51
|
Carattino MD, Mueller GM, Palmer LG, Frindt G, Rued AC, Hughey RP, Kleyman TR. Prostasin interacts with the epithelial Na+ channel and facilitates cleavage of the γ-subunit by a second protease. Am J Physiol Renal Physiol 2014; 307:F1080-7. [PMID: 25209858 DOI: 10.1152/ajprenal.00157.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During maturation, the α- and γ-subunits of the epithelial Na+ channel (ENaC) undergo proteolytic processing by furin. Cleavage of the γ-subunit by furin at the consensus site γRKRR143 and subsequent cleavage by a second protease at a distal site strongly activate the channel. For example, coexpression of prostasin with ENaC increases both channel function and cleavage at the γRKRK186 site. We generated a polyclonal antibody that recognizes the region 144-186 in the γ-subunit (anti-γ43) to determine whether prostasin promotes the release of the intervening tract between the putative furin and γRKRK186 cleavage sites. Anti-γ43 precipitated both full-length (93 kDa) and furin-processed (83 kDa) γ-subunits from extracts obtained from oocytes expressing αβHA-γ-V5 channels, but only the full-length (93 kDa) γ-subunit from oocytes expressing αβHA-γ-V5 channels and either wild-type or a catalytically inactive prostasin. Although both wild-type and catalytically inactive prostasin activated ENaCs in an aprotinin-sensitive manner, only wild-type prostasin bound to aprotinin beads, suggesting that catalytically inactive prostasin facilitates the cleavage of the γ-subunit by an endogenous protease in Xenopus oocytes. As dietary salt restriction increases cleavage of the renal γ-subunit, we assessed release of the 43-mer inhibitory tract on rats fed a low-Na+ diet. We found that a low-Na+ diet increased γ-subunit cleavage detected with the anti-γ antibody and dramatically reduced the fraction precipitated with the anti-γ43 antibody. Our results suggest that the inhibitory tract dissociates from the γ-subunit in kidneys from rats on a low-Na+ diet.
Collapse
Affiliation(s)
- Marcelo D Carattino
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Gunhild M Mueller
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lawrence G Palmer
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Gustavo Frindt
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York
| | - Anna C Rued
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rebecca P Hughey
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Thomas R Kleyman
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| |
Collapse
|
52
|
Zachar RM, Skjødt K, Marcussen N, Walter S, Toft A, Nielsen MR, Jensen BL, Svenningsen P. The epithelial sodium channel γ-subunit is processed proteolytically in human kidney. J Am Soc Nephrol 2014; 26:95-106. [PMID: 25060057 DOI: 10.1681/asn.2013111173] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The epithelial sodium channel (ENaC) of the kidney is necessary for extracellular volume homeostasis and normal arterial BP. Activity of ENaC is enhanced by proteolytic cleavage of the γ-subunit and putative release of a 43-amino acid inhibitory tract from the γ-subunit ectodomain. We hypothesized that proteolytic processing of γENaC occurs in the human kidney under physiologic conditions and that proteinuria contributes to aberrant proteolytic activation. Here, we used monoclonal antibodies (mAbs) with specificity to the human 43-mer inhibitory tract (N and C termini, mAbinhibit, and mAb4C11) and the neoepitope generated after proteolytic cleavage at the prostasin/kallikrein cleavage site (K181-V182 and mAbprostasin) to examine human nephrectomy specimens. By immunoblotting, kidney cortex homogenate from patients treated with angiotensin II type 1 receptor antagonists (n=6) or angiotensin-converting enzyme inhibitors (n=6) exhibited no significant difference in the amount of full-length or furin-cleaved γENaC or the furin-cleaved-to-full-length ratio of γENaC compared with homogenate from patients on no medication (n=5). Patients treated with diuretics (n=4) displayed higher abundance of full-length and furin-cleaved γENaC, with no significant change in the furin-cleaved-to-full-length γENaC ratio. In patients with proteinuria (n=6), the inhibitory tract was detected only in full-length γENaC by mAbinhibit. Prostasin/kallikrein-cleaved γENaC was detected consistently only in tissue from patients with proteinuria and observed in collecting ducts. In conclusion, human kidney γENaC is subject to proteolytic cleavage, yielding fragments compatible with furin cleavage, and proteinuria is associated with cleavage at the putative prostasin/kallikrein site and removal of the inhibitory tract within γENaC.
Collapse
Affiliation(s)
| | - Karsten Skjødt
- Cancer and Inflammation, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark; and
| | | | - Steen Walter
- Urology, Odense University Hospital, Odense, Denmark
| | - Anja Toft
- Urology, Odense University Hospital, Odense, Denmark
| | | | - Boye L Jensen
- Departments of Cardiovascular and Renal Research and
| | | |
Collapse
|
53
|
Krappitz M, Korbmacher C, Haerteis S. Demonstration of proteolytic activation of the epithelial sodium channel (ENaC) by combining current measurements with detection of cleavage fragments. J Vis Exp 2014. [PMID: 25045853 PMCID: PMC4211894 DOI: 10.3791/51582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The described methods can be used to investigate the effect of proteases on ion channels, receptors, and other plasma membrane proteins heterologously expressed in Xenopus laevis oocytes. In combination with site-directed mutagenesis, this approach provides a powerful tool to identify functionally relevant cleavage sites. Proteolytic activation is a characteristic feature of the amiloride-sensitive epithelial sodium channel (ENaC). The final activating step involves cleavage of the channel’s γ-subunit in a critical region potentially targeted by several proteases including chymotrypsin and plasmin. To determine the stimulatory effect of these serine proteases on ENaC, the amiloride-sensitive whole-cell current (ΔIami) was measured twice in the same oocyte before and after exposure to the protease using the two-electrode voltage-clamp technique. In parallel to the electrophysiological experiments, a biotinylation approach was used to monitor the appearance of γENaC cleavage fragments at the cell surface. Using the methods described, it was demonstrated that the time course of proteolytic activation of ENaC-mediated whole-cell currents correlates with the appearance of a γENaC cleavage product at the cell surface. These results suggest a causal link between channel cleavage and channel activation. Moreover, they confirm the concept that a cleavage event in γENaC is required as a final step in proteolytic channel activation. The methods described here may well be applicable to address similar questions for other types of ion channels or membrane proteins.
Collapse
Affiliation(s)
- Matteus Krappitz
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
| | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
| | - Silke Haerteis
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU);
| |
Collapse
|
54
|
Haerteis S, Krappitz A, Krappitz M, Murphy JE, Bertog M, Krueger B, Nacken R, Chung H, Hollenberg MD, Knecht W, Bunnett NW, Korbmacher C. Proteolytic activation of the human epithelial sodium channel by trypsin IV and trypsin I involves distinct cleavage sites. J Biol Chem 2014; 289:19067-78. [PMID: 24841206 DOI: 10.1074/jbc.m113.538470] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Proteolytic activation is a unique feature of the epithelial sodium channel (ENaC). However, the underlying molecular mechanisms and the physiologically relevant proteases remain to be identified. The serine protease trypsin I can activate ENaC in vitro but is unlikely to be the physiologically relevant activating protease in ENaC-expressing tissues in vivo. Herein, we investigated whether human trypsin IV, a form of trypsin that is co-expressed in several extrapancreatic epithelial cells with ENaC, can activate human ENaC. In Xenopus laevis oocytes, we monitored proteolytic activation of ENaC currents and the appearance of γENaC cleavage products at the cell surface. We demonstrated that trypsin IV and trypsin I can stimulate ENaC heterologously expressed in oocytes. ENaC cleavage and activation by trypsin IV but not by trypsin I required a critical cleavage site (Lys-189) in the extracellular domain of the γ-subunit. In contrast, channel activation by trypsin I was prevented by mutating three putative cleavage sites (Lys-168, Lys-170, and Arg-172) in addition to mutating previously described prostasin (RKRK(178)), plasmin (Lys-189), and neutrophil elastase (Val-182 and Val-193) sites. Moreover, we found that trypsin IV is expressed in human renal epithelial cells and can increase ENaC-mediated sodium transport in cultured human airway epithelial cells. Thus, trypsin IV may regulate ENaC function in epithelial tissues. Our results show, for the first time, that trypsin IV can stimulate ENaC and that trypsin IV and trypsin I activate ENaC by cleavage at distinct sites. The presence of distinct cleavage sites may be important for ENaC regulation by tissue-specific proteases.
Collapse
Affiliation(s)
- Silke Haerteis
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany
| | - Annabel Krappitz
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany
| | - Matteus Krappitz
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany
| | - Jane E Murphy
- the UCSF Center for the Neurobiology of Digestive Diseases, Department of Surgery, University of California, San Francisco, California
| | - Marko Bertog
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany
| | - Bettina Krueger
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany
| | - Regina Nacken
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany
| | - Hyunjae Chung
- the Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Morley D Hollenberg
- the Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Wolfgang Knecht
- Bioscience, CVGI iMed, AstraZeneca Research and Development, 43181 Mölndal, Sweden
| | - Nigel W Bunnett
- the Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia, and the Department of Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Christoph Korbmacher
- From the Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Waldstrasse 6, 91054 Erlangen, Germany,
| |
Collapse
|
55
|
Mamenko M, Zaika O, Pochynyuk O. Direct regulation of ENaC by bradykinin in the distal nephron. Implications for renal sodium handling. Curr Opin Nephrol Hypertens 2014; 23:122-129. [PMID: 24378775 PMCID: PMC4114036 DOI: 10.1097/01.mnh.0000441053.81339.61] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Locally produced peptide hormones kinins, such as bradykinin, are thought to oppose many of the prohypertensive actions of the renin-angiotensin-aldosterone system. In the kidney, bradykinin, via stimulation of B2 receptors (B2R), favors natriuresis mostly due to the inhibition of tubular Na reabsorption. Recent experimental evidence identifies the epithelial Na channel (ENaC) as a key end effector of bradykinin actions in the distal tubular segments. The focus of this review is the physiological relevance and molecular details of the bradykinin signal to ENaC. RECENT FINDINGS The recent epidemiological GenSalt study demonstrated that genetic variants of the gene encoding B2R show significant associations with the salt sensitivity of blood pressure. Bradykinin was shown to have an inhibitory effect on the distal nephron sodium transport via stimulation of B2 receptor-phospholipase C (B2R-PLC) cascade to decrease ENaC open probability. Genetic ablation of bradykinin receptors in mice led to an augmented ENaC function, particularly during elevated sodium intake, likely contributing to the salt-sensitive hypertensive phenotype. Furthermore, augmentation of bradykinin signaling in the distal nephron was demonstrated to be an important component of the natriuretic and antihypertensive effects of angiotensin converting enzyme inhibition. SUMMARY Salt-sensitive inhibition of ENaC activity by bradykinin greatly advances our understanding of the molecular mechanisms that are responsible for shutting down distal tubule sodium reabsorption during volume expanded conditions to avoid salt-sensitive hypertension.
Collapse
Affiliation(s)
- Mykola Mamenko
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, Texas, USA
| | | | | |
Collapse
|
56
|
Warnock DG, Kusche-Vihrog K, Tarjus A, Sheng S, Oberleithner H, Kleyman TR, Jaisser F. Blood pressure and amiloride-sensitive sodium channels in vascular and renal cells. Nat Rev Nephrol 2014; 10:146-57. [PMID: 24419567 DOI: 10.1038/nrneph.2013.275] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sodium transport in the distal nephron is mediated by epithelial sodium channel activity. Proteolytic processing of external domains and inhibition with increased sodium concentrations are important regulatory features of epithelial sodium channel complexes expressed in the distal nephron. By contrast, sodium channels expressed in the vascular system are activated by increased external sodium concentrations, which results in changes in the mechanical properties and function of endothelial cells. Mechanosensitivity and shear stress affect both epithelial and vascular sodium channel activity. Guyton's hypothesis stated that blood pressure control is critically dependent on vascular tone and fluid handling by the kidney. The synergistic effects, and complementary regulation, of the epithelial and vascular systems are consistent with the Guytonian model of volume and blood pressure regulation, and probably reflect sequential evolution of the two systems. The integration of vascular tone, renal perfusion and regulation of renal sodium reabsorption is the central underpinning of the Guytonian model. In this Review, we focus on the expression and regulation of sodium channels, and we outline the emerging evidence that describes the central role of amiloride-sensitive sodium channels in the efferent (vascular) and afferent (epithelial) arms of this homeostatic system.
Collapse
Affiliation(s)
- David G Warnock
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, 1720 2nd Avenue South, Birmingham, AL 34294-0007, USA
| | - Kristina Kusche-Vihrog
- Institut für Physiologie II, Westfälische Wilhelms Universität, Robert-Koch-Straße 27, 48149 Münster, Germany
| | - Antoine Tarjus
- INSERM U872 Team 1, Centre de Recherche des Cordeliers, Université René Descartes, Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | - Shaohu Sheng
- Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Hans Oberleithner
- Institut für Physiologie II, Westfälische Wilhelms Universität, Robert-Koch-Straße 27, 48149 Münster, Germany
| | - Thomas R Kleyman
- Renal and Electrolyte Division, Department of Medicine, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Frederic Jaisser
- INSERM U872 Team 1, Centre de Recherche des Cordeliers, Université René Descartes, Université Pierre et Marie Curie, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| |
Collapse
|
57
|
Chao J, Bledsoe G, Chao L. Tissue kallikrein-kinin therapy in hypertension and organ damage. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 2014; 69:37-57. [PMID: 25130039 DOI: 10.1007/978-3-319-06683-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Tissue kallikrein is a serine proteinase that cleaves low molecular weight kininogen to produce kinin peptides, which in turn activate kinin receptors to trigger multiple biological functions. In addition to its kinin-releasing activity, tissue kallikrein directly interacts with the kinin B2 receptor, protease-activated receptor-1, and gamma-epithelial Na channel. The tissue kallikrein-kinin system (KKS) elicits a wide spectrum of biological activities, including reducing hypertension, cardiac and renal damage, restenosis, ischemic stroke, and skin wound injury. Both loss-of-function and gain-of-function studies have shown that the KKS plays an important endogenous role in the protection against health pathologies. Tissue kallikrein/kinin treatment attenuates cardiovascular, renal, and brain injury by inhibiting oxidative stress, apoptosis, inflammation, hypertrophy, and fibrosis and promoting angiogenesis and neurogenesis. Approaches that augment tissue kallikrein-kinin activity might provide an effective strategy for the treatment of hypertension and associated organ damage.
Collapse
|
58
|
Partial genetic deficiency in tissue kallikrein impairs adaptation to high potassium intake in humans. Kidney Int 2013; 84:1271-7. [PMID: 23760292 DOI: 10.1038/ki.2013.224] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 04/16/2013] [Accepted: 04/18/2013] [Indexed: 12/14/2022]
Abstract
Inactivation of the tissue kallikrein gene in mice impairs renal handling of potassium due to enhanced H, K-ATPase activity, and induces hyperkalemia. We investigated whether the R53H loss-of-function polymorphism of the human tissue kallikrein gene affects renal potassium handling. In a crossover study, 30 R53R homozygous and 10 R53H heterozygous healthy males were randomly assigned to a low-sodium/high-potassium or a high-sodium/low-potassium diet to modulate tissue kallikrein synthesis. On the seventh day of each diet, participants were studied before and during a 2-h infusion of furosemide to stimulate distal potassium secretion. Urinary kallikrein activity was significantly lower in R53H than in R53R subjects on the low-sodium/high-potassium diet and was similarly reduced in both genotypes on high-sodium/low-potassium. Plasma potassium and renal potassium reabsorption were similar in both genotypes on an ad libitum sodium/potassium diet or after 7 days of a high-sodium/low-potassium diet. However, the median plasma potassium was significantly higher after 7 days of low-sodium/high-potassium diet in R53H than in R53R individuals. Urine potassium excretion and plasma aldosterone concentrations were similar. On the low-sodium/high-potassium diet, furosemide-induced decrease in plasma potassium was significantly larger in R53H than in R53R subjects. Thus, impaired tissue kallikrein stimulation by a low-sodium/high-potassium diet in R53H subjects with partial tissue kallikrein deficiency highlights an inappropriate renal adaptation to potassium load, consistent with experimental data in mice.
Collapse
|
59
|
Waeckel L, Potier L, Richer C, Roussel R, Bouby N, Alhenc-Gelas F. Pathophysiology of genetic deficiency in tissue kallikrein activity in mouse and man. Thromb Haemost 2013; 110:476-83. [PMID: 23572029 DOI: 10.1160/th12-12-0937] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/14/2013] [Indexed: 12/30/2022]
Abstract
Study of mice rendered deficient in tissue kallikrein (TK) by gene inactivation and human subjects partially deficient in TK activity as consequence of an active site mutation has allowed recognising the physiological role of TK and its peptide products kinins in arterial function and in vasodilatation, in both species. TK appears as the major kinin forming enzyme in arteries, heart and kidney. Non-kinin mediated actions of TK may occur in epithelial cells in the renal tubule. In basal condition, TK deficiency induces mild defective phenotypes in the cardiovascular system and the kidney. However, in pathological situations where TK synthesis is typically increased and kinins are produced, TK deficiency has major, deleterious consequences. This has been well documented experimentally for cardiac ischaemia, diabetes renal disease, peripheral ischaemia and aldosterone-salt induced hypertension. These conditions are all aggravated by TK deficiency. The beneficial effect of ACE/kininase II inhibitors or angiotensin II AT1 receptor antagonists in cardiac ischaemia is abolished in TK-deficient mice, suggesting a prominent role for TK and kinins in the cardioprotective action of these drugs. Based on findings made in TK-deficient mice and additional evidence obtained by pharmacological or genetic inactivation of kinin receptors, development of novel therapeutic approaches relying on kinin receptor agonism may be warranted.
Collapse
Affiliation(s)
- L Waeckel
- Francois Alhenc-Gelas, INSERM U872, Centre de Recherche des Cordeliers, 15 rue de l'Ecole de Médecine 75006 Paris, France, E-mail:
| | | | | | | | | | | |
Collapse
|
60
|
Svenningsen P, Friis UG, Versland JB, Buhl KB, Møller Frederiksen B, Andersen H, Zachar RM, Bistrup C, Skøtt O, Jørgensen JS, Andersen RF, Jensen BL. Mechanisms of renal NaCl retention in proteinuric disease. Acta Physiol (Oxf) 2013; 207:536-45. [PMID: 23216619 DOI: 10.1111/apha.12047] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 11/27/2012] [Accepted: 12/03/2012] [Indexed: 02/06/2023]
Abstract
In diseases with proteinuria, for example nephrotic syndrome and pre-eclampsia, there often are suppression of plasma renin-angiotensin-aldosterone system components, expansion of extracellular volume and avid renal sodium retention. Mechanisms of sodium retention in proteinuria are reviewed. In animal models of nephrotic syndrome, the amiloride-sensitive epithelial sodium channel ENaC is activated while more proximal renal Na(+) transporters are down-regulated. With suppressed plasma aldosterone concentration and little change in ENaC abundance in nephrotic syndrome, the alternative modality of proteolytic activation of ENaC has been explored. Proteolysis leads to putative release of an inhibitory peptide from the extracellular domain of the γ ENaC subunit. This leads to full activation of the channel. Plasminogen has been demonstrated in urine from patients with nephrotic syndrome and pre-eclampsia. Urine plasminogen correlates with urine albumin and is activated to plasmin within the urinary space by urokinase-type plasminogen activator. This agrees with aberrant filtration across an injured glomerular barrier independent of the primary disease. Pure plasmin and urine samples containing plasmin activate inward current in single murine collecting duct cells. In this study, it is shown that human lymphocytes may be used to uncover the effect of urine plasmin on amiloride- and aprotinin-sensitive inward currents. Data from hypertensive rat models show that protease inhibitors may attenuate blood pressure. Aberrant filtration of plasminogen and conversion within the urinary space to plasmin may activate γ ENaC proteolytically and contribute to inappropriate NaCl retention and oedema in acute proteinuric conditions and to hypertension in diseases with chronic microalbuminuria/proteinuria.
Collapse
Affiliation(s)
- P. Svenningsen
- Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense; Denmark
| | - U. G. Friis
- Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense; Denmark
| | - J. B. Versland
- Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense; Denmark
| | - K. B. Buhl
- Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense; Denmark
| | - B. Møller Frederiksen
- Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense; Denmark
| | - H. Andersen
- Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense; Denmark
| | - R. M. Zachar
- Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense; Denmark
| | - C. Bistrup
- Department of Nephrology; Odense University Hospital; Odense; Denmark
| | - O. Skøtt
- Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense; Denmark
| | - J. S. Jørgensen
- Department of Obstetrics and Gynecology; Odense University Hospital; Odense; Denmark
| | - R. F. Andersen
- Department of Pediatrics; Aarhus University Hospital; Skejby; Aarhus; Denmark
| | - B. L. Jensen
- Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense; Denmark
| |
Collapse
|
61
|
Patel AB, Frindt G, Palmer LG. Feedback inhibition of ENaC during acute sodium loading in vivo. Am J Physiol Renal Physiol 2012; 304:F222-32. [PMID: 23171553 DOI: 10.1152/ajprenal.00596.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The epithelial Na(+) channel (ENaC) is tightly regulated by sodium intake to maintain whole body sodium homeostasis. In addition, ENaC is inhibited by high levels of intracellular Na(+) [Na(+)](i), presumably to prevent cell Na(+) overload and swelling. However, it is not clear if this regulation is relevant in vivo. We show here that in rats, an acute (4 h) oral sodium load decreases whole-cell amiloride-sensitive currents (I(Na)) in the cortical collecting duct (CCD) even when plasma aldosterone levels are maintained high by infusing the hormone. This was accompanied by decreases in whole-kidney cleaved α-ENaC (2.6 fold), total β-ENaC (1.7 fold), and cleaved γ-ENaC (6.2 fold). In addition, cell-surface β- and γ-ENaC expression was measured using in situ biotinylation. There was a decrease in cell-surface core-glycosylated (2.2 fold) and maturely glycosylated (4.9 fold) β-ENaC and cleaved γ-ENaC (4.7 fold). There were no significant changes for other apical sodium transporters. To investigate the role of increases in Na(+) entry and presumably [Na(+)](i) on ENaC, animals were infused with amiloride prior to and during sodium loading. Blocking Na(+) entry did not inhibit the effect of resalting on I(Na). However, amiloride did prevent decreases in ENaC expression, an effect that was not mimicked by hydrochlorothiazide administration. Na(+) entry and presumably [Na(+)](i) can regulate ENaC expression but does not fully account for the aldosterone-independent decrease in I(Na) during an acute sodium load.
Collapse
Affiliation(s)
- Ankit B Patel
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | |
Collapse
|
62
|
Mamenko M, Zaika O, Doris PA, Pochynyuk O. Salt-dependent inhibition of epithelial Na+ channel-mediated sodium reabsorption in the aldosterone-sensitive distal nephron by bradykinin. Hypertension 2012; 60:1234-41. [PMID: 23033373 DOI: 10.1161/hypertensionaha.112.200469] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have documented recently that bradykinin (BK) directly inhibits activity of the epithelial Na(+) channel (ENaC) via the bradykinin B2 receptor (B2R)-G(q/11)-phospholipase C pathway. In this study, we took advantage of mice genetically engineered to lack bradykinin receptors (B1R, B2R(-/-)) to probe a physiological role of BK cascade in regulation of ENaC in native tissue, aldosterone-sensitive distal nephron. Under normal sodium intake (0.32% Na(+)), ENaC open probability (P(o)) was modestly elevated in B1R, B2R(-/-) mice compared with wild-type mice. This difference is augmented during elevated Na(+) intake (2.00% Na(+)) and negated during Na(+) restriction (<0.01% Na(+)). Saturation of systemic mineralocorticoid status with deoxycorticosterone acetate similarly increased ENaC activity in both mouse strains, suggesting that the effect of BK on ENaC is independent of aldosterone. It is accepted that angiotensin-converting enzyme represents the major pathway of BK degradation. Systemic inhibition of angiotensin-converting enzyme with captopril (30 mg/kg of body weight for 7 days) significantly decreases ENaC activity and P(o) in wild-type mice, but this effect is diminished in B1R, B2R(-/-) mice. At the cellular level, acute captopril (100 μmol/L) treatment sensitized BK signaling cascade and greatly potentiated the inhibitory effect of 100 nmol/L of BK on ENaC. We concluded that BK cascade has its own specific role in blunting ENaC activity, particularly under conditions of elevated sodium intake. Augmentation of BK signaling in the aldosterone-sensitive distal nephron inhibits ENaC-mediated Na(+) reabsorption, contributing to the natriuretic and antihypertensive effects of angiotensin-converting enzyme inhibition.
Collapse
Affiliation(s)
- Mykola Mamenko
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
63
|
Haerteis S, Krappitz M, Diakov A, Krappitz A, Rauh R, Korbmacher C. Plasmin and chymotrypsin have distinct preferences for channel activating cleavage sites in the γ subunit of the human epithelial sodium channel. ACTA ACUST UNITED AC 2012; 140:375-89. [PMID: 22966015 PMCID: PMC3457690 DOI: 10.1085/jgp.201110763] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Proteolytic activation of the epithelial sodium channel (ENaC) involves cleavage of its γ subunit in a critical region targeted by several proteases. Our aim was to identify cleavage sites in this region that are functionally important for activation of human ENaC by plasmin and chymotrypsin. Sequence alignment revealed a putative plasmin cleavage site in human γENaC (K189) that corresponds to a plasmin cleavage site (K194) in mouse γENaC. We mutated this site to alanine (K189A) and expressed human wild-type (wt) αβγENaC and αβγK189AENaC in Xenopus laevis oocytes. The γK189A mutation reduced but did not abolish activation of ENaC whole cell currents by plasmin. Mutating a putative prostasin site (γRKRK178AAAA) had no effect on the stimulatory response to plasmin. In contrast, a double mutation (γRKRK178AAAA;K189A) prevented the stimulatory effect of plasmin. We conclude that in addition to the preferential plasmin cleavage site K189, the putative prostasin cleavage site RKRK178 may serve as an alternative site for proteolytic channel activation by plasmin. Interestingly, the double mutation delayed but did not abolish ENaC activation by chymotrypsin. The time-dependent appearance of cleavage products at the cell surface nicely correlated with the stimulatory effect of chymotrypsin on ENaC currents in oocytes expressing wt or double mutant ENaC. Delayed proteolytic activation of the double mutant channel with a stepwise recruitment of so-called near-silent channels was confirmed in single-channel recordings from outside-out patches. Mutating two phenylalanines (FF174) in the vicinity of the prostasin cleavage site prevented proteolytic activation by chymotrypsin. This indicates that chymotrypsin preferentially cleaves at FF174. The close proximity of FF174 to the prostasin site may explain why mutating the prostasin site impedes channel activation by chymotrypsin. In conclusion, this study supports the concept that different proteases have distinct preferences for certain cleavage sites in γENaC, which may be relevant for tissue-specific proteolytic ENaC activation.
Collapse
Affiliation(s)
- Silke Haerteis
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
64
|
Haerteis S, Krappitz M, Bertog M, Krappitz A, Baraznenok V, Henderson I, Lindström E, Murphy JE, Bunnett NW, Korbmacher C. Proteolytic activation of the epithelial sodium channel (ENaC) by the cysteine protease cathepsin-S. Pflugers Arch 2012; 464:353-65. [PMID: 22864553 PMCID: PMC3448907 DOI: 10.1007/s00424-012-1138-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/10/2012] [Accepted: 07/10/2012] [Indexed: 01/16/2023]
Abstract
Proteolytic processing of the amiloride-sensitive epithelial sodium channel (ENaC) by serine proteases is known to be important for channel activation. Inappropriate ENaC activation by proteases may contribute to the pathophysiology of cystic fibrosis and could be involved in sodium retention and the pathogenesis of arterial hypertension in the context of renal disease. We hypothesized that in addition to serine proteases, cathepsin proteases may activate ENaC. Cathepsin proteases belong to the group of cysteine proteases and play a pathophysiological role in inflammatory diseases. Under pathophysiological conditions, cathepsin-S (Cat-S) may reach ENaC in the apical membrane of epithelial cells. The aim of this study was to investigate the effect of purified Cat-S on human ENaC heterologously expressed in Xenopus laevis oocytes and on ENaC-mediated sodium transport in cultured M-1 mouse renal collecting duct cells. We demonstrated that Cat-S activates amiloride-sensitive whole-cell currents in ENaC-expressing oocytes. The stimulatory effect of Cat-S was preserved at pH 5. ENaC stimulation by Cat-S was associated with the appearance of a γENaC cleavage fragment at the plasma membrane indicating proteolytic channel activation. Mutating two valine residues (V182 and V193) in the critical region of γENaC prevented proteolytic activation of ENaC by Cat-S. Pre-incubation of the oocytes with the Cat-S inhibitor morpholinurea-leucine-homophenylalanine-vinylsulfone-phenyl (LHVS) prevented the stimulatory effect of Cat-S on ENaC. In contrast, LHVS had no effect on ENaC activation by the prototypical serine proteases trypsin and chymotrypsin. Cat-S also stimulated ENaC in differentiated renal epithelial cells. These findings demonstrate that the cysteine protease Cat-S can activate ENaC which may be relevant under pathophysiological conditions.
Collapse
Affiliation(s)
- Silke Haerteis
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstr. 6, 91054 Erlangen, Germany
| | - Matteus Krappitz
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstr. 6, 91054 Erlangen, Germany
| | - Marko Bertog
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstr. 6, 91054 Erlangen, Germany
| | - Annabel Krappitz
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstr. 6, 91054 Erlangen, Germany
| | | | | | | | - Jane E. Murphy
- Center for the Neurobiology of Digestive Diseases, Department of Surgery, University of California San Francisco, San Francisco, CA USA
| | - Nigel W. Bunnett
- Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, VIC 3052 Australia
| | - Christoph Korbmacher
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Waldstr. 6, 91054 Erlangen, Germany
| |
Collapse
|
65
|
Sharma JN. Association between the kinin–forming system and cardiovascular pathophysiology. Asian Pac J Trop Biomed 2012. [DOI: 10.1016/s2221-1691(12)60523-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|