51
|
Grenz A, Homann D, Eltzschig HK. Extracellular adenosine: a safety signal that dampens hypoxia-induced inflammation during ischemia. Antioxid Redox Signal 2011; 15:2221-34. [PMID: 21126189 PMCID: PMC3166177 DOI: 10.1089/ars.2010.3665] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Traditionally, the single most unique feature of the immune system has been attributed to its capability to discriminate between self (e.g., host proteins) and nonself (e.g., pathogens). More recently, an emerging immunologic concept involves the notion that the immune system responds via a complex system for sensing signals of danger, such as pathogens or host-derived signals of cellular distress (e.g., ischemia), while remaining unresponsive to nondangerous motifs. Experimental studies have provided strong evidence that the production and signaling effects of extracellular adenosine are dramatically enhanced during conditions of limited oxygen availability as occurs during ischemia. As such, adenosine would fit the bill of signaling molecules that are enhanced during situations of cellular distress. In contrast to a danger signal, we propose here that extracellular adenosine operates as a countermeasure, in fact as a safety signal, to both restrain potentially harmful immune responses and to maintain and promote general tissue integrity during conditions of limited oxygen availability.
Collapse
Affiliation(s)
- Almut Grenz
- Mucosal Inflammation Program, Department of Anesthesiology, University of Colorado-Denver, Aurora, CO 80045, USA
| | | | | |
Collapse
|
52
|
Interplay of hypoxia and A2B adenosine receptors in tissue protection. ADVANCES IN PHARMACOLOGY 2011; 61:145-86. [PMID: 21586359 DOI: 10.1016/b978-0-12-385526-8.00006-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
That adenosine signaling can elicit adaptive tissue responses during conditions of limited oxygen availability (hypoxia) is a long-suspected notion that recently gained general acceptance from genetic and pharmacologic studies of the adenosine signaling pathway. As hypoxia and inflammation share an interdependent relationship, these studies have demonstrated that adenosine signaling events can be targeted to dampen hypoxia-induced inflammation. Here, we build on the hypothesis that particularly the A(2B) adenosine receptor (ADORA(2B)) plays a central role in tissue adaptation to hypoxia. In fact, the ADORA(2B) requires higher adenosine concentrations than any of the other adenosine receptors. However, during conditions of hypoxia or ischemia, the hypoxia-elicited rise in extracellular adenosine is sufficient to activate the ADORA(2B). Moreover, several studies have demonstrated very robust induction of the ADORA(2B) elicited by transcriptional mechanisms involving hypoxia-dependent signaling pathways and the transcription factor "hypoxia-induced factor" 1. In the present chapter, genetic and pharmacologic evidence is presented to support our hypothesis of a tissue protective role of ADORA(2B) signaling during hypoxic conditions, including hypoxia-elicited vascular leakage, organ ischemia, or acute lung injury. All these disease models are characterized by hypoxia-elicited tissue inflammation. As such, the ADORA(2B) has emerged as a therapeutic target for dampening hypoxia-induced inflammation and tissue adaptation to limited oxygen availability.
Collapse
|
53
|
Absence of equilibrative nucleoside transporter 1 in ENT1 knockout mice leads to altered nucleoside levels following hypoxic challenge. Life Sci 2011; 89:621-30. [PMID: 21872611 DOI: 10.1016/j.lfs.2011.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 06/23/2011] [Accepted: 07/27/2011] [Indexed: 01/18/2023]
Abstract
AIMS Equilibrative nucleoside transporters (ENT) modulate the flux of adenosine. The ENT1-null (KO) mouse heart is endogenously cardioprotected but the cellular basis of this phenotype is unknown. Therefore, we investigated the cellular mechanisms underlying ENT1-mediated cardioprotection. MAIN METHODS Circulating adenosine levels were measured in WT and KO mice. Cellular levels of nucleosides and nucleotides were investigated in isolated adult cardiomyocytes from WT and KO mice using HPLC following hypoxic challenge (30 min, 2% O(2)). Changes in hypoxic gene expression were analyzed by PCR arrays and cAMP levels were measured to investigate contributions from adenosine receptors. KEY FINDINGS Circulating adenosine levels were significantly higher in KO (416±42nmol/l, n=12) compared to WT animals (208±21, n=13, p<0.001). Absence of ENT1 led to an elevated expression of genes involved in cardioprotective pathways compared to WT cardiomyocytes. Following hypoxic challenge, extracellular adenosine levels were significantly elevated in KO (4360±1840 pmol/mg protein) versus WT cardiomyocytes (3035±730 pmol/mg protein, n≥12, p<0.05). This effect was enhanced in the presence of dipyridamole (30 μM), which inhibits ENT1 and ENT2. Enhanced extracellular adenosine levels in ENT1-null cardiomyocytes appeared to come from a pool of extracellular nucleotides including IMP, AMP and ADP. Adenosine receptor (AR) activation mimicked increases in cAMP levels due to hypoxic challenge suggesting that ENT1 modulates AR-dependent signaling. SIGNIFICANCE ENT1 contributes to modulation of extracellular adenosine levels and subsequent purinergic signaling via ARs. ENT1-null mice possess elevated circulating adenosine levels and reduced cellular uptake resulting in a perpetually cardioprotected phenotype.
Collapse
|
55
|
van Giezen JJJ, Sidaway J, Glaves P, Kirk I, Björkman JA. Ticagrelor inhibits adenosine uptake in vitro and enhances adenosine-mediated hyperemia responses in a canine model. J Cardiovasc Pharmacol Ther 2011; 17:164-72. [PMID: 21697355 DOI: 10.1177/1074248411410883] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIMS A routine secondary pharmacology screen indicated that reversibly binding oral P2Y(12) receptor antagonist ticagrelor could inhibit adenosine uptake in human erythrocytes, suggesting that ticagrelor may potentiate adenosine-mediated responses in vivo. The aim of this study was to further characterize the adenosine uptake inhibition in vitro and study possible physiological consequences of adenosine uptake inhibition by ticagrelor in an anesthetized dog model of coronary blood flow compared to dipyridamole. METHODS AND RESULTS We measured [2-3H]adenosine uptake in purified human erythrocytes and several cell lines in the presence of ticagrelor or the known uptake inhibitor dipyridamole as a comparator. Using an open-chest dog model (beagles), we measured the left anterior descending (LAD) coronary artery blood flow during reactive hyperemia after 1 minute occlusion or intracoronary infusion of adenosine before and after administration of vehicle, ticagrelor, or dipyridamole (each n = 8). Ticagrelor concentration-dependently inhibited adenosine uptake in human erythrocytes and in cell lines of rat, canine, or human origin. In the dog model, ticagrelor and dipyridamole dose-dependently augmented reactive hyperemia after LAD occlusion, as assessed by percentage repayment of flow debt relative to control (both Ps < .05). Ticagrelor and dipyridamole also dose-dependently augmented intracoronary adenosine-induced increases in LAD blood flow relative to control (both Ps < .05). CONCLUSION Ticagrelor inhibits adenosine uptake in vitro and subsequently augments cardiac blood flow in a canine model of reactive hypoxia- or adenosine-induced blood flow increases. These findings suggest that ticagrelor may have additional benefits in patients with acute coronary syndrome beyond inhibition of platelet aggregation.
Collapse
|
57
|
Graham K, Yao S, Johnson L, Mowles D, Ng A, Wilkinson J, Young JD, Cass CE. Nucleoside transporter gene expression in wild-type and mENT1 knockout miceThis paper is one of a selection of papers published in a Special Issue entitled CSBMCB 53rd Annual Meeting — Membrane Proteins in Health and Disease, and has undergone the Journal’s usual peer review process. Biochem Cell Biol 2011; 89:236-45. [DOI: 10.1139/o10-152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Owing to the overlapping and redundant roles of the seven mammalian nucleoside transporters (NTs), which belong to two protein families (ENTs and CNTs), the physiological importance of individual NTs has been difficult to assess. Mice that have NT genes knocked out can be a valuable tool in gaining an understanding of the NT proteins. We have generated a strain of mice that is homozygous for a disruption mutation between exons 2 and 3 of the mouse equilibrative nucleoside transporter, mENT1. We have undertaken a quantitative survey of NT gene expression in 10 tissues, as well as microarray analysis of heart and kidney, from wild-type and mENT1 knockout mice. Rather than a consistent change in expression of NT genes in all tissues of mENT1 knockout mice, a complex pattern of changes was found. Some genes, such as those encoding mCNT1 and mCNT3 in colon tissue, exhibited increased expression, whereas other genes, such as those encoding mCNT2 and mENT4 in lung tissue, exhibited decreased expression. Although mCNT3 has been shown to be important in human and rat kidney tissue, we were unable to detect mCNT3 transcripts in the kidney of either the wild-type or mENT1 knockout mice, suggesting differences in renal nucleoside resorption between species.
Collapse
Affiliation(s)
- Kathryn Graham
- Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
- Department of Oncology, School of Cancer, Engineering & Imaging Sciences, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Physiology, School of Molecular & Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Sylvia Yao
- Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
- Department of Oncology, School of Cancer, Engineering & Imaging Sciences, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Physiology, School of Molecular & Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Lorelei Johnson
- Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
- Department of Oncology, School of Cancer, Engineering & Imaging Sciences, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Physiology, School of Molecular & Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Delores Mowles
- Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
- Department of Oncology, School of Cancer, Engineering & Imaging Sciences, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Physiology, School of Molecular & Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Amy Ng
- Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
- Department of Oncology, School of Cancer, Engineering & Imaging Sciences, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Physiology, School of Molecular & Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Jodi Wilkinson
- Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
- Department of Oncology, School of Cancer, Engineering & Imaging Sciences, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Physiology, School of Molecular & Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - James D. Young
- Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
- Department of Oncology, School of Cancer, Engineering & Imaging Sciences, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Physiology, School of Molecular & Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Carol E. Cass
- Cross Cancer Institute, 11560 University Avenue, Edmonton, AB T6G 1Z2, Canada
- Department of Oncology, School of Cancer, Engineering & Imaging Sciences, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Physiology, School of Molecular & Systems Medicine, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
58
|
Marvi M, Rose JB, Bang A, Moon BC, Pozeg Z, Ibrahim M, Peniston C, Coe IR. Nucleoside transporter expression profiles in human cardiac tissue show striking individual variability with overall predominance of hENT1. Eur J Pharm Sci 2010; 41:685-91. [PMID: 20883780 DOI: 10.1016/j.ejps.2010.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/17/2010] [Accepted: 09/21/2010] [Indexed: 11/25/2022]
Abstract
Nucleoside transporters (NTs) are integral membrane transport proteins that modulate the flux of nucleosides such as adenosine across cell membranes. Two families of NTs exist, the concentrative NTs (CNTs, SLC28) and the equilibrative NTs (ENTs, SLC29). CNTs and ENTs transport anti-cancer and anti-viral nucleoside analog drugs and ENTs are also targets of drugs used to treat cardiac pathologies. Levels of some NT profiles have been shown to relate to clinical outcomes in the use of nucleoside analog drugs. However, currently, patient NT profile is not assessed prior to pharmacological administration of analog drugs. Here we describe a reliable method to determine a complete individual NT expression profile from human tissue using quantitative real-time PCR. We developed this assay on tissue (right atrial appendage, left internal mammary, aorta) from individuals undergoing cardiac surgery and compared these findings to the NT expression profiles in pooled whole heart tissue (normal and diseased). Data show that hENT1 is the most abundantly expressed NT, with highest expression levels in the aorta. However, NT expression profiles are highly variable among individuals and changes in NT expression between normal and diseased tissues were observed. These data are the first to describe the RNA expression patterns of all seven NT isoforms in the human heart. The methodology described here may be useful for quantitatively characterizing complete NT expression profiles in any human target tissue.
Collapse
Affiliation(s)
- Melissa Marvi
- Department of Biology, Muscle Health Research Centre, York University, Toronto, ON, Canada
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Bone DBJ, Choi DS, Coe IR, Hammond JR. Nucleoside/nucleobase transport and metabolism by microvascular endothelial cells isolated from ENT1−/− mice. Am J Physiol Heart Circ Physiol 2010; 299:H847-56. [DOI: 10.1152/ajpheart.00018.2010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleoside and nucleobase uptake is integral to mammalian cell function, and its disruption has significant effects on the cardiovasculature. The predominant transporters in this regard are the equilibrative nucleoside transporter subtypes 1 (ENT1) and 2 (ENT2). To examine the role of ENT1 in more detail, we have assessed the mechanisms by which microvascular endothelial cells (MVECs) from ENT1−/− mice transport and metabolize nucleosides and nucleobases. Wild-type murine MVECs express mainly the ENT1 subtype with only trace levels of ENT2. These cells also have a Na+-independent equilibrative nucleobase transport mechanism for hypoxanthine (ENBT1). In the ENT1−/− cells, there is no change in ENT2 or ENBT1, resulting in a very low level of nucleoside uptake in these cells, but a high capacity for nucleobase accumulation. Whereas there were no significant changes in nucleoside transporter subtype expression, there was a dramatic increase in adenosine deaminase and adenosine A2a receptors (both transcript and protein) in the ENT1−/− tissues compared with WT. These changes in adenosine deaminase and A2a receptors likely reflect adaptive cellular mechanisms in response to reduced adenosine flux across the membranes of ENT1−/− cells. Our study also revealed that mouse MVECs have a nucleoside/nucleobase transport profile that is more similar to human MVECs than to rat MVECs. Thus mouse MVECs from transgenic animals may prove to be a useful preclinical model for studies of the effects of purine metabolite modifiers on vascular function.
Collapse
Affiliation(s)
- Derek B. J. Bone
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| | - Doo-Sup Choi
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota; and
| | - Imogen R. Coe
- Department of Biology, York University, Toronto, Canada
| | - James R. Hammond
- Department of Physiology and Pharmacology, University of Western Ontario, London, Canada
| |
Collapse
|