51
|
Lan CC, Hsieh PC, Wu YK, Kuo CY, Lee YH, Yang MC. The roles of sodium-potassium-chloride cotransporter isoform-1 in acute lung injury. Tzu Chi Med J 2022; 34:119-124. [PMID: 35465284 PMCID: PMC9020242 DOI: 10.4103/tcmj.tcmj_50_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 04/07/2021] [Indexed: 12/04/2022] Open
Abstract
Acute lung injury (ALI) is often characterized by severe lung inflammation and pulmonary edema with poor gas exchange and hypoxemia. Alveolar inflammation and water flooding are, in fact, notable features of ALI pathogenesis. The sodium-potassium-chloride co-transporter isoform 1 (NKCC1), localized at the basolateral surface of the lung epithelium, drives water transport via back transport of Na+ and Cl− to the alveolar air space. NKCC1, therefore, is crucial in regulating alveolar fluid. Increased expression of NKCC1 results in increased alveolar fluid secretion and impaired alveolar fluid clearance. During ALI, the with no lysine kinase (WNK), oxidative stress responsive kinase 1 (OSR1), and STE20/SPS1-related proline/alanine-rich kinase (SPAK) pathways are activated, which upregulates NKCC1 expression. Proinflammatory cytokines also enhance the expression of NKCC1 via c-Jun N-terminal kinase-and p38-dependent pathways. NKCC1 activation also increases the expression of proinflammatory cytokines via cell rupture and activation of macrophages. Increased proinflammatory cytokines, in turn, recruit inflammatory cells to the site of injury and cause further lung damage. Animals with high expression of NKCC1 show more severe lung injury with presentations of more severe pulmonary edema and microvascular permeability, higher expression of proinflammatory cytokines, and greater neutrophilic infiltration. In contrast, animals with low expression of NKCC1 or those treated with NKCC1 inhibitors show less severe lung injury with milder levels of presentations of ALI. These reports collectively highlight a novel role of NKCC1 in ALI pathogenesis. Manipulation of NKCC1 expression levels could, therefore, represent novel modalities for effective ALI treatment.
Collapse
|
52
|
An N, Yang T, Zhang XX, Xu MX. Bergamottin alleviates LPS-induced acute lung injury by inducing SIRT1 and suppressing NF-κB. Innate Immun 2021; 27:543-552. [PMID: 34812690 PMCID: PMC8762093 DOI: 10.1177/17534259211062553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Acute lung injury (ALI) is associated with a high mortality due to inflammatory cell infiltration and lung edema. The development of ALI commonly involves the activation of NF-κB. Since bergamottin is a natural furanocoumarin showing the ability to inhibit the activation of NF-κB, in this study we aimed to determine the effect of bergamottin on ALI. RAW264.7 mouse macrophages were pre-treated with bergamottin and then stimulated with LPS. Macrophage inflammatory responses were examined. Bergamottin (50 mg/kg body mass) was intraperitoneally administrated to mice 12 h before injection of LPS, and the effect of bergamottin on LPS-induced ALI was evaluated. Our results showed that LPS exposure led to increased production of TNF-α, IL-6, and monocyte chemoattractant protein-1 (MCP-1), which was impaired by bergamottin pre-treatment. In vivo studies confirmed that bergamottin pre-treatment suppressed LPS-induced lung inflammation and edema and reduced the levels of pro-inflammatory cytokines in lung tissues and bronchoalveolar lavage fluids. Mechanistically, bergamottin blocked LPS-induced activation of NF-κB signaling in lung tissues. Additionally, bergamottin treatment reduced NF-κB p65 protein acetylation, which was coupled with induction of SIRT1 expression. In conclusion, our results reveal the anti-inflammatory property of bergamottin in preventing ALI. Induction of SIRT1 and inhibition of NF-κB underlies the anti-inflammatory activity of bergamottin.
Collapse
Affiliation(s)
- Ning An
- Institue of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, China
| | - Tao Yang
- Department of Intensive Care Unit, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Xia Zhang
- Department of Intensive Care Unit, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, China
| | - Mei-Xia Xu
- Department of Intensive Care Unit, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, 12443Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
53
|
Wang W, Yang N, Yang YH, Wen R, Liu CF, Zhang TN. Non-Coding RNAs: Master Regulators of Inflammasomes in Inflammatory Diseases. J Inflamm Res 2021; 14:5023-5050. [PMID: 34616171 PMCID: PMC8490125 DOI: 10.2147/jir.s332840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
Emerging data indicates that non-coding RNAs (ncRNAs) represent more than just “junk sequences” of the genome and have been found to be involved in multiple diseases by regulating various biological process, including the activation of inflammasomes. As an important aspect of innate immunity, inflammasomes are large immune multiprotein complexes that tightly regulate the production of pro-inflammatory cytokines and mediate pyroptosis; the activation of the inflammasomes is a vital biological process in inflammatory diseases. Recent studies have emphasized the function of ncRNAs in the fine control of inflammasomes activation either by directly targeting components of the inflammasomes or by controlling the activity of various factors that control the activation of inflammasomes; consequently, ncRNAs may represent potential therapeutic targets for inflammatory diseases. Understanding the precise role of ncRNAs in controlling the activation of inflammasomes will help us to design targeted therapies for multiple inflammatory diseases. In this review, we summarize the regulatory role and therapeutic potential of ncRNAs in the activation of inflammasomes by focusing on a range of inflammatory diseases, including microbial infection, sterile inflammatory diseases, and fibrosis-related diseases. Our goal is to provide new ideas and perspectives for future research.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yu-Hang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ri Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
54
|
Tomatidine Improves Pulmonary Inflammation in Mice with Acute Lung Injury. Mediators Inflamm 2021; 2021:4544294. [PMID: 34531702 PMCID: PMC8440114 DOI: 10.1155/2021/4544294] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
Tomatidine, which is isolated from green tomato, can ameliorate inflammation and oxidative stress in cells and animal experiments and has been shown to improve airway inflammation in a murine model of asthma. Here, we investigated whether tomatidine can ameliorate acute lung injury in mice. Mice were given tomatidine by intraperitoneal injection for 7 consecutive days, and then, lung injury was induced via intratracheal instillation of lipopolysaccharide (LPS). Tomatidine reduced inflammatory cytokine expressions in bronchoalveolar lavage fluid (BALF), attenuated neutrophil infiltration in the BALF and lung tissue, increased superoxide dismutase activity and glutathione levels, and alleviated myeloperoxidase expression in the lung tissue of mice with lung injury. Tomatidine also decreased inflammatory cytokine and chemokine gene expression in inflammatory lungs and attenuated the phosphorylation of mitogen-activated protein kinase and nuclear factor kappa B. Furthermore, tomatidine enhanced the production of heme oxygenase-1, decreased the secretion of inflammatory cytokines and chemokines in LPS-stimulated lung epithelial cells, and attenuated THP-1 monocyte adhesion. Our findings suggest that tomatidine attenuates oxidative stress and inflammation, improving acute lung injury in mice.
Collapse
|
55
|
Sanwal R, Joshi K, Ditmans M, Tsai SSH, Lee WL. Ultrasound and Microbubbles for Targeted Drug Delivery to the Lung Endothelium in ARDS: Cellular Mechanisms and Therapeutic Opportunities. Biomedicines 2021; 9:biomedicines9070803. [PMID: 34356867 PMCID: PMC8301318 DOI: 10.3390/biomedicines9070803] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by increased permeability of the alveolar–capillary membrane, a thin barrier composed of adjacent monolayers of alveolar epithelial and lung microvascular endothelial cells. This results in pulmonary edema and severe hypoxemia and is a common cause of death after both viral (e.g., SARS-CoV-2) and bacterial pneumonia. The involvement of the lung in ARDS is notoriously heterogeneous, with consolidated and edematous lung abutting aerated, less injured regions. This makes treatment difficult, as most therapeutic approaches preferentially affect the normal lung regions or are distributed indiscriminately to other organs. In this review, we describe the use of thoracic ultrasound and microbubbles (USMB) to deliver therapeutic cargo (drugs, genes) preferentially to severely injured areas of the lung and in particular to the lung endothelium. While USMB has been explored in other organs, it has been under-appreciated in the treatment of lung injury since ultrasound energy is scattered by air. However, this limitation can be harnessed to direct therapy specifically to severely injured lungs. We explore the cellular mechanisms governing USMB and describe various permutations of cargo administration. Lastly, we discuss both the challenges and potential opportunities presented by USMB in the lung as a tool for both therapy and research.
Collapse
Affiliation(s)
- Rajiv Sanwal
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada; (R.S.); (K.J.); (M.D.); (S.S.H.T.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kushal Joshi
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada; (R.S.); (K.J.); (M.D.); (S.S.H.T.)
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada
- Institute of Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada
| | - Mihails Ditmans
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada; (R.S.); (K.J.); (M.D.); (S.S.H.T.)
- Biomedical Engineering Graduate Program, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Scott S. H. Tsai
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada; (R.S.); (K.J.); (M.D.); (S.S.H.T.)
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada
- Institute of Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada
| | - Warren L. Lee
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada; (R.S.); (K.J.); (M.D.); (S.S.H.T.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Mechanical and Industrial Engineering, Ryerson University, Toronto, ON M5B 2K3, Canada
- Institute of Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada
- Biomedical Engineering Graduate Program, Ryerson University, Toronto, ON M5B 2K3, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Correspondence: ; Tel.: +416-864-6060 (ext. 77655)
| |
Collapse
|
56
|
Denstaedt SJ, Bustamante AC, Newstead MW, Moore BB, Standiford TJ, Zemans RL, Singer BH. Long-term survivors of murine sepsis are predisposed to enhanced LPS-induced lung injury and proinflammatory immune reprogramming. Am J Physiol Lung Cell Mol Physiol 2021; 321:L451-L465. [PMID: 34161747 DOI: 10.1152/ajplung.00123.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Millions of people who survive sepsis each year are rehospitalized and die due to late pulmonary complications. To prevent and treat these complications, biomarkers and molecular mediators must be identified. Persistent immune reprogramming in the form of immunoparalysis and impaired host defense is proposed to mediate late pulmonary complications after sepsis, particularly new pulmonary infections. However, immune reprogramming may also involve enhanced/primed responses to secondary stimuli, although their contribution to long-term sepsis complications remains understudied. We hypothesize that enhanced/primed immune responses in the lungs of sepsis survivors are associated with late pulmonary complications. To this end, we developed a murine sepsis model using cecal ligation and puncture (CLP) followed 3 wk later by administration of intranasal lipopolysaccharide to induce inflammatory lung injury. Mice surviving sepsis exhibit enhanced lung injury with increased alveolar permeability, neutrophil recruitment, and enhanced Ly6Chi monocyte Tnf expression. To determine the mediators of enhanced lung injury, we performed flow cytometry and RNA sequencing of lungs 3 wk after CLP, prior to lipopolysaccharide. Sepsis survivor mice showed expanded Ly6Chi monocytes populations and increased expression of many inflammatory genes. Of these, S100A8/A9 was also elevated in the circulation of human sepsis survivors for months after sepsis, validating our model and identifying S100A8/A9 as a potential biomarker and therapeutic target for long-term pulmonary complications after sepsis. These data provide new insight into the importance of enhanced/primed immune responses in survivors of sepsis and establish a foundation for additional investigation into the mechanisms mediating this response.
Collapse
Affiliation(s)
- Scott J Denstaedt
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Angela C Bustamante
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Michael W Newstead
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Bethany B Moore
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan.,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan
| | - Theodore J Standiford
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| | - Rachel L Zemans
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan
| | - Benjamin H Singer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
57
|
Sommer N, Pak O, Hecker M. New Avenues for Anti-inflammatory Signaling of Nur77 in Acute Lung Injury. Am J Respir Cell Mol Biol 2021; 65:236-237. [PMID: 34086527 PMCID: PMC8485992 DOI: 10.1165/rcmb.2021-0210ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Natascha Sommer
- Justus Liebig University, Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL)., Giessen, Germany
| | - Oleg Pak
- Justus Liebig Universitat Giessen, 9175, Excellence Cluster Cardiopulmonary System University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL)., Giessen, Germany
| | - Matthias Hecker
- Justus Liebig University, Excellence Cluster Cardiopulmonary System, University of Giessen and Marburg Lung Center (UGMLC), member of the German Center for Lung Research (DZL)., Giessen, Germany;
| |
Collapse
|