments is provided.
Collapse
Affiliation(s)
- Po-Shuan Huang
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan.
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan.
| | - Chia-Siu Wang
- Department of General Surgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan.
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 33302, Taiwan.
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan.
- Department of Biomedical Sciences, College of Medicine, Chang-Gung University, Taoyuan 33302, Taiwan.
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 33302, Taiwan.
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33302, Taiwan.
| |
Collapse
|
77
|
Varela-López A, Battino M, Navarro-Hortal MD, Giampieri F, Forbes-Hernández TY, Romero-Márquez JM, Collado R, Quiles JL. An update on the mechanisms related to cell death and toxicity of doxorubicin and the protective role of nutrients. Food Chem Toxicol 2019; 134:110834. [PMID: 31577924 DOI: 10.1016/j.fct.2019.110834] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/10/2019] [Accepted: 09/21/2019] [Indexed: 12/11/2022]
Abstract
Doxorubicin (DOX), is a very effective chemotherapeutic agent against cancer whose clinical use is limited by toxicity. Different strategies have been proposed to attenuate toxicity, including combined therapy with bioactive compounds. This review update mechanisms of action and toxicity of doxorubicin and the role of nutrients like vitamins (A, C, E), minerals (selenium) and n-3 polyunsaturated fatty acids. Protective activities against DOX toxicity in liver, kidney, skin, bone marrow, testicles or brain have been reported, but these have not been evaluated for all of the reviewed nutrients. In most cases oxidation-related effects were present either, by reducing ROS levels and/or increasing antioxidant defenses. Antiapoptotic and anti-inflammatory mechanisms are also commonly reported. In some cases, interferences with autophagy and calcium homeostasis also have shown to be affected. Notwithstanding, there is a wide variety in duration and doses of treatment tested for both, compounds and DOX, which make difficult to compare the results of the studies. In spite of the reduction of DOX cardiotoxicity in health models, DOX anti-cancer activity in cancer cell lines or xenograft models usually did not result compromised when this has been evaluated. Importantly, clinical studies are needed to confirm all the observed effects.
Collapse
Affiliation(s)
- Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, 18071, Granada, Spain
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche Ed Odontostomatologiche (DISCO)-Sez, Biochimica, Facoltà di Medicina, Università Politecnica Delle Marche, 60131, Ancona, Italy; Nutrition and Food Science Group. Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - María D Navarro-Hortal
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, 18071, Granada, Spain
| | - Francesca Giampieri
- Dipartimento di Scienze Cliniche Specialistiche Ed Odontostomatologiche (DISCO)-Sez, Biochimica, Facoltà di Medicina, Università Politecnica Delle Marche, 60131, Ancona, Italy
| | - Tamara Y Forbes-Hernández
- Nutrition and Food Science Group. Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo, Vigo, Spain
| | - José M Romero-Márquez
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, 18071, Granada, Spain
| | - Ricardo Collado
- Complejo Hospitalario Universitario de Cáceres, Cáceres, Spain
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology ''José Mataix", Biomedical Research Centre, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
78
|
Wenningmann N, Knapp M, Ande A, Vaidya TR, Ait-Oudhia S. Insights into Doxorubicin-induced Cardiotoxicity: Molecular Mechanisms, Preventive Strategies, and Early Monitoring. Mol Pharmacol 2019; 96:219-232. [PMID: 31164387 DOI: 10.1124/mol.119.115725] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/03/2019] [Indexed: 11/22/2022] Open
Abstract
Doxorubicin (DOX) is one of the most effective anticancer drugs to treat various forms of cancers; however, its therapeutic utility is severely limited by its associated cardiotoxicity. Despite the enormous amount of research conducted in this area, the exact molecular mechanisms underlying DOX toxic effects on the heart are still an area that warrants further investigations. In this study, we reviewed literature to gather the best-known molecular pathways related to DOX-induced cardiotoxicity (DIC). They include mechanisms dependent on mitochondrial dysfunction such as DOX influence on the mitochondrial electron transport chain, redox cycling, oxidative stress, calcium dysregulation, and apoptosis pathways. Furthermore, we discuss the existing strategies to prevent and/or alleviate DIC along with various techniques available for therapeutic drug monitoring (TDM) in cancer patients treated with DOX. Finally, we propose a stepwise flowchart for TDM of DOX and present our perspective at curtailing this deleterious side effect of DOX.
Collapse
Affiliation(s)
- Nadine Wenningmann
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| | - Merle Knapp
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| | - Anusha Ande
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| | - Tanaya R Vaidya
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| | - Sihem Ait-Oudhia
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida
| |
Collapse
|
79
|
Shabanah OA, Ahmed LA, Qunebet RA, Yousuf WA, Mustafa R, Rejaie SA. Losartan and/or Naringenin Ameliorates Doxorubicin Induced Cardiac, Hepatic and Renal Toxicities in Rats. INT J PHARMACOL 2019. [DOI: 10.3923/ijp.2019.675.685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
80
|
Sun Y, Nemec-Bakk AS, Mallik AU, Bagchi AK, Singal PK, Khaper N. Blueberry extract attenuates doxorubicin-induced damage in H9c2 cardiac cells 1. Can J Physiol Pharmacol 2019; 97:880-884. [PMID: 31365282 DOI: 10.1139/cjpp-2019-0031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The objective of this study was to analyze the cardioprotective roles of 3 wild blueberry genotypes and one commercial blueberry genotype by measuring markers of oxidative stress and cell death in H9c2 cardiac cells exposed to doxorubicin. Ripe berries of the 3 wild blueberry genotypes were collected from a 10-year-old clearcut forest near Nipigon, Ontario, Canada (49°1'39″N, 87°52'21″W), whereas the commercial blueberries were purchased from a local grocery store. H9c2 cardiac cells were incubated with 15 μg gallic acid equivalent/mL blueberry extract for 4 h followed by 5 μM doxorubicin for 4 h, and oxidative stress and active caspase 3/7 were analyzed. The surface area as well as total phenolic content was significantly higher in all 3 wild blueberry genotypes compared with the commercial species. Increase in oxidative stress due to doxorubicin exposure was attenuated by pre-treatment with all 3 types of wild blueberries but not by commercial berries. Furthermore, increase in caspase 3/7 activity was also attenuated by all 3 wild genotypes as well. These data demonstrate that wild blueberry extracts can attenuate doxorubicin-induced damage to H9c2 cardiomyocytes through reduction in oxidative stress and apoptosis, whereas the commercial blueberry had little effect.
Collapse
Affiliation(s)
- Yue Sun
- Department of Biology, Northern Ontario School of Medicine, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | | | - Azim U Mallik
- Department of Biology, Northern Ontario School of Medicine, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| | - Ashim K Bagchi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Pawan K Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Neelam Khaper
- Department of Biology, Northern Ontario School of Medicine, Lakehead University, Thunder Bay, ON P7B 5E1, Canada.,Medical Sciences Division, Northern Ontario School of Medicine, Lakehead University, Thunder Bay, ON P7B 5E1, Canada
| |
Collapse
|
81
|
Chaliha M, Sultanbawa Y. Terminalia ferdinandiana, a traditional medicinal plant of Australia, alleviates hydrogen peroxide induced oxidative stress and inflammation, in vitro. ACTA ACUST UNITED AC 2019; 17:/j/jcim.ahead-of-print/jcim-2019-0008/jcim-2019-0008.xml. [DOI: 10.1515/jcim-2019-0008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/11/2019] [Indexed: 12/31/2022]
Abstract
AbstractBackgroundOxidative stress and inflammation are the underlying factors in many chronic debilitating diseases and commonly intertwined. Terminalia ferdinandiana is a traditional medicinal plant, endemic to Australia and is a rich source of many bioactive phytochemicals such as ellagic acid (EA) with known antioxidant capacity.MethodsWe investigated the in vitro antioxidant and anti-inflammatory activity of an aqueous food grade EA enriched (EAE) extract of T. ferdinandiana. Caco-2 and KERTr cell lines were treated with EAE or pure EA (used as reference control), followed by the exposure to hydrogen peroxide (H2O2). Levels of reactive oxygen species (ROS) production and gene expression of molecular markers associated with oxidative stress and inflammation were monitored.ResultsSignificant reduction in ROS production was observed in both cell types treated with 100 or 200 µg/mL EA or EAE. Treatment of cells with EAE or EA showed upregulation of mRNA expression of the antioxidative gene superoxide dismutase (SOD)-2 and downregulated the expression of inducible nitric oxide synthase (iNOS), soluble cell adhesion molecule (sICAM), and cyclooxygenase (COX)-2. Neither EAE nor EA had any effect on the constitutively expressed COX1.ConclusionsThe antioxidant and anti-inflammatory activity of T. ferdinandiana extract on mammalian cells exposed to H2O2 suggests the potential of using this traditional medicinal plant in preventing oxidative damage and inflammation related diseases.
Collapse
Affiliation(s)
- Mridusmita Chaliha
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Block 10, Level 1, 39 Kessels Rd, Coopers Plains Qld 4108, Queensland, Australia
| | - Yasmina Sultanbawa
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Block 10, Level 1, 39 Kessels Rd, Coopers Plains Qld 4108, Queensland, Australia
| |
Collapse
|
82
|
Kura B, Bagchi AK, Singal PK, Barancik M, LeBaron TW, Valachova K, Šoltés L, Slezák J. Molecular hydrogen: potential in mitigating oxidative-stress-induced radiation injury. Can J Physiol Pharmacol 2019; 97:287-292. [DOI: 10.1139/cjpp-2018-0604] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Uncontrolled production of oxygen and nitrogen radicals results in oxidative and nitrosative stresses that impair cellular functions and have been regarded as causative common denominators of many pathological processes. In this review, we report on the beneficial effects of molecular hydrogen in scavenging radicals in an artificial system of•OH formation. As a proof of principle, we also demonstrate that in rat hearts in vivo, administration of molecular hydrogen led to a significant increase in superoxide dismutase as well as pAKT, a cell survival signaling molecule. Irradiation of the rats caused a significant increase in lipid peroxidation, which was mitigated by pre-treatment of the animals with molecular hydrogen. The nuclear factor erythroid 2-related factor 2 is regarded as an important regulator of oxyradical homeostasis, as well as it supports the functional integrity of cells, particularly under conditions of oxidative stress. We suggest that the beneficial effects of molecular hydrogen may be through the activation of nuclear factor erythroid 2-related factor 2 pathway that promotes innate antioxidants and reduction of apoptosis, as well as inflammation.
Collapse
Affiliation(s)
- Branislav Kura
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovak Republic
| | - Ashim K. Bagchi
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Pawan K. Singal
- Institute of Cardiovascular Sciences, St. Boniface Hospital Research Centre, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Miroslav Barancik
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovak Republic
| | - Tyler W. LeBaron
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovak Republic
- Molecular Hydrogen Institute, Enoch, Utah 84721, USA
| | - Katarina Valachova
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, 841 04 Bratislava, Slovak Republic
| | - Ladislav Šoltés
- Centre of Experimental Medicine, Institute of Experimental Pharmacology and Toxicology, 841 04 Bratislava, Slovak Republic
| | - Ján Slezák
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 841 04 Bratislava, Slovak Republic
| |
Collapse
|
83
|
Hemilä H, Chalker E. Vitamin C Can Shorten the Length of Stay in the ICU: A Meta-Analysis. Nutrients 2019; 11:E708. [PMID: 30934660 PMCID: PMC6521194 DOI: 10.3390/nu11040708] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022] Open
Abstract
A number of controlled trials have previously found that in some contexts, vitamin C can have beneficial effects on blood pressure, infections, bronchoconstriction, atrial fibrillation, and acute kidney injury. However, the practical significance of these effects is not clear. The purpose of this meta-analysis was to evaluate whether vitamin C has an effect on the practical outcomes: length of stay in the intensive care unit (ICU) and duration of mechanical ventilation. We identified 18 relevant controlled trials with a total of 2004 patients, 13 of which investigated patients undergoing elective cardiac surgery. We carried out the meta-analysis using the inverse variance, fixed effect options, using the ratio of means scale. In 12 trials with 1766 patients, vitamin C reduced the length of ICU stay on average by 7.8% (95% CI: 4.2% to 11.2%; p = 0.00003). In six trials, orally administered vitamin C in doses of 1⁻3 g/day (weighted mean 2.0 g/day) reduced the length of ICU stay by 8.6% (p = 0.003). In three trials in which patients needed mechanical ventilation for over 24 hours, vitamin C shortened the duration of mechanical ventilation by 18.2% (95% CI 7.7% to 27%; p = 0.001). Given the insignificant cost of vitamin C, even an 8% reduction in ICU stay is worth exploring. The effects of vitamin C on ICU patients should be investigated in more detail.
Collapse
Affiliation(s)
- Harri Hemilä
- Department of Public Health, University of Helsinki, POB 41, FI-00014 Helsinki, Finland.
| | - Elizabeth Chalker
- School of Public Health, University of Sydney, Sydney 2006, Australia.
| |
Collapse
|
84
|
Chen X, Peng X, Luo Y, You J, Yin D, Xu Q, He H, He M. Quercetin protects cardiomyocytes against doxorubicin-induced toxicity by suppressing oxidative stress and improving mitochondrial function via 14-3-3γ. Toxicol Mech Methods 2019; 29:344-354. [PMID: 30636491 DOI: 10.1080/15376516.2018.1564948] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiotoxicity limits the clinical applications of doxorubicin (Dox), which mechanism might be excess generation of intracellular ROS. Quercetin (Que) is a flavonoid that possesses anti-oxidative activities, exerts myocardial protection. We hypothesized that the cardioprotection against Dox injury of Que involved 14-3-3γ, and mitochondria. To investigate the hypothesis, we treated primary cardiomyocytes with Dox and determined the effects of Que pretreatment with or without 14-3-3γ knockdown. We analyzed various cellular and molecular indexes. Our data showed that Que attenuated Dox-induced toxicity in cardiomyocytes by upregulating 14-3-3γ expression. Que pretreatment increased cell viability, SOD, catalase, and GPx activities, GSH levels, MMP and the GSH/GSSG ratio; decreased LDH and caspase-3 activities, MDA and ROS levels, mPTP opening and the percentage of apoptotic cells. However, Que's cardioprotection were attenuated by knocking down 14-3-3γ expression using pAD/14-3-3γ-shRNA. In conclusion, Que protects cardiomyocytes against Dox injury by suppressing oxidative stress and improving mitochondrial function via 14-3-3γ.
Collapse
Affiliation(s)
- Xuanying Chen
- a Department of Pharmacy, The First Affiliated Hospital, Nanchang University, Nanchang, China
| | - Xiaoping Peng
- b Jiangxi Provincial Institute of Hypertension, The First Affiliated Hospital, Nanchang University , Nanchang , China
| | - Yong Luo
- c Jiangxi Provincial Key Laboratory of Women's Reproductive Health , Jiangxi Provincial Maternal and Child Health Hospital , Nanchang , China
| | - Jiegen You
- d Jiangxi Academy of Medical Science, Nanchang University , Nanchang , China
| | - Dong Yin
- e Jiangxi Provincial Key Laboratory of Molecular Medicine , The Second Affiliated Hospital, Nanchang University , Nanchang , China
| | - Qiang Xu
- f Drug Clinical Trial Institution, Jiangxi Province Tumor Hospital , Nanchang , China
| | - Huan He
- g Jiangxi Provincial Key Laboratory of Basic Pharmacology , Nanchang University School of Pharmaceutical Science , Nanchang , China
| | - Ming He
- b Jiangxi Provincial Institute of Hypertension, The First Affiliated Hospital, Nanchang University , Nanchang , China
| |
Collapse
|
85
|
Gu Y, Ju A, Jiang B, Zhang J, Man S, Liu C, Gao W. Yiqi Fumai lyophilized injection attenuates doxorubicin-induced cardiotoxicity, hepatotoxicity and nephrotoxicity in rats by inhibition of oxidative stress, inflammation and apoptosis. RSC Adv 2018; 8:40894-40911. [PMID: 35557896 PMCID: PMC9091596 DOI: 10.1039/c8ra07163b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/22/2018] [Indexed: 01/21/2023] Open
Abstract
Doxorubicin (DOX) is one of the most effective antineoplastic drugs, however, its organ toxicity inhibits the clinical utility. This study was aimed at investigating the protective effects of Yiqi Fumai lyophilized injection (YQFM) against DOX-induced tissue injury and exploring the mechanisms which mediated reactive oxygen species (ROS), inflammation and apoptosis. The experiment was as follows: rats were subjected to an intraperitoneal injection (i.p.) of YQFM (0.481 g kg-1, i.p.) for 12 days; DOX (5 mg kg-1, i.p.) was administered on the 4th, 8th and 12th days to achieve a cumulative dose of 15 mg kg-1. Pretreatment of YQFM significantly ameliorated intracellular damage and dysfunction of the heart, liver and kidneys via decreasing activities of injury indexes. The levels of lipid peroxidation and glutathione depletion were clearly reduced following YQFM pretreatment, meanwhile the activities of glutathione peroxidase, superoxide dismutase, and catalase were elevated. Additionally administering YQFM could mitigate the cardiotoxicity, hepatotoxicity and nephrotoxicity via reducing levels of inflammatory factors and decreasing apoptosis. Accordingly, this study indicated that YQFM attenuated DOX-induced toxicity by ameliorating organ function, decreasing ROS production, and preventing excessive inflammation and apoptosis.
Collapse
Affiliation(s)
- Yue Gu
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Weijin Road Tianjin 300072 China +86-22-87401895 +86-22-87401895
| | - Aichun Ju
- Tasly Pride Pharmaceutical Company Limited Tianjin 300410 China
| | - Bingjie Jiang
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Weijin Road Tianjin 300072 China +86-22-87401895 +86-22-87401895
| | - Jingze Zhang
- Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces Tianjin 300309 China +86-22-84876773
| | - Shuli Man
- State Key Laboratory of Food Nutrition and Safety, College of Biotechnology, Tianjin University of Science & Technology Tianjin 300457 China +86-22-60601265
| | - Changxiao Liu
- The State Key Laboratories of Pharmacodynamics and Pharmacokinetics Tianjin 300193 China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University Weijin Road Tianjin 300072 China +86-22-87401895 +86-22-87401895
| |
Collapse
|
86
|
Interleukin-12p35 Knock Out Aggravates Doxorubicin-Induced Cardiac Injury and Dysfunction by Aggravating the Inflammatory Response, Oxidative Stress, Apoptosis and Autophagy in Mice. EBioMedicine 2018; 35:29-39. [PMID: 30228093 PMCID: PMC6154773 DOI: 10.1016/j.ebiom.2018.06.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023] Open
Abstract
Background Recent evidence has demonstrated that interleukin 12p35 knockout (IL-12p35 KO) is involved in cardiac diseases by regulating the inflammatory response. The involvement of inflammatory cells has also been observed in doxorubicin (DOX)-induced cardiac injury. This study aimed to investigate whether IL-12p35 KO affects DOX-induced cardiac injury and the underlying mechanisms. Methods First, the effect of DOX treatment on cardiac IL-12p35 expression was assessed. In addition, to investigate the effect of IL-12p35 KO on DOX-induced cardiac injury, IL-12p35 KO mice were treated with DOX. Because IL-12p35 is the mutual subunit of IL-12 and IL-35, to determine the cytokine that mediates the effect of IL-12p35 KO on DOX-induced cardiac injury, mice were given phosphate-buffered saline (PBS), mouse recombinant IL-12 (rIL-12) or rIL-35 before treatment with DOX. Results DOX treatment significantly increased the level of cardiac IL-12p35 expression. In addition, IL-12p35 KO mice exhibited higher serum and heart lactate dehydrogenase levels, higher serum and heart creatine kinase myocardial bound levels, and greater cardiac dysfunction than DOX-treated mice. Furthermore, IL-12p35 KO further increased M1 macrophage and decreased M2 macrophage differentiation, aggravated the imbalance of oxidants and antioxidants, and further activated the mitochondrial apoptotic pathway and endoplasmic reticulum stress autophagy pathway. Both rIL-12 and rIL-35 protected against DOX-induced cardiac injury by alleviating the inflammatory response, oxidative stress, apoptosis and autophagy. Conclusions IL-12p35 KO aggravated DOX-induced cardiac injury by amplifying the levels of inflammation, oxidative stress, apoptosis and autophagy. (234 words). IL-12p35 KO aggravates DOX-induced cardiac injury and dysfunction. IL-12p35 further increases the DOX-induced imbalance in inflammation, oxidative stress, apoptosis and autophagy. Both exogenous rIL-12 and rIL-35 relieved cardiac injury mediated by DOX.
CD4+ T helper (Th) cells are closely related to cardiac injury; regulatory T cells (Tregs) are a new subset of Th cells, and IL-35 is the functional cytokine of Tregs. Cardiac injury mediated by DOX is the most serious complication during chemotherapy, and there are no good preventive measures. This study aimed to investigate whether IL-35 can reduce cardiac injury induced by DOX during chemotherapy. In addition to IL-35, IL-12p35 KO can cancel the biological effect of IL-12; therefore, we also determined whether IL-12 participates in DOX-induced cardiac injury and the underlying mechanisms.
Collapse
|
87
|
de Oliveira Silva J, Miranda SEM, Leite EA, de Paula Sabino A, Borges KBG, Cardoso VN, Cassali GD, Guimarães AG, Oliveira MC, de Barros ALB. Toxicological study of a new doxorubicin-loaded pH-sensitive liposome: A preclinical approach. Toxicol Appl Pharmacol 2018; 352:162-169. [DOI: 10.1016/j.taap.2018.05.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 12/21/2022]
|
88
|
Ascorbate Attenuates Oxidative Stress and Increased Blood Pressure Induced by 2-(4-Hydroxyphenyl) Amino-1,4-naphthoquinone in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8989676. [PMID: 30147836 PMCID: PMC6083601 DOI: 10.1155/2018/8989676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/15/2018] [Accepted: 06/07/2018] [Indexed: 11/30/2022]
Abstract
Quinone derivatives like 2-(4-hydroxyphenyl) amino-1,4-naphthoquinone (Q7) are used as antitumor agents usually associated with adverse effects on the cardiovascular system. The objective of this study was to evaluate the cardioprotective effect of ascorbate on Q7-induced cardiovascular response in Wistar rats. In this study, blood pressure, vascular reactivity, and intracellular calcium fluxes were evaluated in cardiomyocytes and the rat aorta. We also measured oxidative stress through lipid peroxidation (TBARS), superoxide dismutase- (SOD-) like activity, and H2O2 generation. Oral treatment of rats with ascorbate (500 mg/kg) for 20 days significantly (p < 0.05) reduced the Q7-induced increase (10 mg/kg) in blood pressure and heart rate. The preincubation with ascorbate (2 mM) significantly (p < 0.05) attenuated the irregular beating of the atrium induced by Q7 (10−5 M). In addition, ascorbate induced endothelial vasodilation in the presence of Q7 in the intact aortic rings of a rat and reduced the cytosolic calcium levels in vascular smooth muscle cells. Ascorbate also reduced the Q7-induced oxidative stress in vivo. Ascorbate also attenuated Q7-induced SOD-like activity and increased TBARS levels. These results suggest a cardioprotective effect in vivo of ascorbate in animals treated orally with a naphthoquinone derivative by a mechanism involving oxidative stress.
Collapse
|
89
|
Xu C, Liang C, Sun W, Chen J, Chen X. Glycyrrhizic acid ameliorates myocardial ischemic injury by the regulation of inflammation and oxidative state. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1311-1319. [PMID: 29849452 PMCID: PMC5965375 DOI: 10.2147/dddt.s165225] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Glycyrrhizic acid (GA), a bioactive triterpenoid saponin isolated from the roots of licorice plants (Glycyrrhiza glabra), has been shown to exert a variety of pharmacological activities and is considered to have potential therapeutic applications. The purpose of the present study was to investigate the cardioprotective effect of GA on myocardial ischemia (MI) injury rats induced by isoproterenol (ISO), and explore the potential mechanisms underlying these effects. Materials and methods The rats were randomized into five groups: control, ISO, ISO+diltiazem (10 mg/kg), ISO+GA (10 mg/kg), and ISO+GA (20 mg/kg). Electrocardiogram and histopathological examination were performed. Markers of cardiac marker enzymes (creatine kinase-MB, lactate dehydrogenase), oxidative stress (superoxide dismutase, malondialdehyde [MDA]), and inflammation (TNF-α, IL-1β, and IL-6) were also measured in each group. Proteins involved in NF-κB and Nrf-2/HO-1 pathway were detected by Western blot. Results GA decreased the ST elevation induced by MI, decreased serum levels of creatine kinase, lactate dehydrogenase, malondialdehyde, IL-6, IL-1β, and TNF-α, and increased serum superoxide dismutase and malondialdehyde activities. Furthermore, GA increased the protein levels of Nrf-2 and HO-1 and downregulated the phosphorylation of IκB, and NF-κB p65 in ISO-induced MI. Conclusion These observations indicated that GA has cardioprotective effects against MI, and these effects might be related to the activation of Nrf-2/HO-1 and inhibition of NF-κB signaling pathway in the myocardium.
Collapse
Affiliation(s)
- Chongli Xu
- Nanjing University of Chinese Medicine, Nanjing 210029, People's Republic of China.,Jiangnin Hospital of Nanjing, Nanjing 211100, People's Republic of China
| | - Caihong Liang
- Jiangnin Hospital of Nanjing, Nanjing 211100, People's Republic of China
| | - Weixin Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Jiandong Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| | - Xiaohu Chen
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, People's Republic of China
| |
Collapse
|
90
|
Marques-Aleixo I, Santos-Alves E, Oliveira PJ, Moreira PI, Magalhães J, Ascensão A. The beneficial role of exercise in mitigating doxorubicin-induced Mitochondrionopathy. Biochim Biophys Acta Rev Cancer 2018; 1869:189-199. [PMID: 29408395 DOI: 10.1016/j.bbcan.2018.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 01/07/2023]
Abstract
Doxorubicin (DOX) is a widely used antineoplastic agent for a wide range of cancers, including hematological malignancies, soft tissue sarcomas and solid tumors. However, DOX exhibits a dose-related toxicity that results in life-threatening cardiomyopathy. In addition to the heart, there is evidence that DOX toxicity extends to other organs. This general toxicity seems to be related to mitochondrial network structural, molecular and functional impairments. Several countermeasures for these negative effects have been proposed, being physical exercise, not only one of the most effective non-pharmacologic strategy but also widely recommended as booster against cancer-related fatigue. It is widely accepted that mitochondria are critical sensors of tissue functionality, both modulated by DOX and exercise. Therefore, this review focuses on the current understanding of the mitochondrial-mediated mechanisms underlying the protective effect of exercise against DOX-induced toxicity, not only limited to the cardiac tissue, but also in other tissues such as skeletal muscle, liver and brain. We here analyze recent developments regarding the beneficial effects of exercise targeting mitochondrial responsive phenotypes against redox changes, mitochondrial bioenergetics, apoptotic, dynamics and quality control signalling affected by DOX treatment.
Collapse
Affiliation(s)
- I Marques-Aleixo
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Faculty of Psychology, Education and Sport, University Lusófona of Porto, Portugal.
| | - E Santos-Alves
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Departament de Biologia Cellular, Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona, Spain
| | - P J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, Biocant Park, Cantanhede, Portugal
| | - P I Moreira
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute of Physiology, Faculty of Medicine, University of Coimbra, Portugal
| | - J Magalhães
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Faculty of Sport, University of Porto, Portugal
| | - A Ascensão
- CIAFEL - Research Centre in Physical Activity, Health and Leisure, Portugal; LAMETEX - Laboratory of Exercise and Metabolism; Faculty of Sport, University of Porto, Portugal
| |
Collapse
|