51
|
Saito A, Horie M, Micke P, Nagase T. The Role of TGF-β Signaling in Lung Cancer Associated with Idiopathic Pulmonary Fibrosis. Int J Mol Sci 2018; 19:ijms19113611. [PMID: 30445777 PMCID: PMC6275044 DOI: 10.3390/ijms19113611] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive fibrotic lung disease of unknown etiology and dismal prognosis. IPF patients are known to have an increased risk of lung cancer and careful decision-making is required for the treatment of lung cancer associated with IPF. Transforming growth factor (TGF)-β signaling plays a central role in tissue fibrosis and tumorigenesis. TGF-β-mediated pathological changes that occur in IPF lung tissue may promote the process of field cancerization and provide the microenvironment favorable to cancer initiation and progression. This review summarizes the current knowledge related to IPF pathogenesis and explores the molecular mechanisms that underlie the occurrence of lung cancer in the background of IPF, with an emphasis on the multifaceted effects of TGF-β signaling.
Collapse
Affiliation(s)
- Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Division for Health Service Promotion, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Masafumi Horie
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Hastings Center for Pulmonary Research, Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-75185 Uppsala, Sweden.
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
52
|
Györfi AH, Matei AE, Distler JH. Targeting TGF-β signaling for the treatment of fibrosis. Matrix Biol 2018; 68-69:8-27. [DOI: 10.1016/j.matbio.2017.12.016] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 01/02/2023]
|
53
|
Liu L, Zhai C, Pan Y, Zhu Y, Shi W, Wang J, Yan X, Su X, Song Y, Gao L, Li M. Sphingosine-1-phosphate induces airway smooth muscle cell proliferation, migration, and contraction by modulating Hippo signaling effector YAP. Am J Physiol Lung Cell Mol Physiol 2018; 315:L609-L621. [PMID: 29999407 DOI: 10.1152/ajplung.00554.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sphingosine-1-phosphate (S1P), a bioactive lipid, has been shown to be elevated in the airways of individuals with asthma and modulates the airway smooth muscle cell (ASMC) functions, yet its underlying molecular mechanisms are not completely understood. The aim of the present study is to address this issue. S1P induced yes-associated protein (YAP) dephosphorylation and nuclear localization via the S1PR2/3/Rho-associated protein kinase (ROCK) pathway, and this in turn increased forkhead box M1 (FOXM1) and cyclin D1 expression leading to ASMC proliferation, migration, and contraction. Pretreatment of cells with S1PR2 antagonist JTE013, S1PR3 antagonist CAY10444, or ROCK inhibitor Y27632 blocked S1P-induced alterations of YAP, FOXM1, cyclin D1, and ASMC proliferation, migration, and contraction. In addition, prior silencing of YAP or FOXM1 with siRNA reversed the effect of S1P on ASMC functions. Taken together, our study indicates that S1P stimulates ASMC proliferation, migration, and contraction by binding to S1PR2/3 and modulating ROCK/YAP/FOXM1 axis and suggests that targeting this pathway might have potential value in the management of asthma.
Collapse
Affiliation(s)
- Lu Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Cui Zhai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Yilin Pan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Yanting Zhu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Wenhua Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Xin Yan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Xiaofan Su
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Yang Song
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| | - Li Gao
- Division of Allergy and Clinical Immunology, Department of Medicine, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi , People's Republic of China
| |
Collapse
|
54
|
Guenat OT, Berthiaume F. Incorporating mechanical strain in organs-on-a-chip: Lung and skin. BIOMICROFLUIDICS 2018; 12:042207. [PMID: 29861818 PMCID: PMC5962443 DOI: 10.1063/1.5024895] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/17/2018] [Indexed: 05/08/2023]
Abstract
In the last decade, the advent of microfabrication and microfluidics and an increased interest in cellular mechanobiology have triggered the development of novel microfluidic-based platforms. They aim to incorporate the mechanical strain environment that acts upon tissues and in-vivo barriers of the human body. This article reviews those platforms, highlighting the different strains applied, and the actuation mechanisms and provides representative applications. A focus is placed on the skin and the lung barriers as examples, with a section that discusses the signaling pathways involved in the epithelium and the connective tissues.
Collapse
Affiliation(s)
| | - François Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, 08854, USA
| |
Collapse
|
55
|
Moghieb A, Clair G, Mitchell HD, Kitzmiller J, Zink EM, Kim YM, Petyuk V, Shukla A, Moore RJ, Metz TO, Carson J, McDermott JE, Corley RA, Whitsett JA, Ansong C. Time-resolved proteome profiling of normal lung development. Am J Physiol Lung Cell Mol Physiol 2018; 315:L11-L24. [PMID: 29516783 PMCID: PMC6087896 DOI: 10.1152/ajplung.00316.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/31/2018] [Accepted: 03/01/2018] [Indexed: 12/20/2022] Open
Abstract
Biochemical networks mediating normal lung morphogenesis and function have important implications for ameliorating morbidity and mortality in premature infants. Although several transcript-level studies have examined normal lung development, corresponding protein-level analyses are lacking. Here we performed proteomics analysis of murine lungs from embryonic to early adult ages to identify the molecular networks mediating normal lung development. We identified 8,932 proteins, providing a deep and comprehensive view of the lung proteome. Analysis of the proteomics data revealed discrete modules and the underlying regulatory and signaling network modulating their expression during development. Our data support the cell proliferation that characterizes early lung development and highlight responses of the lung to exposure to a nonsterile oxygen-rich ambient environment and the important role of lipid (surfactant) metabolism in lung development. Comparison of dynamic regulation of proteomic and recent transcriptomic analyses identified biological processes under posttranscriptional control. Our study provides a unique proteomic resource for understanding normal lung formation and function and can be freely accessed at Lungmap.net.
Collapse
Affiliation(s)
- Ahmed Moghieb
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Geremy Clair
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Hugh D Mitchell
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Joseph Kitzmiller
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Erika M Zink
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Young-Mo Kim
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Vladislav Petyuk
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Anil Shukla
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Ronald J Moore
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Thomas O Metz
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - James Carson
- Texas Advanced Computing Center, University of Texas at Austin , Austin, Texas
| | - Jason E McDermott
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Richard A Corley
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| | - Jeffrey A Whitsett
- Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center , Cincinnati, Ohio
| | - Charles Ansong
- Biological Science Division, Pacific Northwest National Laboratory , Richland, Washington
| |
Collapse
|
56
|
Warren JSA, Xiao Y, Lamar JM. YAP/TAZ Activation as a Target for Treating Metastatic Cancer. Cancers (Basel) 2018; 10:cancers10040115. [PMID: 29642615 PMCID: PMC5923370 DOI: 10.3390/cancers10040115] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Yes-Associated Protein (YAP) and Transcriptional Co-activator with PDZ-binding Motif (TAZ) have both emerged as important drivers of cancer progression and metastasis. YAP and TAZ are often upregulated or nuclear localized in aggressive human cancers. There is abundant experimental evidence demonstrating that YAP or TAZ activation promotes cancer formation, tumor progression, and metastasis. In this review we summarize the evidence linking YAP/TAZ activation to metastasis, and discuss the roles of YAP and TAZ during each step of the metastatic cascade. Collectively, this evidence strongly suggests that inappropriate YAP or TAZ activity plays a causal role in cancer, and that targeting aberrant YAP/TAZ activation is a promising strategy for the treatment of metastatic disease. To this end, we also discuss several potential strategies for inhibiting YAP/TAZ activation in cancer and the challenges each strategy poses.
Collapse
Affiliation(s)
- Janine S A Warren
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| | - Yuxuan Xiao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| | - John M Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12208, USA.
| |
Collapse
|
57
|
Neddylation mediates ventricular chamber maturation through repression of Hippo signaling. Proc Natl Acad Sci U S A 2018; 115:E4101-E4110. [PMID: 29632206 DOI: 10.1073/pnas.1719309115] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
During development, ventricular chamber maturation is a crucial step in the formation of a functionally competent postnatal heart. Defects in this process can lead to left ventricular noncompaction cardiomyopathy and heart failure. However, molecular mechanisms underlying ventricular chamber development remain incompletely understood. Neddylation is a posttranslational modification that attaches ubiquitin-like protein NEDD8 to protein targets via NEDD8-specific E1-E2-E3 enzymes. Here, we report that neddylation is temporally regulated in the heart and plays a key role in cardiac development. Cardiomyocyte-specific knockout of NAE1, a subunit of the E1 neddylation activating enzyme, significantly decreased neddylated proteins in the heart. Mice lacking NAE1 developed myocardial hypoplasia, ventricular noncompaction, and heart failure at late gestation, which led to perinatal lethality. NAE1 deletion resulted in dysregulation of cell cycle-regulatory genes and blockade of cardiomyocyte proliferation in vivo and in vitro, which was accompanied by the accumulation of the Hippo kinases Mst1 and LATS1/2 and the inactivation of the YAP pathway. Furthermore, reactivation of YAP signaling in NAE1-inactivated cardiomyocytes restored cell proliferation, and YAP-deficient hearts displayed a noncompaction phenotype, supporting an important role of Hippo-YAP signaling in NAE1-depleted hearts. Mechanistically, we found that neddylation regulates Mst1 and LATS2 degradation and that Cullin 7, a NEDD8 substrate, acts as the ubiquitin ligase of Mst1 to enable YAP signaling and cardiomyocyte proliferation. Together, these findings demonstrate a role for neddylation in heart development and, more specifically, in the maturation of ventricular chambers and also identify the NEDD8 substrate Cullin 7 as a regulator of Hippo-YAP signaling.
Collapse
|
58
|
Zhang X, Fan Q, Li Y, Yang Z, Yang L, Zong Z, Wang B, Meng X, Li Q, Liu J, Li H. Transforming growth factor-beta1 suppresses hepatocellular carcinoma proliferation via activation of Hippo signaling. Oncotarget 2018; 8:29785-29794. [PMID: 28076850 PMCID: PMC5444703 DOI: 10.18632/oncotarget.14523] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/27/2016] [Indexed: 01/11/2023] Open
Abstract
In this study, we examined the expression of core proteins of the Hippo signaling pathway in hepatocellular carcinoma (HCC) cells treated with transforming growth factor-β 1(TGF-β1) and investigated the relationship between TGF-β1 and the Hippo signaling pathway, in order to better understand their roles in HCC and their potential implications for cancer therapy. We prove that the Hippo signaling pathway is involved in the TGF-β1-induced inhibition of the growth of HCC cells. Large tumor suppressor expression (LATS1) was overexpression and yes association protein 1(YAP1) translocated from the nucleus to the cytoplasm in HCC cells treated with TGF-β1. Overexpression of LATS1 and the nucleocytoplasmic translocation of YAP1 play an anti-oncogenetic role in the occurrence and development of liver cancer. Our findings provide new insight into strategies for liver cancer therapy.
Collapse
Affiliation(s)
- Xiaodong Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Qing Fan
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, P. R. China.,Department of Oncology, Tumour Angiogenesis and Microenvironment Laboratory (TAML), The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, P. R. China
| | - Zhaoguo Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Zhihong Zong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences of China Medical University, Shenyang, P. R. China
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences of China Medical University, Shenyang, P. R. China
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences of China Medical University, Shenyang, P. R. China
| | - Qin Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Jingang Liu
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, P. R. China
| |
Collapse
|
59
|
Abstract
PURPOSE OF REVIEW The pathogenesis of lung cancer and pulmonary fibrotic disorders partially overlaps. This review focuses on the common features of the two disease categories, aimed at advancing our translational understanding of their pathobiology and at fostering the development of new therapies. RECENT FINDINGS Both malignant and collagen-producing lung cells display enhanced cellular proliferation, increased resistance to apoptosis, a propensity for invading and distorting the lung parenchyma, as well as stemness potential. These characteristics are reinforced by the tissue microenvironment and inflammation seems to play an important adjuvant role in both types of disorders. SUMMARY Unraveling the thread of the common and distinct characteristics of lung fibrosis and cancer might contribute to a more comprehensive approach of the pathobiology of both diseases and to a pathfinder for novel and personalized therapeutic strategies.
Collapse
|
60
|
Safer approaches to therapeutic modulation of TGF-β signaling for respiratory disease. Pharmacol Ther 2018; 187:98-113. [PMID: 29462659 DOI: 10.1016/j.pharmthera.2018.02.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The transforming growth factor (TGF)-β cytokines play a central role in development and progression of chronic respiratory diseases. TGF-β overexpression in chronic inflammation, remodeling, fibrotic process and susceptibility to viral infection is established in the most prevalent chronic respiratory diseases including asthma, COPD, lung cancer and idiopathic pulmonary fibrosis. Despite the overwhelming burden of respiratory diseases in the world, new pharmacological therapies have been limited in impact. Although TGF-β inhibition as a therapeutic strategy carries great expectations, the constraints in avoiding compromising the beneficial pleiotropic effects of TGF-β, including the anti-proliferative and immune suppressive effects, have limited the development of effective pharmacological modulators. In this review, we focus on the pathways subserving deleterious and beneficial TGF-β effects to identify strategies for selective modulation of more distal signaling pathways that may result in agents with improved safety/efficacy profiles. Adverse effects of TGF-β inhibitors in respiratory clinical trials are comprehensively reviewed, including those of the marketed TGF-β modulators, pirfenidone and nintedanib. Precise modulation of TGF-β signaling may result in new safer therapies for chronic respiratory diseases.
Collapse
|
61
|
Zhang Y, Hu Y, Fang JY, Xu J. Gain-of-function miRNA signature by mutant p53 associates with poor cancer outcome. Oncotarget 2017; 7:11056-66. [PMID: 26840456 PMCID: PMC4905457 DOI: 10.18632/oncotarget.7090] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/15/2016] [Indexed: 01/05/2023] Open
Abstract
Missense mutation of p53 not only impairs its tumor suppression function, but also causes oncogenic gain of function (GOF). The molecular underpinning of mutant p53 (mutp53) GOF is not fully understood, especially for the potential roles of non-coding genes. Here we identify the microRNA expression profile (microRNAome) of mutp53 on Arg282 by controlled microarray experiments, and clarify the prognostic significance of mutp53-regulated miRNAs in cancers. A predominant repression effect on miRNA expression was found for mutant p53, with 183 significantly downregulated and only 12 upregulated miRNAs. Mutp53 and wild-type (wtp53) commonly upregulate let-7i, and other two miRNAs were upregulated by wtp53 but repressed by mutp53 (miR-610 and miR-3065–3p). Based the mutp53-regulated miRNA signature, a non-negative matrix factorization (NMF) model classified gastric cancer (GC) cases into subgroups with significantly different Disease-free survival (Kaplan-Meier test, P = 0.013). In contrast, the NMF model based on all miRNAs did not associate with cancer outcome. The mutp53 miRNA signature associated with the outcomes of breast cancer (P = 0.024) and hepatocellular cancer (P = 0.012). The miRPath analysis revealed that mutp53-suppressed miRNAs associate with Hippo, TGF-β and stem cell signaling pathways. Taken together, our results highlight a miRNA-mediated GOF mechanism of mutant p53 on Arg282, and suggest the prognostic potential of mutp53-associated miRNA signature.
Collapse
Affiliation(s)
- Yao Zhang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| | - Ye Hu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China.,Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jing-Yuan Fang
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| | - Jie Xu
- State Key Laboratory for Oncogenes and Related Genes, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| |
Collapse
|
62
|
Surate Solaligue DE, Rodríguez-Castillo JA, Ahlbrecht K, Morty RE. Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2017; 313:L1101-L1153. [PMID: 28971976 DOI: 10.1152/ajplung.00343.2017] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/23/2017] [Indexed: 02/08/2023] Open
Abstract
The objective of lung development is to generate an organ of gas exchange that provides both a thin gas diffusion barrier and a large gas diffusion surface area, which concomitantly generates a steep gas diffusion concentration gradient. As such, the lung is perfectly structured to undertake the function of gas exchange: a large number of small alveoli provide extensive surface area within the limited volume of the lung, and a delicate alveolo-capillary barrier brings circulating blood into close proximity to the inspired air. Efficient movement of inspired air and circulating blood through the conducting airways and conducting vessels, respectively, generates steep oxygen and carbon dioxide concentration gradients across the alveolo-capillary barrier, providing ideal conditions for effective diffusion of both gases during breathing. The development of the gas exchange apparatus of the lung occurs during the second phase of lung development-namely, late lung development-which includes the canalicular, saccular, and alveolar stages of lung development. It is during these stages of lung development that preterm-born infants are delivered, when the lung is not yet competent for effective gas exchange. These infants may develop bronchopulmonary dysplasia (BPD), a syndrome complicated by disturbances to the development of the alveoli and the pulmonary vasculature. It is the objective of this review to update the reader about recent developments that further our understanding of the mechanisms of lung alveolarization and vascularization and the pathogenesis of BPD and other neonatal lung diseases that feature lung hypoplasia.
Collapse
Affiliation(s)
- David E Surate Solaligue
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - José Alberto Rodríguez-Castillo
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Katrin Ahlbrecht
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and.,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| | - Rory E Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and .,Department of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Center, German Center for Lung Research, Giessen, Germany
| |
Collapse
|
63
|
Ready D, Yagiz K, Amin P, Yildiz Y, Funari V, Bozdag S, Cinar B. Mapping the STK4/Hippo signaling network in prostate cancer cell. PLoS One 2017; 12:e0184590. [PMID: 28880957 PMCID: PMC5589252 DOI: 10.1371/journal.pone.0184590] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/26/2017] [Indexed: 01/18/2023] Open
Abstract
Dysregulation of MST1/STK4, a key kinase component of the Hippo-YAP pathway, is linked to the etiology of many cancers with poor prognosis. However, how STK4 restricts the emergence of aggressive cancer remains elusive. Here, we investigated the effects of STK4, primarily localized in the cytoplasm, lipid raft, and nucleus, on cell growth and gene expression in aggressive prostate cancer. We demonstrated that lipid raft and nuclear STK4 had superior suppressive effects on cell growth in vitro and in vivo compared with cytoplasmic STK4. Using RNA sequencing and bioinformatics analysis, we identified several differentially expressed (DE) genes that responded to ectopic STK4 in all three subcellular compartments. We noted that the number of DE genes observed in lipid raft and nuclear STK4 cells were much greater than cytoplasmic STK4. Our functional annotation clustering showed that these DE genes were commonly associated with oncogenic pathways such as AR, PI3K/AKT, BMP/SMAD, GPCR, WNT, and RAS as well as unique pathways such as JAK/STAT, which emerged only in nuclear STK4 cells. These findings indicate that MST1/STK4/Hippo signaling restricts aggressive tumor cell growth by intersecting with multiple molecular pathways, suggesting that targeting of the STK4/Hippo pathway may have important therapeutic implications for cancer.
Collapse
Affiliation(s)
- Damien Ready
- Department of Mathematics, Statistics, and Computer Science, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Kader Yagiz
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Pooneh Amin
- Department of Biological Sciences, the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia, United States of America
| | - Yuksel Yildiz
- Department of Physiology, Adnan Menderes University, Aydin, Turkey
| | - Vincent Funari
- Department of Medicine and Division of Genetics, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Serdar Bozdag
- Department of Mathematics, Statistics, and Computer Science, Marquette University, Milwaukee, Wisconsin, United States of America
| | - Bekir Cinar
- Department of Biological Sciences, the Center for Cancer Research and Therapeutic Development, Clark Atlanta University, Atlanta, Georgia, United States of America
| |
Collapse
|
64
|
The Hippo pathway in hepatocellular carcinoma: Non-coding RNAs in action. Cancer Lett 2017; 400:175-182. [DOI: 10.1016/j.canlet.2017.04.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/08/2017] [Accepted: 04/22/2017] [Indexed: 01/18/2023]
|
65
|
Miranda MZ, Bialik JF, Speight P, Dan Q, Yeung T, Szászi K, Pedersen SF, Kapus A. TGF-β1 regulates the expression and transcriptional activity of TAZ protein via a Smad3-independent, myocardin-related transcription factor-mediated mechanism. J Biol Chem 2017; 292:14902-14920. [PMID: 28739802 DOI: 10.1074/jbc.m117.780502] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 06/30/2017] [Indexed: 12/20/2022] Open
Abstract
Hippo pathway transcriptional coactivators TAZ and YAP and the TGF-β1 (TGFβ) effector Smad3 regulate a common set of genes, can physically interact, and exhibit multilevel cross-talk regulating cell fate-determining and fibrogenic pathways. However, a key aspect of this cross-talk, TGFβ-mediated regulation of TAZ or YAP expression, remains uncharacterized. Here, we show that TGFβ induces robust TAZ but not YAP protein expression in both mesenchymal and epithelial cells. TAZ levels, and to a lesser extent YAP levels, also increased during experimental kidney fibrosis. Pharmacological or genetic inhibition of Smad3 did not prevent the TGFβ-induced TAZ up-regulation, indicating that this canonical pathway is dispensable. In contrast, inhibition of p38 MAPK, its downstream effector MK2 (e.g. by the clinically approved antifibrotic pirferidone), or Akt suppressed the TGFβ-induced TAZ expression. Moreover, TGFβ elevated TAZ mRNA in a p38-dependent manner. Myocardin-related transcription factor (MRTF) was a central mediator of this effect, as MRTF silencing/inhibition abolished the TGFβ-induced TAZ expression. MRTF overexpression drove the TAZ promoter in a CC(A/T-rich)6GG (CArG) box-dependent manner and induced TAZ protein expression. TGFβ did not act by promoting nuclear MRTF translocation; instead, it triggered p38- and MK2-mediated, Nox4-promoted MRTF phosphorylation and activation. Functionally, higher TAZ levels increased TAZ/TEAD-dependent transcription and primed cells for enhanced TAZ activity upon a second stimulus (i.e. sphingosine 1-phosphate) that induced nuclear TAZ translocation. In conclusion, our results uncover an important aspect of the cross-talk between TGFβ and Hippo signaling, showing that TGFβ induces TAZ via a Smad3-independent, p38- and MRTF-mediated and yet MRTF translocation-independent mechanism.
Collapse
Affiliation(s)
- Maria Zena Miranda
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital.,Biochemistry, University of Toronto, Toronto, Ontario M5B 1T8N, Canada and
| | - Janne Folke Bialik
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital.,the Department of Cell and Developmental Biology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Pam Speight
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital
| | - Qinghong Dan
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital
| | - Tony Yeung
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital
| | - Katalin Szászi
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital.,Departments of Surgery and
| | - Stine F Pedersen
- the Department of Cell and Developmental Biology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - András Kapus
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, .,Biochemistry, University of Toronto, Toronto, Ontario M5B 1T8N, Canada and.,Departments of Surgery and
| |
Collapse
|
66
|
Lee BS, Park DI, Lee DH, Lee JE, Yeo MK, Park YH, Lim DS, Choi W, Lee DH, Yoo G, Kim HB, Kang D, Moon JY, Jung SS, Kim JO, Cho SY, Park HS, Chung C. Hippo effector YAP directly regulates the expression of PD-L1 transcripts in EGFR-TKI-resistant lung adenocarcinoma. Biochem Biophys Res Commun 2017; 491:493-499. [PMID: 28684311 DOI: 10.1016/j.bbrc.2017.07.007] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 07/02/2017] [Indexed: 01/01/2023]
Abstract
Developments of EGFR-TKI and immunotherapy targeting the PD1/PD-L1 pathway are considered most important medical breakthroughs in lung cancer treatment. Nowadays, 3rd generation EGFR TKI is widely used for T790M positive 1st and 2nd EGFR-TKI resistant lung cancer patients. Immunotherapy is powerful option for lung cancer patients without drug targets and chemotherapy resistant patients. It also has changed the concept of conventional anti-cancer therapy in the point of regulating tumor microenvironment. There are many studies linking these two important pathways. Recent studies demonstrated that PD-L1 expression is significantly correlated to the mutation status of EGFR, and activation of EGFR signaling can also induce the expression of PD-L1. However, the real linker between PD-L1 and EGFR signaling remains to be revealed. Our previous study revealed that the Hippo pathway effector YAP confers EGFR-TKI resistance in lung adenocarcinoma, and inhibition of YAP restores sensitivity to EGFR-TKIs. Thus, we examined whether PD-L1 is relevant, in terms of conferring EGFR-TKI resistance and whether YAP directly regulates the expression of PD-L1 in this context. First, we compared the expression levels of PD-L1 and YAP between EGFR-TKI-resistant PC9 cells and the parental PC9 adenocarcinoma cells. The expression levels of both YAP and PD-L1 were markedly higher in the EGFR-TKI-resistant cells compared to the parental cells, suggesting differential expression pattern between two cell types. YAP knockdown significantly decreased the expression of PD-L1 in the EGFR-TKI-resistant cells, while YAP overexpression increased the expression of PD-L1 in the parental PC9 cells. Then, our results revealed that YAP regulates the transcription of PD-L1, and the YAP/TEAD complex binds to the PD-L1 promoter. Surprisingly, knockdown of PD-L1 was sufficient to decrease cell proliferation and wound healing in the EGFR-TKI-resistant PC9 cells. These data suggest a PD1-independent oncogenic function of PD-L1. The Hippo effector YAP plays a crucial role in linking the PD-L1 and EGFR-TKI resistance by directly regulating the expression of PD-L1 in lung cancer. Targeting PD-L1 directly or via YAP could provide an effective therapeutic strategy for EGFR-TKI-resistant lung adenocarcinoma.
Collapse
Affiliation(s)
- Byung Soo Lee
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Dong Il Park
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Da Hye Lee
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Jeong Eun Lee
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Min-Kyung Yeo
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Yeon Hee Park
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Dae Sik Lim
- National Creative Research Center for Cell Division and Differentiation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Wonyoung Choi
- National Creative Research Center for Cell Division and Differentiation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Da Hye Lee
- National Creative Research Center for Cell Division and Differentiation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Geon Yoo
- National Creative Research Center for Cell Division and Differentiation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Han-Byul Kim
- National Creative Research Center for Cell Division and Differentiation, Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dahyun Kang
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Jae Young Moon
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Sung Soo Jung
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Ju Ock Kim
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea
| | - Sang Yeon Cho
- Chungnam National University School of Medicine, Daejeon, South Korea.
| | - Hee Sun Park
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea.
| | - Chaeuk Chung
- Division of Pulmonology, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, South Korea.
| |
Collapse
|
67
|
Hamon A, Masson C, Bitard J, Gieser L, Roger JE, Perron M. Retinal Degeneration Triggers the Activation of YAP/TEAD in Reactive Müller Cells. Invest Ophthalmol Vis Sci 2017; 58:1941-1953. [PMID: 28384715 PMCID: PMC6024660 DOI: 10.1167/iovs.16-21366] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Purpose During retinal degeneration, Müller glia cells respond to photoreceptor loss by undergoing reactive gliosis, with both detrimental and beneficial effects. Increasing our knowledge of the complex molecular response of Müller cells to retinal degeneration is thus essential for the development of new therapeutic strategies. The purpose of this work was to identify new factors involved in Müller cell response to photoreceptor cell death. Methods Whole transcriptome sequencing was performed from wild-type and degenerating rd10 mouse retinas at P30. The changes in mRNA abundance for several differentially expressed genes were assessed by quantitative RT-PCR (RT-qPCR). Protein expression level and retinal cellular localization were determined by western blot and immunohistochemistry, respectively. Results Pathway-level analysis from whole transcriptomic data revealed the Hippo/YAP pathway as one of the main signaling pathways altered in response to photoreceptor degeneration in rd10 retinas. We found that downstream effectors of this pathway, YAP and TEAD1, are specifically expressed in Müller cells and that their expression, at both the mRNA and protein levels, is increased in rd10 reactive Müller glia after the onset of photoreceptor degeneration. The expression of Ctgf and Cyr61, two target genes of the transcriptional YAP/TEAD complex, is also upregulated following photoreceptor loss. Conclusions This work reveals for the first time that YAP and TEAD1, key downstream effectors of the Hippo pathway, are specifically expressed in Müller cells. We also uncovered a deregulation of the expression and activity of Hippo/YAP pathway components in reactive Müller cells under pathologic conditions.
Collapse
Affiliation(s)
- Annaïg Hamon
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris-Sud, Université Paris-Saclay, Orsay, France 2Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| | - Christel Masson
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris-Sud, Université Paris-Saclay, Orsay, France 2Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| | - Juliette Bitard
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris-Sud, Université Paris-Saclay, Orsay, France 2Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| | - Linn Gieser
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jérôme E Roger
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris-Sud, Université Paris-Saclay, Orsay, France 2Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CNRS, Univ Paris-Sud, Université Paris-Saclay, Orsay, France 2Centre d'Etude et de Recherche Thérapeutique en Ophtalmologie, Retina France, Orsay, France
| |
Collapse
|
68
|
Gnimassou O, Francaux M, Deldicque L. Hippo Pathway and Skeletal Muscle Mass Regulation in Mammals: A Controversial Relationship. Front Physiol 2017; 8:190. [PMID: 28424630 PMCID: PMC5372825 DOI: 10.3389/fphys.2017.00190] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 03/14/2017] [Indexed: 01/01/2023] Open
Abstract
Skeletal muscle mass reflects a dynamic turnover between net protein synthesis and degradation. In addition, satellite cell inclusion may contribute to increase muscle mass while fiber loss results in a reduction of muscle mass. Since 2010, a few studies looked at the involvement of the newly discovered Hippo pathway in the regulation of muscle mass. In line with its roles in other organs, it has been hypothesized that the Hippo pathway could play a role in different regulatory mechanisms in skeletal muscle as well, namely proliferation and renewal of satellite cells, differentiation, death, and growth of myogenic cells. While the Hippo components have been identified in skeletal muscle, their role in muscle mass regulation has been less investigated and conflicting results have been reported. Indeed, the first studies described both atrophic and hypertrophic roles of the Hippo pathway and its effectors Yap/Taz using different biochemical approaches. Further, investigation is therefore warranted to determine the role of the Hippo pathway in the regulation of skeletal muscle mass. New components of the pathway will probably emerge and unsuspected roles will likely be discovered due to its numerous interactions with different cellular processes. This mini-review aims to summarize the current literature concerning the roles of the Hippo pathway in the regulation of muscle mass and to develop the hypothesis that this pathway could contribute to muscle mass adaptation after exercise.
Collapse
Affiliation(s)
- Olouyomi Gnimassou
- Institute of Neuroscience, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Marc Francaux
- Institute of Neuroscience, Université catholique de LouvainLouvain-la-Neuve, Belgium
| | - Louise Deldicque
- Institute of Neuroscience, Université catholique de LouvainLouvain-la-Neuve, Belgium
| |
Collapse
|
69
|
Noguchi S, Saito A, Mikami Y, Urushiyama H, Horie M, Matsuzaki H, Takeshima H, Makita K, Miyashita N, Mitani A, Jo T, Yamauchi Y, Terasaki Y, Nagase T. TAZ contributes to pulmonary fibrosis by activating profibrotic functions of lung fibroblasts. Sci Rep 2017; 7:42595. [PMID: 28195168 PMCID: PMC5307361 DOI: 10.1038/srep42595] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/11/2017] [Indexed: 11/21/2022] Open
Abstract
Transcriptional coactivator with PDZ-binding motif (TAZ) regulates a variety of biological processes. Nuclear translocation and activation of TAZ are regulated by multiple mechanisms, including actin cytoskeleton and mechanical forces. TAZ is involved in lung alveolarization during lung development and Taz-heterozygous mice are resistant to bleomycin-induced lung fibrosis. In this study, we explored the roles of TAZ in the pathogenesis of idiopathic pulmonary fibrosis (IPF) through histological analyses of human lung tissues and cell culture experiments. TAZ was highly expressed in the fibroblastic foci of lungs from patients with IPF. TAZ controlled myofibroblast marker expression, proliferation, migration, and matrix contraction in cultured lung fibroblasts. Importantly, actin stress fibers and nuclear accumulation of TAZ were more evident when cultured on a stiff matrix, suggesting a feedback mechanism to accelerate fibrotic responses. Gene expression profiling revealed TAZ-mediated regulation of connective tissue growth factor (CTGF) and type I collagen. Clinical relevance of TAZ-regulated gene signature was further assessed using publicly available transcriptome data. These findings suggest that TAZ is involved in the pathogenesis of IPF through multifaceted effects on lung fibroblasts.
Collapse
Affiliation(s)
- Satoshi Noguchi
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Division for Health Service Promotion, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yu Mikami
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Clinical Laboratory, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hirokazu Urushiyama
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Masafumi Horie
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Division for Health Service Promotion, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hirotaka Matsuzaki
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideyuki Takeshima
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kosuke Makita
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naoya Miyashita
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihisa Mitani
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taisuke Jo
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Division for Health Service Promotion, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuhiro Yamauchi
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuhiro Terasaki
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
70
|
Abstract
Hallmarks of asthma include chronic airway inflammation, progressive airway remodeling, and airway hyperresponsiveness. The initiation and perpetuation of these processes are attributable at least in part to critical events within the airway epithelium, but the underlying mechanisms remain poorly understood. New evidence now suggests that epithelial cells derived from donors without asthma versus donors with asthma, even in the absence of inflammatory cells or mediators, express modes of collective migration that innately differ not only in the amount of migration but also in the kind of migration. The maturing cell layer tends to undergo a transition from a hypermobile, fluid-like, unjammed phase in which cells readily rearrange, exchange places, and flow, to a quiescent, solid-like, jammed phase in which cells become virtually frozen in place. Moreover, the unjammed phase defines a phenotype that can be perpetuated by the compressive stresses caused by bronchospasm. Importantly, in cells derived from donors with asthma versus donors without asthma, this jamming transition becomes substantially delayed, thus suggesting an immature or dysmature epithelial phenotype in asthma.
Collapse
|
71
|
Knudsen L, Ruppert C, Ochs M. Tissue remodelling in pulmonary fibrosis. Cell Tissue Res 2016; 367:607-626. [PMID: 27981380 DOI: 10.1007/s00441-016-2543-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/19/2016] [Indexed: 12/16/2022]
Abstract
Many lung diseases result in fibrotic remodelling. Fibrotic lung disorders can be divided into diseases with known and unknown aetiology. Among those with unknown aetiology, idiopathic pulmonary fibrosis (IPF) is a common diagnosis. Because of its progressive character leading to a rapid decline in lung function, it is a fatal disease with poor prognosis and limited therapeutic options. Thus, IPF has motivated many studies in the last few decades in order to increase our mechanistic understanding of the pathogenesis of the disease. The current concept suggests an ongoing injury of the alveolar epithelium, an impaired regeneration capacity, alveolar collapse and, finally, a fibroproliferative response. The origin of lung injury remains elusive but a diversity of factors, which will be discussed in this article, has been shown to be associated with IPF. Alveolar epithelial type II (AE2) cells play a key role in lung fibrosis and their crucial role for epithelial regeneration, stabilisation of alveoli and interaction with fibroblasts, all known to be responsible for collagen deposition, will be illustrated. Whereas mechanisms of collagen deposition and fibroproliferation are the focus of many studies in the field, the awareness of other mechanisms in this disease is currently limited to biochemical and imaging studies including quantitative assessments of lung structure in IPF and animal models assigning alveolar collapse and collapse induration crucial roles for the degradation of the lung resulting in de-aeration and loss of surface area. Dysfunctional AE2 cells, instable alveoli and mechanical stress trigger remodelling that consists of collapsed alveoli absorbed by fibrotic tissue (i.e., collapse induration).
Collapse
Affiliation(s)
- Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany. .,REBIRTH, Cluster of Excellence, Hannover Medical School, Hannover, Germany.
| | - Clemens Ruppert
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg, Giessen, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany.,REBIRTH, Cluster of Excellence, Hannover Medical School, Hannover, Germany
| |
Collapse
|
72
|
Hepatocyte TAZ/WWTR1 Promotes Inflammation and Fibrosis in Nonalcoholic Steatohepatitis. Cell Metab 2016; 24:848-862. [PMID: 28068223 PMCID: PMC5226184 DOI: 10.1016/j.cmet.2016.09.016] [Citation(s) in RCA: 298] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 08/06/2016] [Accepted: 09/24/2016] [Indexed: 12/22/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is a leading cause of liver disease worldwide. However, the molecular basis of how benign steatosis progresses to NASH is incompletely understood, which has limited the identification of therapeutic targets. Here we show that the transcription regulator TAZ (WWTR1) is markedly higher in hepatocytes in human and murine NASH liver than in normal or steatotic liver. Most importantly, silencing of hepatocyte TAZ in murine models of NASH prevented or reversed hepatic inflammation, hepatocyte death, and fibrosis, but not steatosis. Moreover, hepatocyte-targeted expression of TAZ in a model of steatosis promoted NASH features, including fibrosis. In vitro and in vivo mechanistic studies revealed that a key mechanism linking hepatocyte TAZ to NASH fibrosis is TAZ/TEA domain (TEAD)-mediated induction of Indian hedgehog (Ihh), a secretory factor that activates fibrogenic genes in hepatic stellate cells. In summary, TAZ represents a previously unrecognized factor that contributes to the critical process of steatosis-to-NASH progression.
Collapse
|
73
|
Horie M, Saito A, Ohshima M, Suzuki HI, Nagase T. YAP and TAZ modulate cell phenotype in a subset of small cell lung cancer. Cancer Sci 2016; 107:1755-1766. [PMID: 27627196 PMCID: PMC5198951 DOI: 10.1111/cas.13078] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/24/2016] [Accepted: 09/09/2016] [Indexed: 02/02/2023] Open
Abstract
Small cell lung cancer (SCLC) is a highly aggressive and metastatic malignancy that shows rapid development of chemoresistance and a high rate of recurrence. Recent genome and transcriptome studies have provided the whole landscape of genomic alterations and gene expression changes in SCLC. In light of the inter‐individual heterogeneity of SCLC, subtyping of SCLC might be helpful for prediction of therapeutic response and prognosis. Based on the transcriptome data of SCLC cell lines, we undertook transcriptional network‐defined SCLC classification and identified a unique SCLC subgroup characterized by relatively high expression of Hippo pathway regulators Yes‐associated protein (YAP) and transcriptional coactivator with PDZ‐binding motif (TAZ) (YAP/TAZ subgroup). The YAP/TAZ subgroup displayed adherent cell morphology, lower expression of achaete‐scute complex homolog 1 (ASCL1) and neuroendocrine markers, and higher expression of laminin and integrin. YAP knockdown caused cell morphological alteration reminiscent of floating growth pattern in many SCLC cell lines, and microarray analyses revealed a subset of genes regulated by YAP, including Ajuba LIM protein (AJUBA). AJUBA also contributed to cell morphology regulation. Of clinical importance, SCLC cell lines of the YAP/TAZ subgroup showed unique patterns of drug sensitivity. Our findings shed light on a subtype of SCLC with YAP and TAZ expression, and delineate molecular networks underlying the heterogeneity of SCLC.
Collapse
Affiliation(s)
- Masafumi Horie
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division for Health Service Promotion, The University of Tokyo, Tokyo, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division for Health Service Promotion, The University of Tokyo, Tokyo, Japan
| | - Mitsuhiro Ohshima
- Department of Biochemistry, Ohu University School of Pharmaceutical Sciences, Koriyama, Japan
| | - Hiroshi I Suzuki
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
74
|
Jorgenson AJ, Choi KM, Sicard D, Smith KMJ, Hiemer SE, Varelas X, Tschumperlin DJ. TAZ activation drives fibroblast spheroid growth, expression of profibrotic paracrine signals, and context-dependent ECM gene expression. Am J Physiol Cell Physiol 2016; 312:C277-C285. [PMID: 27881410 DOI: 10.1152/ajpcell.00205.2016] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/14/2016] [Accepted: 11/18/2016] [Indexed: 11/22/2022]
Abstract
Recent studies have implicated the Hippo pathway and its transcriptional effectors YAP and TAZ as necessary for fibroblast activation and tissue fibrosis. To test the specific and sufficient roles for TAZ in driving autonomous fibroblast activation, we cultured NIH3T3 fibroblasts expressing a doxycycline-inducible nuclear-localized mutant of TAZ (TAZ4SA) in scaffold-free 3D hanging drop spheroids, or on matrices of specified mechanical rigidity. Control NIH3T3 fibroblasts formed spheroids in hanging drop culture that remained stable and neither increased nor decreased in size significantly over 15 days. In contrast, TAZ4SA-transduced fibroblasts grew robustly in spheroid culture, and expressed enhanced levels of genes encoding profibrotic soluble factors connective tissue growth factor (CTGF), endothelin-1 (Et-1), and plasminogen activator inhibitor 1 (PAI-1). However, TAZ4SA expression was unable to enhance expression of extracellular matrix (ECM)-encoding genes Col1a1, Col1a2, Col3a1, or Fn1 in spheroid culture. Micromechanical testing indicated that spheroids composed of either control or TAZ4SA-expressing cells were highly compliant and indistinguishable in mechanical properties. In fibroblasts cultured on 2D matrices of compliance similar to spheroids, TAZ4SA expression was able to enhance contractile force generation, but was unable to enhance ECM gene expression. In contrast, culture on stiff hydrogels potentiated TAZ4SA enhancement of ECM expression. TAZ4SA enhancement of Col1a1 expression on soft matrices was potentiated by TGF-β1, while on stiff matrices it was abrogated by inhibition of myocardin-related transcription factor, demonstrating context-dependent crosstalk of TAZ with these pathways. These findings demonstrate sufficiency of TAZ activation for driving fibroblast proliferation, contraction, and soluble profibrotic factor expression, and mechanical context-dependent crosstalk of TAZ with other pathways in regulating Col1a1 expression.
Collapse
Affiliation(s)
- Amy J Jorgenson
- Department of Physiology and Biomedical Engineering, College of Medicine, Mayo Clinic, Rochester, Minnesota; and
| | - Kyoung Moo Choi
- Department of Physiology and Biomedical Engineering, College of Medicine, Mayo Clinic, Rochester, Minnesota; and
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, College of Medicine, Mayo Clinic, Rochester, Minnesota; and
| | - Karry M J Smith
- Department of Physiology and Biomedical Engineering, College of Medicine, Mayo Clinic, Rochester, Minnesota; and
| | - Samantha E Hiemer
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, College of Medicine, Mayo Clinic, Rochester, Minnesota; and
| |
Collapse
|
75
|
Prakash YS. Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1113-L1140. [PMID: 27742732 DOI: 10.1152/ajplung.00370.2016] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
Airway structure and function are key aspects of normal lung development, growth, and aging, as well as of lung responses to the environment and the pathophysiology of important diseases such as asthma, chronic obstructive pulmonary disease, and fibrosis. In this regard, the contributions of airway smooth muscle (ASM) are both functional, in the context of airway contractility and relaxation, as well as synthetic, involving production and modulation of extracellular components, modulation of the local immune environment, cellular contribution to airway structure, and, finally, interactions with other airway cell types such as epithelium, fibroblasts, and nerves. These ASM contributions are now found to be critical in airway hyperresponsiveness and remodeling that occur in lung diseases. This review emphasizes established and recent discoveries that underline the central role of ASM and sets the stage for future research toward understanding how ASM plays a central role by being both upstream and downstream in the many interactive processes that determine airway structure and function in health and disease.
Collapse
Affiliation(s)
- Y S Prakash
- Departments of Anesthesiology, and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|