51
|
Kemp BA, Howell NL, Padia SH. Intrarenal ghrelin receptor inhibition ameliorates angiotensin II-dependent hypertension in rats. Am J Physiol Renal Physiol 2018; 315:F1058-F1066. [PMID: 29923768 DOI: 10.1152/ajprenal.00010.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The intrarenal ghrelin receptor (GR) is localized to collecting duct (CD) cells, where it increases epithelial Na+ channel (αENaC)-dependent sodium reabsorption in rodents. We hypothesized that chronic GR inhibition with intrarenal GR siRNA lowers blood pressure (BP) in angiotensin II-dependent hypertension via reductions in αENaC-dependent sodium reabsorption. Uninephrectomized Sprague-Dawley rats ( n = 121) received subcutaneous osmotic pumps for chronic systemic delivery of angiotensin II or vehicle (5% dextrose in water). Rats also received intrarenal infusion of vehicle, GR siRNA, or scrambled (SCR) siRNA. In rats receiving intrarenal vehicle or intrarenal SCR siRNA, systemic angiotensin II infusion increased sodium retention and BP on day 1, and BP remained elevated throughout the 5-day study. These rats also demonstrated increased CD GR expression after 5 days of infusion. However, intrarenal GR siRNA infusion prevented angiotensin II-mediated sodium retention on day 1, induced a continuously negative cumulative sodium balance compared with angiotensin II alone, and reduced BP chronically. Glomerular filtration rate and renal blood flow remained unchanged in GR siRNA-infused rats. Systemic angiotensin II infusion also increased serum aldosterone levels, CD αENaC, and phosphorylated serum and glucocorticoid-inducible kinase 1 expression in rats with intrarenal SCR siRNA; however, these effects were not observed in the presence of intrarenal GR siRNA, despite exposure to the same systemic angiotensin II. These data demonstrate that chronic inhibition of intrarenal GR activity significantly reduces αENaC-dependent sodium retention, resulting in a negative cumulative sodium balance, thereby ameliorating angiotensin II-induced hypertension in rats. Renal GRs represent a novel therapeutic target for the treatment of hypertension and other sodium-retaining states.
Collapse
Affiliation(s)
- Brandon A Kemp
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Nancy L Howell
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine , Charlottesville, Virginia
| | - Shetal H Padia
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia School of Medicine , Charlottesville, Virginia
| |
Collapse
|
52
|
Riquier-Brison ADM, Sipos A, Prókai Á, Vargas SL, Toma L, Meer EJ, Villanueva KG, Chen JCM, Gyarmati G, Yih C, Tang E, Nadim B, Pendekanti S, Garrelds IM, Nguyen G, Danser AHJ, Peti-Peterdi J. The macula densa prorenin receptor is essential in renin release and blood pressure control. Am J Physiol Renal Physiol 2018; 315:F521-F534. [PMID: 29667908 DOI: 10.1152/ajprenal.00029.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The prorenin receptor (PRR) was originally proposed to be a member of the renin-angiotensin system (RAS); however, recent work questioned their association. The present paper describes a functional link between the PRR and RAS in the renal juxtaglomerular apparatus (JGA), a classic anatomical site of the RAS. PRR expression was found in the sensory cells of the JGA, the macula densa (MD), and immunohistochemistry-localized PRR to the MD basolateral cell membrane in mouse, rat, and human kidneys. MD cell PRR activation led to MAP kinase ERK1/2 signaling and stimulation of PGE2 release, the classic pathway of MD-mediated renin release. Exogenous renin or prorenin added to the in vitro microperfused JGA-induced acute renin release, which was inhibited by removing the MD or by the administration of a PRR decoy peptide. To test the function of MD PRR in vivo, we established a new mouse model with inducible conditional knockout (cKO) of the PRR in MD cells based on neural nitric oxide synthase-driven Cre-lox recombination. Deletion of the MD PRR significantly reduced blood pressure and plasma renin. Challenging the RAS by low-salt diet + captopril treatment caused further significant reductions in blood pressure, renal renin, cyclooxygenase-2, and microsomal PGE synthase expression in cKO vs. wild-type mice. These results suggest that the MD PRR is essential in a novel JGA short-loop feedback mechanism, which is integrated within the classic MD mechanism to control renin synthesis and release and to maintain blood pressure.
Collapse
Affiliation(s)
- Anne D M Riquier-Brison
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| | - Arnold Sipos
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| | - Ágnes Prókai
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| | - Sarah L Vargas
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| | - Lldikó Toma
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| | - Elliott J Meer
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| | - Karie G Villanueva
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| | - Jennifer C M Chen
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| | - Georgina Gyarmati
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| | - Christopher Yih
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| | - Elaine Tang
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| | - Bahram Nadim
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| | - Sujith Pendekanti
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| | - Ingrid M Garrelds
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam , The Netherlands
| | - Genevieve Nguyen
- Centre for Interdisciplinary Research in Biology, UMR INSERM U1050, Collège de France, Paris , France
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC, Rotterdam , The Netherlands
| | - János Peti-Peterdi
- Departments of Physiology and Neuroscience, and Medicine, Zilkha Neurogenetic Institute, University of Southern California , Los Angeles, California
| |
Collapse
|
53
|
Hennrikus M, Gonzalez AA, Prieto MC. The prorenin receptor in the cardiovascular system and beyond. Am J Physiol Heart Circ Physiol 2018; 314:H139-H145. [PMID: 29101170 PMCID: PMC5867650 DOI: 10.1152/ajpheart.00373.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 01/24/2023]
Abstract
Since the prorenin receptor (PRR) was first reported, its physiological role in many cellular processes has been under intense scrutiny. The PRR is currently recognized as a multifunctional receptor with major roles as an accessory protein of the vacuolar-type H+-ATPase and as an intermediary in the Wnt signaling pathway. As a member of the renin-angiotensin system (RAS), the PRR has demonstrated to be of relevance in cardiovascular diseases (CVD) because it can activate prorenin and enhance the enzymatic activity of renin, thus promoting angiotensin II formation. Indeed, there is an association between PRR gene polymorphisms and CVD. Independent of angiotensin II, the activation of the PRR further stimulates intracellular signals linked to fibrosis. Studies using tissues and cells from a variety of organs and systems have supported its roles in multiple functions, although some remain controversial. In the brain, the PRR appears to be involved in the central regulation of blood pressure via activation of RAS- and non-RAS-dependent mechanisms. In the heart, the PRR promotes atrial structural and electrical remodeling. Nonetheless, animals overexpressing the PRR do not exhibit cardiac injury. In the kidney, the PRR is involved in the development of ureteric bud branching, urine concentration, and regulation of blood pressure. There is great interest in the PRR contributions to T cell homeostasis and to the development of visceral and brown fat. In this mini-review, we discuss the evidence for the pathophysiological roles of the PRR with emphasis in CVD.
Collapse
Affiliation(s)
- Matthew Hennrikus
- Department of Physiology, Tulane University School of Medicine , New Orleans, Louisiana
| | - Alexis A Gonzalez
- Instituto de Química, Pontificia Universidad Católica de Valparaíso , Valparaíso , Chile
| | - Minolfa C Prieto
- Department of Physiology, Tulane University School of Medicine , New Orleans, Louisiana
- Tulane University Renal and Hypertension Center of Excellence , New Orleans, Louisiana
| |
Collapse
|