51
|
Trinity JD, Wray DW, Witman MAH, Layec G, Barrett-O'Keefe Z, Ives SJ, Conklin JD, Reese V, Zhao J, Richardson RS. Ascorbic acid improves brachial artery vasodilation during progressive handgrip exercise in the elderly through a nitric oxide-mediated mechanism. Am J Physiol Heart Circ Physiol 2016; 310:H765-74. [PMID: 26801312 DOI: 10.1152/ajpheart.00817.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/18/2016] [Indexed: 02/07/2023]
Abstract
The proposed mechanistic link between the age-related attenuation in vascular function and free radicals is an attractive hypothesis; however, direct evidence of free radical attenuation and a concomitant improvement in vascular function in the elderly is lacking. Therefore, this study sought to test the hypothesis that ascorbic acid (AA), administered intra-arterially during progressive handgrip exercise, improves brachial artery (BA) vasodilation in a nitric oxide (NO)-dependent manner, by mitigating free radical production. BA vasodilation (Doppler ultrasound) and free radical outflow [electron paramagnetic resonance (EPR) spectroscopy] were measured in seven healthy older adults (69 ± 2 yr) during handgrip exercise at 3, 6, 9, and 12 kg (∼13-52% of maximal voluntary contraction) during the control condition and nitric oxide synthase (NOS) inhibition via N(G)-monomethyl-L-arginine (L-NMMA), AA, and coinfusion of l-NMMA + AA. Baseline BA diameter was not altered by any of the treatments, while L-NMMA and L-NMMA + AA diminished baseline BA blood flow and shear rate. AA improved BA dilation compared with control at 9 kg (control: 6.5 ± 2.2%, AA: 10.9 ± 2.5%, P = 0.01) and 12 kg (control: 9.5 ± 2.7%, AA: 15.9 ± 3.7%, P < 0.01). NOS inhibition blunted BA vasodilation compared with control and when combined with AA eliminated the AA-induced improvement in BA vasodilation. Free radical outflow increased with exercise intensity but, interestingly, was not attenuated by AA. Collectively, these results indicate that AA improves BA vasodilation in the elderly during handgrip exercise through an NO-dependent mechanism; however, this improvement appears not to be the direct consequence of attenuated free radical outflow from the forearm.
Collapse
Affiliation(s)
- Joel D Trinity
- Geriatric Research, Education, and Clinical Center, George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah; Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah;
| | - D Walter Wray
- Geriatric Research, Education, and Clinical Center, George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah; Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah; and
| | - Melissa A H Witman
- Geriatric Research, Education, and Clinical Center, George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah; Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Gwenael Layec
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | | | - Stephen J Ives
- Geriatric Research, Education, and Clinical Center, George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah; Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Jamie D Conklin
- Geriatric Research, Education, and Clinical Center, George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah; Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Van Reese
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Jia Zhao
- Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, George E. Whalen Department of Veterans Affairs Medical Center, Salt Lake City, Utah; Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah; and
| |
Collapse
|
52
|
Beyer AM, Freed JK, Durand MJ, Riedel M, Ait-Aissa K, Green P, Hockenberry JC, Morgan RG, Donato AJ, Peleg R, Gasparri M, Rokkas CK, Santos JH, Priel E, Gutterman DD. Critical Role for Telomerase in the Mechanism of Flow-Mediated Dilation in the Human Microcirculation. Circ Res 2015; 118:856-66. [PMID: 26699654 PMCID: PMC4772813 DOI: 10.1161/circresaha.115.307918] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/21/2015] [Indexed: 02/02/2023]
Abstract
RATIONALE Telomerase is a nuclear regulator of telomere elongation with recent reports suggesting a role in regulation of mitochondrial reactive oxygen species. Flow-mediated dilation in patients with cardiovascular disease is dependent on the formation of reactive oxygen species. OBJECTIVE We examined the hypothesis that telomerase activity modulates microvascular flow-mediated dilation, and loss of telomerase activity contributes to the change of mediator from nitric oxide to mitochondrial hydrogen peroxide in patients with coronary artery disease (CAD). METHODS AND RESULTS Human coronary and adipose arterioles were isolated for videomicroscopy. Flow-mediated dilation was measured in vessels pretreated with the telomerase inhibitor BIBR-1532 or vehicle. Statistical differences between groups were determined using a 2-way analysis of variance repeated measure (n≥4; P<0.05). L-NAME (N(ω)-nitro-L-arginine methyl ester; nitric oxide synthase inhibitor) abolished flow-mediated dilation in arterioles from subjects without CAD, whereas polyethylene glycol-catalase (PEG-catalase; hydrogen peroxide scavenger) had no effect. After exposure to BIBR-1532, arterioles from non-CAD subjects maintained the magnitude of dilation but changed the mediator from nitric oxide to mitochondrial hydrogen peroxide (% max diameter at 100 cm H2O: vehicle 74.6±4.1, L-NAME 37.0±2.0*, PEG-catalase 82.1±2.8; BIBR-1532 69.9±4.0, L-NAME 84.7±2.2, PEG-catalase 36.5±6.9*). Conversely, treatment of microvessels from CAD patients with the telomerase activator AGS 499 converted the PEG-catalase-inhibitable dilation to one mediated by nitric oxide (% max diameter at 100 cm H2O: adipose, AGS 499 78.5±3.9; L-NAME 10.9±17.5*; PEG-catalase 79.2±4.9). Endothelial-independent dilation was not altered with either treatment. CONCLUSIONS We have identified a novel role for telomerase in re-establishing a physiological mechanism of vasodilation in arterioles from subjects with CAD. These findings suggest a new target for reducing the oxidative milieu in the microvasculature of patients with CAD.
Collapse
Affiliation(s)
- Andreas M Beyer
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.).
| | - Julie K Freed
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Matthew J Durand
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Michael Riedel
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Karima Ait-Aissa
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Paula Green
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Joseph C Hockenberry
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - R Garret Morgan
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Anthony J Donato
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Refael Peleg
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Mario Gasparri
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Chris K Rokkas
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Janine H Santos
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - Esther Priel
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| | - David D Gutterman
- From the Department of Medicine, Cardiovascular Center (A.M.B., M.J.D., M.R., K.A.-A., J.C.H., D.D.G.), Department of Physiology (A.M.B., K.A.-A., D.D.G.), Department of Anesthesiology (J.K.F.), Department of Physical Medicine and Rehabilitation (M.J.D.), and Departments of Surgery, Cardiothoracic Surgery (M.G., C.K.R.), Medical College of Wisconsin, Milwaukee; Departments of Pharmacology and Physiology, New Jersey Medical School of Rutgers, Newark (P.G., J.H.S.); Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City (R.G.M., A.J.D.); and Shraga Segal Departments of Immunology and Microbiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel (R.P., E.P.)
| |
Collapse
|
53
|
Park SY, Ives SJ, Gifford JR, Andtbacka RHI, Hyngstrom JR, Reese V, Layec G, Bharath LP, Symons JD, Richardson RS. Impact of age on the vasodilatory function of human skeletal muscle feed arteries. Am J Physiol Heart Circ Physiol 2015; 310:H217-25. [PMID: 26589330 DOI: 10.1152/ajpheart.00716.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/13/2015] [Indexed: 11/22/2022]
Abstract
Although advancing age is often associated with attenuated skeletal muscle blood flow and skeletal muscle feed arteries (SMFAs) have been recognized to play a regulatory role in the vasculature, little is known about the impact of age on the vasodilatory capacity of human SMFAs. Therefore, endothelium-dependent and -independent vasodilation were assessed in SMFAs (diameter: 544 ± 63 μm) obtained from 24 (equally represented) young (33 ± 2 yr) and old (71 ± 2 yr) subjects in response to three stimuli: 1) flow-induced shear stress, 2) ACh, and 3) sodium nitropusside (SNP). Both assessments of endothelium-dependent vasodilation, flow (young subjects: 68 ± 1% and old subjects: 32 ± 7%) and ACh (young subjects: 92 ± 3% and old subjects: 73 ± 4%), were significantly blunted (P < 0.05) in SMFAs of old compared with young subjects, with no such age-related differences in endothelium-independent vasodilation (SNP). In response to an increase in flow-induced shear stress, vasodilation kinetics (time constant to reach 63% of the amplitude of the response: 55 ± 1 s in young subjects and 92 ± 7 s in old subjects) and endothelial nitric oxide synthase (eNOS) activation (phospho-eNOS(s1177)/total eNOS: 1.0 ± 0.1 in young subjects and 0.2 ± 0.1 in old subjects) were also significantly attenuated in old compared with young subjects (P < 0.05). Furthermore, the vessel superoxide concentration was greater in old subjects (old subjects: 3.9 ± 1.0 area under curve/mg and young subjects: 1.7 ± 0.1 area under the curve/mg, P < 0.05). These findings reveal that the endothelium-dependent vasodilatory capacity, including vasodilation kinetics but not smooth muscle function, of human SMFAs is blunted with age and may be due to free radicals. Given the potential regulatory role of SMFAs in skeletal muscle blood flow, these findings may explain, at least in part, the often observed attenuated perfusion of skeletal muscle with advancing age that may contribute to exercise intolerance in the elderly.
Collapse
Affiliation(s)
- Song-Young Park
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Stephen J Ives
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, New York; and
| | - Jayson R Gifford
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Robert H I Andtbacka
- Department of Surgery, Huntsman Cancer Hospital, University of Utah, Salt Lake City, Utah
| | - John R Hyngstrom
- Department of Surgery, Huntsman Cancer Hospital, University of Utah, Salt Lake City, Utah
| | - Van Reese
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Gwenael Layec
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah
| | - Leena P Bharath
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Utah, Salt Lake City, Utah
| | - John D Symons
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah; Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Division of Geriatrics, Department of Internal Medicine, University of Utah, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah;
| |
Collapse
|