51
|
Garrott K, Dyavanapalli J, Cauley E, Dwyer MK, Kuzmiak-Glancy S, Wang X, Mendelowitz D, Kay MW. Chronic activation of hypothalamic oxytocin neurons improves cardiac function during left ventricular hypertrophy-induced heart failure. Cardiovasc Res 2018; 113:1318-1328. [PMID: 28472396 DOI: 10.1093/cvr/cvx084] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 04/28/2017] [Indexed: 01/07/2023] Open
Abstract
Aims A distinctive hallmark of heart failure (HF) is autonomic imbalance, consisting of increased sympathetic activity, and decreased parasympathetic tone. Recent work suggests that activation of hypothalamic oxytocin (OXT) neurons could improve autonomic balance during HF. We hypothesized that a novel method of chronic selective activation of hypothalamic OXT neurons will improve cardiac function and reduce inflammation and fibrosis in a rat model of HF. Methods and results Two groups of male Sprague-Dawley rats underwent trans-ascending aortic constriction (TAC) to induce left ventricular (LV) hypertrophy that progresses to HF. In one TAC group, OXT neurons in the paraventricular nucleus of the hypothalamus were chronically activated by selective expression and activation of excitatory DREADDs receptors with daily injections of clozapine N-oxide (CNO) (TAC + OXT). Two additional age-matched groups received either saline injections (Control) or CNO injections for excitatory DREADDs activation (OXT NORM). Heart rate (HR), LV developed pressure (LVDP), and coronary flow rate were measured in isolated heart experiments. Isoproterenol (0.01 nM-1.0 µM) was administered to evaluate β-adrenergic sensitivity. We found that increases in cellular hypertrophy and myocardial collagen density in TAC were blunted in TAC + OXT animals. Inflammatory cytokine IL-1β expression was more than twice higher in TAC than all other hearts. LVDP, rate pressure product (RPP), contractility, and relaxation were depressed in TAC compared with all other groups. The response of TAC and TAC + OXT hearts to isoproterenol was blunted, with no significant increase in RPP, contractility, or relaxation. However, HR in TAC + OXT animals increased to match Control at higher doses of isoproterenol. Conclusions Activation of hypothalamic OXT neurons to elevate parasympathetic tone reduced cellular hypertrophy, levels of IL-1β, and fibrosis during TAC-induced HF in rats. Cardiac contractility parameters were significantly higher in TAC + OXT compared with TAC animals. HR sensitivity, but not contractile sensitivity, to β-adrenergic stimulation was improved in TAC + OXT hearts.
Collapse
Affiliation(s)
- Kara Garrott
- Department of Biomedical Engineering, The George Washington University, GWU Science and Engineering Hall, 800?22nd Street NW, Suite 5000, Washington, DC 20052, USA
| | - Jhansi Dyavanapalli
- Department of Pharmacology and Physiology, The George Washington University, Ross Hall, 2300 Eye St. NW, Suite 640, Washington, DC 20037, USA
| | - Edmund Cauley
- Department of Pharmacology and Physiology, The George Washington University, Ross Hall, 2300 Eye St. NW, Suite 640, Washington, DC 20037, USA
| | - Mary Kate Dwyer
- Department of Biomedical Engineering, The George Washington University, GWU Science and Engineering Hall, 800?22nd Street NW, Suite 5000, Washington, DC 20052, USA
| | - Sarah Kuzmiak-Glancy
- Department of Biomedical Engineering, The George Washington University, GWU Science and Engineering Hall, 800?22nd Street NW, Suite 5000, Washington, DC 20052, USA
| | - Xin Wang
- Department of Pharmacology and Physiology, The George Washington University, Ross Hall, 2300 Eye St. NW, Suite 640, Washington, DC 20037, USA
| | - David Mendelowitz
- Department of Pharmacology and Physiology, The George Washington University, Ross Hall, 2300 Eye St. NW, Suite 640, Washington, DC 20037, USA
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, GWU Science and Engineering Hall, 800?22nd Street NW, Suite 5000, Washington, DC 20052, USA
| |
Collapse
|
52
|
Park S, Choi NK. Breastfeeding and Maternal Hypertension. Am J Hypertens 2018; 31:615-621. [PMID: 29390101 DOI: 10.1093/ajh/hpx219] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Little is known about the relationship between breastfeeding and hypertension. We performed this study to identify whether breastfeeding itself influenced maternal hypertension and whether degree of obesity or insulin sensitivity would contribute to the relationship between breastfeeding and hypertension in postmenopausal women. METHODS Our study population comprised 3,119 nonsmoking postmenopausal women aged 50 years or above in the 2010-2011 Korea National Health and Nutrition Examination Survey. We performed logistic regression analyses to examine the relationship between breastfeeding and hypertension and mediation analyses to examine the contributions of obesity and insulin sensitivity to the breastfeeding-hypertension relationship. RESULTS The odds ratios, with 95% confidence intervals, for hypertension among the highest quintile of number of breastfed children (5-11) and the highest quintile of duration of breastfeeding (96-324 months) were 0.49 (0.31-0.75) and 0.55 (0.37-0.82), respectively, compared to each of lowest quintile groups. The population attributable fractions of hypertension caused by breastfeeding 3 or fewer children and breastfeeding for 56 months or less were 10.2% (P < 0.001) and 6.5% (P = 0.017), respectively. In the mediation analysis, unexpectedly, increased insulin resistance significantly attenuated the protective effect on hypertension of having breastfed more children; additionally, greater obesity and insulin resistance significantly attenuated the protective effects on hypertension of having breastfed for longer. CONCLUSIONS More children breastfed and longer duration of breastfeeding were associated with lower risk of hypertension in postmenopausal women, and degree of obesity and insulin resistance moderated the breastfeeding-hypertension association.
Collapse
Affiliation(s)
- Sangshin Park
- Center for International Health Research, Rhode Island Hospital, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Department of Pediatrics, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Nam-Kyong Choi
- Department of Health Convergence, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
53
|
Faulk KE, Nedungadi TP, Cunningham JT. Angiotensin converting enzyme 1 in the median preoptic nucleus contributes to chronic intermittent hypoxia hypertension. Physiol Rep 2018; 5:e13277. [PMID: 28536140 PMCID: PMC5449561 DOI: 10.14814/phy2.13277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 04/13/2017] [Accepted: 04/17/2017] [Indexed: 02/07/2023] Open
Abstract
Obstructive sleep apnea is associated with hypertension and cardiovascular disease. Chronic intermittent hypoxia is used to model the arterial hypoxemia seen in sleep apnea patients and is associated with increased sympathetic nerve activity and a sustained diurnal increase in blood pressure. The renin angiotensin system has been associated with hypertension seen in chronic intermittent hypoxia. Angiotensin converting enzyme 1, which cleaves angiotensin I to the active counterpart angiotensin II, is present within the central nervous system and has been shown to be regulated by AP‐1 transcription factors, such as ΔFosB. Our previous study suggested that this transcriptional regulation in the median preoptic nucleus contributes to the sustained blood pressure seen following chronic intermittent hypoxia. Viral mediated delivery of a short hairpin RNA against angiotensin converting enzyme 1 in the median preoptic nucleus was used along with radio‐telemetry measurements of blood pressure to test this hypothesis. FosB immunohistochemistry was utilized in order to assess the effects of angiotensin converting enzyme 1 knockdown on the activity of nuclei downstream from median preoptic nucleus. Angiotensin converting enzyme 1 knockdown within median preoptic nucleus significantly attenuated the sustained hypertension seen in chronic intermittent hypoxia. Angiotensin converting enzyme 1 seems to be partly responsible for regulating downstream regions involved in sympathetic and blood pressure control, such as the paraventricular nucleus and the rostral ventrolateral medulla. The data suggest that angiotensin converting enzyme 1 within median preoptic nucleus plays a critical role in the sustained hypertension seen in chronic intermittent hypoxia.
Collapse
Affiliation(s)
- Katelynn E Faulk
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Centre at Fort Worth, Fort Worth, Texas
| | - T Prashant Nedungadi
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Centre at Fort Worth, Fort Worth, Texas
| | - J Thomas Cunningham
- Institute for Cardiovascular and Metabolic Diseases, University of North Texas Health Science Centre at Fort Worth, Fort Worth, Texas
| |
Collapse
|
54
|
Jain V, Marbach J, Kimbro S, Andrade DC, Jain A, Capozzi E, Mele K, Del Rio R, Kay MW, Mendelowitz D. Benefits of oxytocin administration in obstructive sleep apnea. Am J Physiol Lung Cell Mol Physiol 2017; 313:L825-L833. [PMID: 28798255 DOI: 10.1152/ajplung.00206.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 11/22/2022] Open
Abstract
Activation of oxytocin receptors has shown benefits in animal models of obstructive sleep apnea (OSA). We tested if nocturnal oxytocin administration could have beneficial effects in OSA patients. Eight patients diagnosed with OSA were administered intranasal oxytocin (40 IU). Changes in cardiorespiratory events during sleep, including apnea and hypopnea durations and frequency, risk of event-associated arousals, and heart rate variability, were assessed. Oxytocin significantly increased indexes of parasympathetic activity, including heart rate variability, total sleep time, and the postpolysommogram sleep assessment score, an index of self-reported sleep satisfaction. Although the apnea-hypopnea index was not significantly changed with oxytocin administration, when apnea and hypopnea events were compared independently, the frequency of hypopneas, but not apneas, was significantly (P ≤ 0.005) decreased with oxytocin treatment. Both apneas and hypopneas were significantly shortened in duration with oxytocin treatment. Oxytocin treatment significantly decreased the percent of apnea and hypopnea events that were accompanied with an arousal. Oxytocin administration has the potential to restore cardiorespiratory homeostasis and reduce some clinically important (objective and patient-reported) adverse events that occur with OSA. Additional studies are needed to further understand the mechanisms by which oxytocin promotes these changes in cardiorespiratory and autonomic function in OSA patients.
Collapse
Affiliation(s)
- Vivek Jain
- Department of Medicine, The George Washington University, Washington, District of Columbia
| | - Joseph Marbach
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - Shawn Kimbro
- Department of Medicine, The George Washington University, Washington, District of Columbia
| | - David C Andrade
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile; and
| | - Arad Jain
- Department of Medicine, The George Washington University, Washington, District of Columbia
| | - Eleanor Capozzi
- Department of Medicine, The George Washington University, Washington, District of Columbia
| | - Kyle Mele
- Department of Medicine, The George Washington University, Washington, District of Columbia
| | - Rodrigo Del Rio
- Laboratory of Cardiorespiratory Control, Department of Physiology, Pontificia Universidad Católica de Chile, Santiago, Chile; and
| | - Matthew W Kay
- Department of Biomedical Engineering, The George Washington University, Washington, District of Columbia
| | - David Mendelowitz
- Department of Pharmacology and Physiology, The George Washington University, Washington, District of Columbia
| |
Collapse
|
55
|
Quintana DS, Dieset I, Elvsåshagen T, Westlye LT, Andreassen OA. Oxytocin system dysfunction as a common mechanism underlying metabolic syndrome and psychiatric symptoms in schizophrenia and bipolar disorders. Front Neuroendocrinol 2017; 45:1-10. [PMID: 28049009 DOI: 10.1016/j.yfrne.2016.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/14/2016] [Accepted: 12/29/2016] [Indexed: 12/24/2022]
Abstract
There is growing interest in using intranasal oxytocin (OT) to treat social dysfunction in schizophrenia and bipolar disorders (i.e., psychotic disorders). While OT treatment results have been mixed, emerging evidence suggests that OT system dysfunction may also play a role in the etiology of metabolic syndrome (MetS), which appears in one-third of individuals with psychotic disorders and associated with increased mortality. Here we examine the evidence for a potential role of the OT system in the shared risk for MetS and psychotic disorders, and its prospects for ameliorating MetS. Using several studies to demonstrate the overlapping neurobiological profiles of metabolic risk factors and psychiatric symptoms, we show that OT system dysfunction may be one common mechanism underlying MetS and psychotic disorders. Given the critical need to better understand metabolic dysregulation in these disorders, future OT trials assessing behavioural and cognitive outcomes should additionally include metabolic risk factor parameters.
Collapse
Affiliation(s)
- Daniel S Quintana
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, Oslo, Norway.
| | - Ingrid Dieset
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Torbjørn Elvsåshagen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
56
|
Xie S, Deng Y, Pan YY, Ren J, Jin M, Wang Y, Wang ZH, Zhu D, Guo XL, Yuan X, Shang J, Liu HG. Chronic intermittent hypoxia induces cardiac hypertrophy by impairing autophagy through the adenosine 5'-monophosphate-activated protein kinase pathway. Arch Biochem Biophys 2016; 606:41-52. [PMID: 27412517 DOI: 10.1016/j.abb.2016.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 07/05/2016] [Accepted: 07/08/2016] [Indexed: 12/19/2022]
Abstract
Autophagy is tightly regulated to maintain cardiac homeostasis. Impaired autophagy is closely associated with pathological cardiac hypertrophy. However, the relationship between autophagy and cardiac hypertrophy induced by chronic intermittent hypoxia (CIH) is not known. In the present study, we measured autophagy-related genes and autophagosomes during 10 weeks of CIH in rats, and 6 days in H9C2 cardiomyocytes, and showed that autophagy was impaired. This conclusion was confirmed by the autophagy flux assay. We detected significant hypertrophic changes in myocardium with impaired autophagy. Rapamycin, an autophagy enhancer, attenuated the cardiac hypertrophy induced by CIH. Moreover, silencing autophagy-related gene 5 (ATG5) exerted the opposite effect. The role of adenosine monophosphate-activated protein kinase (AMPK) in regulating autophagy under CIH was confirmed using AICAR to upregulate this enzyme and restore autophagy flux. Restoring autophagy by AICAR or rapamycin significantly reversed the hypertrophic changes in cardiomyocytes. To investigate the mechanism of autophagy impairment, we compared phospho (p)-AMPK, p-Akt, cathepsin D, and NFAT3 levels, along with calcineurin activity, between sham and CIH groups. CIH activated calcineurin, and inhibited AMPK and AMPK-mediated autophagy in an Akt- and NFAT3-independent manner. Collectively, these data demonstrated that impaired autophagy induced by CIH through the AMPK pathway contributed to cardiac hypertrophy.
Collapse
Affiliation(s)
- Sheng Xie
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, China
| | - Yan Deng
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, China
| | - Yue-Ying Pan
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, China
| | - Jie Ren
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, China
| | - Meng Jin
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, China
| | - Yu Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, China
| | - Zhi-Hua Wang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, China
| | - Die Zhu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, China
| | - Xue-Ling Guo
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, China
| | - Xiao Yuan
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, China
| | - Jin Shang
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, China
| | - Hui-Guo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Huazhong University of Science and Technology, China.
| |
Collapse
|