51
|
Yun JH, Park SJ, Jo A, Kang JL, Jou I, Park JS, Choi YH. Caveolin-1 is involved in reactive oxygen species-induced SHP-2 activation in astrocytes. Exp Mol Med 2012; 43:660-8. [PMID: 21918362 DOI: 10.3858/emm.2011.43.12.075] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Recent evidence supports a neuroprotective role of Src homology 2-containing protein tyrosine phosphatase 2 (SHP-2) against ischemic brain injury. However, the molecular mechanisms of SHP-2 activation and those governing how SHP-2 exerts its function under oxidative stress conditions are not well understood. Recently we have reported that reactive oxygen species (ROS)-mediated oxidative stress promotes the phosphorylation of endogenous SHP-2 through lipid rafts, and that this phosphorylation strongly occurs in astrocytes, but not in microglia. To investigate the molecules involved in events leading to phosphorylation of SHP-2, raft proteins were analyzed using astrocytes and microglia. Interestingly, caveolin-1 and -2 were detected only in astrocytes but not in microglia, whereas flotillin-1 was expressed in both cell types. To examine whether the H2O2-dependent phosphorylation of SHP-2 is mediated by caveolin-1, we used specific small interfering RNA (siRNA) to downregulate caveolin- 1 expression. In the presence of caveolin-1 siRNA, the level of SHP-2 phosphorylation induced by H2O2 was significantly decreased, compared with in the presence of control siRNA. Overexpression of caveolin- 1 effectively increased H2O2-induced SHP-2 phosphorylation in microglia. Lastly, H2O2 induced extracellular signal-regulated kinase (ERK) activation in astrocytes through caveolin-1. Our results suggest that caveolin-1 is involved in astrocyte-specific intracellular responses linked to the SHP-2-mediated signaling cascade following ROS-induced oxidative stress.
Collapse
Affiliation(s)
- Ji Hee Yun
- Department of Physiology, Ewha Womans University School of Medicine Seoul 158-710, Korea
| | | | | | | | | | | | | |
Collapse
|
52
|
Abstract
The primary function of the mammalian lung is to facilitate diffusion of oxygen to venous blood and to ventilate carbon dioxide produced by catabolic reactions within cells. However, it is also responsible for a variety of other important functions, including host defense and production of vasoactive agents to regulate not only systemic blood pressure, but also water, electrolyte and acid-base balance. Caveolin-1 is highly expressed in the majority of cell types in the lung, including epithelial, endothelial, smooth muscle, connective tissue cells, and alveolar macrophages. Deletion of caveolin-1 in these cells results in major functional aberrations, suggesting that caveolin-1 may be crucial to lung homeostasis and development. Furthermore, generation of mutant mice that under-express caveolin-1 results in severe functional distortion with phenotypes covering practically the entire spectrum of known lung diseases, including pulmonary hypertension, fibrosis, increased endothelial permeability, and immune defects. In this Chapter, we outline the current state of knowledge regarding caveolin-1-dependent regulation of pulmonary cell functions and discuss recent research findings on the role of caveolin-1 in various pulmonary disease states, including obstructive and fibrotic pulmonary vascular and inflammatory diseases.
Collapse
|
53
|
Gosens R, Stelmack GL, Bos ST, Dueck G, Mutawe MM, Schaafsma D, Unruh H, Gerthoffer WT, Zaagsma J, Meurs H, Halayko AJ. Caveolin-1 is required for contractile phenotype expression by airway smooth muscle cells. J Cell Mol Med 2011; 15:2430-42. [PMID: 21199324 PMCID: PMC3822954 DOI: 10.1111/j.1582-4934.2010.01246.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 12/14/2010] [Indexed: 12/18/2022] Open
Abstract
Airway smooth muscle cells exhibit phenotype plasticity that underpins their ability to contribute both to acute bronchospasm and to the features of airway remodelling in chronic asthma. A feature of mature, contractile smooth muscle cells is the presence of abundant caveolae, plasma membrane invaginations that develop from the association of lipid rafts with caveolin-1, but the functional role of caveolae and caveolin-1 in smooth muscle phenotype plasticity is unknown. Here, we report a key role for caveolin-1 in promoting phenotype maturation of differentiated airway smooth muscle induced by transforming growth factor (TGF)-β(1). As assessed by Western analysis and laser scanning cytometry, caveolin-1 protein expression was selectively enriched in contractile phenotype airway myocytes. Treatment with TGF-β(1) induced profound increases in the contractile phenotype markers sm-α-actin and calponin in cells that also accumulated abundant caveolin-1; however, siRNA or shRNAi inhibition of caveolin-1 expression largely prevented the induction of these contractile phenotype marker proteins by TGF-β(1). The failure by TGF-β(1) to adequately induce the expression of these smooth muscle specific proteins was accompanied by a strongly impaired induction of eukaryotic initiation factor-4E binding protein(4E-BP)1 phosphorylation with caveolin-1 knockdown, indicating that caveolin-1 expression promotes TGF-β(1) signalling associated with myocyte maturation and hypertrophy. Furthermore, we observed increased expression of caveolin-1 within the airway smooth muscle bundle of guinea pigs repeatedly challenged with allergen, which was associated with increased contractile protein expression, thus providing in vivo evidence linking caveolin-1 expression with accumulation of contractile phenotype myocytes. Collectively, we identify a new function for caveolin-1 in controlling smooth muscle phenotype; this mechanism could contribute to allergic asthma.
Collapse
Affiliation(s)
- Reinoud Gosens
- Departments of Physiology & Internal Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child HealthWinnipeg, Manitoba, Canada
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
| | - Gerald L Stelmack
- Departments of Physiology & Internal Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child HealthWinnipeg, Manitoba, Canada
| | - Sophie T Bos
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
| | - Gordon Dueck
- Departments of Physiology & Internal Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child HealthWinnipeg, Manitoba, Canada
| | - Mark M Mutawe
- Departments of Physiology & Internal Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child HealthWinnipeg, Manitoba, Canada
| | - Dedmer Schaafsma
- Departments of Physiology & Internal Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child HealthWinnipeg, Manitoba, Canada
| | - Helmut Unruh
- Section of Thoracic Surgery, University of ManitobaWinnipeg, Manitoba, Canada
| | - William T Gerthoffer
- Department of Pharmacology, University of Nevada School of MedicineReno, NV, USA
| | - Johan Zaagsma
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
| | - Herman Meurs
- Department of Molecular Pharmacology, University of GroningenGroningen, The Netherlands
| | - Andrew J Halayko
- Departments of Physiology & Internal Medicine, University of ManitobaWinnipeg, Manitoba, Canada
- Biology of Breathing Group, Manitoba Institute of Child HealthWinnipeg, Manitoba, Canada
| |
Collapse
|
54
|
Zhang Y, Peng F, Gao B, Ingram AJ, Krepinsky JC. High glucose-induced RhoA activation requires caveolae and PKCβ1-mediated ROS generation. Am J Physiol Renal Physiol 2011; 302:F159-72. [PMID: 21975875 DOI: 10.1152/ajprenal.00749.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glomerular matrix accumulation is a hallmark of diabetic nephropathy. We previously showed that RhoA activation by high glucose in mesangial cells (MC) leads to matrix upregulation (Peng F, Wu D, Gao B, Ingram AJ, Zhang B, Chorneyko K, McKenzie R, Krepinsky JC. Diabetes 57: 1683-1692, 2008). Here, we study the mechanism whereby RhoA is activated. In primary rat MC, RhoA activation required glucose entry and metabolism. Broad PKC inhibitors (PMA, bisindolylmaleimide, Gö6976), as well as specific PKCβ blockade with an inhibitor and small interfering RNA (siRNA), prevented RhoA activation by glucose. PKCβ inhibition also abrogated reactive oxygen species (ROS) generation by glucose. The ROS scavenger N-acetylcysteine (NAC) or NADPH oxidase inhibitors apocynin and DPI prevented glucose-induced RhoA activation. RhoA and some PKC isoforms localize to caveolae. Chemical disruption of these microdomains prevented RhoA and PKCβ1 activation by glucose. In caveolin-1 knockout cells, glucose did not induce RhoA and PKCβ1 activation; these responses were rescued by caveolin-1 reexpression. Furthermore, glucose-induced ROS generation was significantly attenuated by chemical disruption of caveolae and in knockout cells. Downstream of RhoA signaling, activator protein-1 (AP-1) activation was also inhibited by disrupting caveolae, was absent in caveolin-1 knockout MC and rescued by caveolin-1 reexpression. Finally, transforming growth factor (TGF)-β1 upregulation, mediated by AP-1, was prevented by RhoA signaling inhibition and by disruption or absence of caveolae. In conclusion, RhoA activation by glucose is dependent on PKCβ1-induced ROS generation, most likely through NADPH oxidase. The activation of PKCβ1 and its downstream effects, including upregulation of TGF-β1, requires caveolae. These microdomains are thus important mediators of the profibrogenic process associated with diabetic nephropathy.
Collapse
Affiliation(s)
- Y Zhang
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
55
|
Mo S, Yang S, Cui Z. New glimpses of caveolin-1 functions in embryonic development and human diseases. FRONTIERS IN BIOLOGY 2011; 6:367. [PMID: 32215005 PMCID: PMC7089126 DOI: 10.1007/s11515-011-1132-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 12/30/2010] [Indexed: 11/17/2022]
Abstract
Caveolin-1 (Cav-1) isoforms, including Cav-1α and Cav-1β, were identified as integral membrane proteins and the major components of caveolae. Cav-1 proteins are highly conserved during evolution from {itCaenorhabditis elegans} to human and are capable of interacting with many signaling molecules through their caveolin scaffolding domains to regulate the activities of multiple signaling pathways. Thus, Cav-1 plays crucial roles in the regulation of cellular proliferation, differentiation and apoptosis in a cell-specific and contextual manner. In addition, Cav-1 is essential for embryonic development of vertebrates owing to its regulation of BMP, Wnt, TGF-β and other key signaling molecules. Moreover, Cav-1 is mainly expressed in terminally differentiated cells and its abnormal expression is often associated with human diseases, such as tumor progression, cardiovascular diseases, fibrosis, lung regeneration, and diseases related to virus. In this review, we will further discuss the potential of Cav-1 as a target for disease therapy and multiple drug resistance.
Collapse
Affiliation(s)
- Saijun Mo
- Department of Basic Oncology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Shengli Yang
- Department of Basic Oncology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001 China
| | - Zongbin Cui
- Key Laboratory of Biodiversity and Conservation of Aquatic Organism, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| |
Collapse
|
56
|
Zhu L, Jiang R, Aoudjit L, Jones N, Takano T. Activation of RhoA in podocytes induces focal segmental glomerulosclerosis. J Am Soc Nephrol 2011; 22:1621-30. [PMID: 21804090 DOI: 10.1681/asn.2010111146] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Proper organization of the actin cytoskeleton is essential for the normal structure and function of podocytes. RhoA modulates actin dynamics but its role in podocyte biology is controversial. Here, we generated transgenic mice that express a constitutively active form of RhoA in a podocyte-specific and doxycycline-inducible manner. Induction of activated RhoA with doxycycline resulted in significant albuminuria. Furthermore, both the degree of albuminuria and the histologic changes in the glomerulus positively correlated with the level of constitutively active RhoA expression: low levels of expression associated with segmental foot-process effacement without changes observable by light microscopy, whereas higher levels of expression associated with both extensive foot-process effacement and histologic features of focal segmental glomerulosclerosis (FSGS). In addition, induction of activated RhoA markedly upregulated glomerular mRNA expression of fibronectin and collagen IA1, and the degree of upregulation positively correlated with the level of albuminuria. Withdrawal of doxycycline led to a decline in albuminuria toward basal levels in most mice, but heavy albuminuria persisted in some mice. Taken together, these data suggest that activation of RhoA in podocytes leads to albuminuria accompanied by a range of histologic changes characteristic of minimal change disease and FSGS in humans. Although most changes are reversible, severe and prolonged activation of RhoA may cause irreversible glomerulosclerosis.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
57
|
Samarakoon R, Chitnis SS, Higgins SP, Higgins CE, Krepinsky JC, Higgins PJ. Redox-induced Src kinase and caveolin-1 signaling in TGF-β1-initiated SMAD2/3 activation and PAI-1 expression. PLoS One 2011; 6:e22896. [PMID: 21829547 PMCID: PMC3145778 DOI: 10.1371/journal.pone.0022896] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 07/08/2011] [Indexed: 11/29/2022] Open
Abstract
Background Plasminogen activator inhibitor-1 (PAI-1), a major regulator of the plasmin-based pericellular proteolytic cascade, is significantly increased in human arterial plaques contributing to vessel fibrosis, arteriosclerosis and thrombosis, particularly in the context of elevated tissue TGF-β1. Identification of molecular events underlying to PAI-1 induction in response to TGF-β1 may yield novel targets for the therapy of cardiovascular disease. Principal Findings Reactive oxygen species are generated within 5 minutes after addition of TGF-β1 to quiescent vascular smooth muscle cells (VSMCs) resulting in pp60c-src activation and PAI-1 expression. TGF-β1-stimulated Src kinase signaling sustained the duration (but not the initiation) of SMAD3 phosphorylation in VSMC by reducing the levels of PPM1A, a recently identified C-terminal SMAD2/3 phosphatase, thereby maintaining SMAD2/3 in an active state with retention of PAI-1 transcription. The markedly increased PPM1A levels in triple Src kinase (c-Src, Yes, Fyn)-null fibroblasts are consistent with reductions in both SMAD3 phosphorylation and PAI-1 expression in response to TGF-β1 compared to wild-type cells. Activation of the Rho-ROCK pathway was mediated by Src kinases and required for PAI-1 induction in TGF-β1-stimulated VSMCs. Inhibition of Rho-ROCK signaling blocked the TGF-β1-mediated decrease in nuclear PPM1A content and effectively attenuated PAI-1 expression. TGF-β1-induced PAI-1 expression was undetectable in caveolin-1-null cells, correlating with the reduced Rho-GTP loading and SMAD2/3 phosphorylation evident in TGF-β1-treated caveolin-1-deficient cells relative to their wild-type counterparts. Src kinases, moreover, were critical upstream effectors of caveolin-1Y14 phosphoryation and initiation of downstream signaling. Conclusions TGF-β1-initiated Src-dependent caveolin-1Y14 phosphorylation is a critical event in Rho-ROCK-mediated suppression of nuclear PPM1A levels maintaining, thereby, SMAD2/3-dependent transcription of the PAI-1 gene.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Aorta/metabolism
- Blotting, Western
- Caveolin 1/metabolism
- Cells, Cultured
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Humans
- Immunoenzyme Techniques
- Mice
- Mice, Knockout
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Oxidation-Reduction
- Phosphoprotein Phosphatases/antagonists & inhibitors
- Phosphoprotein Phosphatases/genetics
- Phosphoprotein Phosphatases/metabolism
- Phosphorylation
- Plasminogen Activator Inhibitor 1/metabolism
- Protein Phosphatase 2C
- Proto-Oncogene Proteins pp60(c-src)/metabolism
- RNA, Small Interfering/genetics
- Rats
- Reactive Oxygen Species
- Signal Transduction
- Smad2 Protein/genetics
- Smad2 Protein/metabolism
- Smad3 Protein/antagonists & inhibitors
- Smad3 Protein/genetics
- Smad3 Protein/metabolism
- Transforming Growth Factor beta1/pharmacology
Collapse
Affiliation(s)
- Rohan Samarakoon
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - Subhanir S. Chitnis
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - Stephen P. Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - Craig E. Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
| | - Joan C. Krepinsky
- Division of Nephrology, McMaster University, Hamilton, Ontario, Canada
| | - Paul J. Higgins
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
58
|
Gao X, Huang L, Grosjean F, Esposito V, Wu J, Fu L, Hu H, Tan J, He C, Gray S, Jain MK, Zheng F, Mei C. Low-protein diet supplemented with ketoacids reduces the severity of renal disease in 5/6 nephrectomized rats: a role for KLF15. Kidney Int 2011; 79:987-96. [PMID: 21248717 DOI: 10.1038/ki.2010.539] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Dietary protein restriction is an important treatment for chronic kidney disease. Herein, we tested the effect of low-protein or low-protein plus ketoacids (KA) diet in a remnant kidney model. Rats with a remnant kidney were randomized to receive normal protein diet (22%), low-protein (6%) diet (LPD), or low-protein (5%) plus KA (1%) diet for 6 months. Protein restriction prevented proteinuria, decreased blood urea nitrogen levels, and renal lesions; however, the LPD retarded growth and decreased serum albumin levels. Supplementation with KA corrected these abnormalities and provided superior renal protection compared with protein restriction alone. The levels of Kruppel-like factor-15 (KLF15), a transcription factor shown to reduce cardiac fibrosis, were decreased in remnant kidneys. Protein restriction, which increased KLF15 levels in the normal kidney, partially recovered the levels of KLF15 in remnant kidney. The expression of KLF15 in mesangial cells was repressed by oxidative stress, transforming growth factor-β, and tumor necrosis factor (TNF)-α. The suppressive effect of TNF-α on KLF15 expression was mediated by TNF receptor-1 and nuclear factor-κB. Overexpression of KLF15 in mesangial and HEK293 cells significantly decreased fibronectin and type IV collagen mRNA levels. Furthermore, KLF15 knockout mice developed glomerulosclerosis following uninephrectomy. Thus, KLF15 may be an antifibrotic factor in the kidney, and its decreased expression may contribute to the progression of kidney disease.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Medicine, Kidney Institute of PLA, Changzheng Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Park JH, Ryu JM, Han HJ. Involvement of caveolin-1 in fibronectin-induced mouse embryonic stem cell proliferation: role of FAK, RhoA, PI3K/Akt, and ERK 1/2 pathways. J Cell Physiol 2010; 226:267-75. [PMID: 20658539 DOI: 10.1002/jcp.22338] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fibronectin (FN) is the foremost proliferation-associated extracellular matrix component promoting cell adhesion, migration, and survival. We examined the effect of FN on cell proliferation and the related signaling pathways in mouse embryonic stem (ES) cells. FN increased integrin β1, Src, focal adhesion kinase (FAK), and caveolin-1 phosphorylation levels in a time-dependent manner. Phosphorylation of Src, FAK, and caveolin-1 was attenuated by integrin β1 neutralizing antibody. Integrin β1, Src, and FAK coimmunoprecipitated with caveolin-1 in the presence of FN. In addition, FN increased RhoA and Rho kinase activation, which were completely blocked by PP2, FAK small interfering RNA (siRNA), caveolin-1 siRNA, or the caveolar disruptor methyl-β-cyclodextrin (MβCD). FN also increased phosphorylation of Akt and ERK 1/2, which were significantly blocked by either FAK siRNA, caveolin-1 siRNA, MβCD, GGTI-286 (RhoA inhibitor), or Y-27632 (Rho kinase inhibitor). FN-induced increase of protooncogenes (c-fos, c-myc, and c-Jun) and cell-cycle regulatory proteins (cyclin D1/CDK4 and cyclin E/CDK2) expression levels were attenuated by FAK siRNA or caveolin-1 siRNA. Furthermore, inhibition of each pathway such as integrin β1, Src, FAK, caveolin-1, RhoA, Akt, and ERK 1/2 blocked FN-induced [(3)H]-thymidine incorporation. We conclude that FN stimulates mouse ES cell proliferation via RhoA-PI3K/Akt-ERK 1/2 pathway through caveolin-1 phosphorylation.
Collapse
Affiliation(s)
- Jae Hong Park
- Department of Veterinary Physiology, Biotherapy Human Resources Center (BK 21), College of Veterinary Medicine, Chonnam National University, Gwangju, Korea
| | | | | |
Collapse
|
60
|
Pattabiraman PP, Rao PV. Mechanistic basis of Rho GTPase-induced extracellular matrix synthesis in trabecular meshwork cells. Am J Physiol Cell Physiol 2009; 298:C749-63. [PMID: 19940066 DOI: 10.1152/ajpcell.00317.2009] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Elevated intraocular pressure arising from impaired aqueous humor drainage through the trabecular pathway is a major risk factor for glaucoma. To understand the molecular basis for Rho GTPase-mediated resistance to aqueous humor drainage, we investigated the possible interrelationship between actomyosin contractile properties and extracellular matrix (ECM) synthesis in human trabecular meshwork (TM) cells expressing a constitutively active form of RhoA (RhoAV14). TM cells expressing RhoAV14 exhibited significant increases in fibronectin, tenascin C, laminin, alpha-smooth muscle actin (alpha-SMA) levels, and matrix assembly in association with increased actin stress fibers and myosin light-chain phosphorylation. RhoAV14-induced changes in ECM synthesis and actin cytoskeletal reorganization were mimicked by lysophosphatidic acid and TGF-beta(2), known to increase resistance to aqueous humor outflow and activate Rho/Rho kinase signaling. RhoAV14, lysophosphatidic acid, and TGF-beta(2) stimulated significant increases in Erk1/2 phosphorylation, paralleled by profound increases in fibronectin, serum response factor (SRF), and alpha-SMA expression. Treatment of RhoA-activated TM cells with inhibitors of Rho kinase or Erk, on the other hand, decreased fibronectin and alpha-SMA levels. Although suppression of SRF expression (both endogenous and RhoA, TGF-beta(2)-stimulated) via the use of short hairpin RNA decreased alpha-SMA levels, fibronectin was unaffected. Conversely, fibronectin induced alpha-SMA expression in an SRF-dependent manner. Collectively, data on RhoA-induced changes in actomyosin contractile activity, ECM synthesis/assembly, and Erk activation, along with fibronectin-induced alpha-SMA expression in TM cells, reveal a potential molecular interplay between actomyosin cytoskeletal tension and ECM synthesis/assembly. This interaction could be significant for the homeostasis of aqueous humor drainage through the pressure-sensitive trabecular pathway.
Collapse
|
61
|
Abstract
PURPOSE OF REVIEW Substantial evidence documents the key role of lipid (membrane) rafts and caveolae as microdomains that concentrate a wide variety of receptors and postreceptor components regulated by hormones, neurotransmitters and growth factors. RECENT FINDINGS Recent data document that these microdomains are important in regulating vascular endothelial and smooth muscle cells and renal epithelial cells, and particularly in signal transduction across the plasma membrane. SUMMARY Raft/caveolae domains are cellular regions, including in cardiovascular and renal epithelial cells, which organize a large number of signal transduction components, thereby providing spatially and temporally efficient regulation of cell function.
Collapse
|
62
|
van Dokkum RP, Buikema H. Possible new druggable targets for the treatment of nephrosis. Perhaps we should find them in caveolea? Curr Opin Pharmacol 2009; 9:132-8. [PMID: 19157981 DOI: 10.1016/j.coph.2008.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 12/03/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
Abstract
Nephrosis refers to a condition resulting from proteinuric kidney disease, leading to irreversible renal parenchymal damage and end-stage renal disease when left untreated. Furthermore, nephrosis appears to be a communicable disease carrying risks and complications to other organs such as the heart. Key pathophysiolgical processes involved in initiating and progressing renal damage in nephrosis and its complications may include altered glomerular hemodynamics after initial renal damage and loss of nephrons, nephrotoxicity of increased renal protein traffic enforcing intrinsic 'common pathway' mechanisms of renal scarring, and generalized endothelial dysfunction proceeding CV disease. The reader is first provided a basic overview on key mechanisms, targets and therapies in nephrosis while referred to some excellent updates hereon for more detailed information. The broader purpose of this short review, however, is to highlight caveolae/caveolins and caveolar function as central modulators in all the above key processes of nephrosis. Caveolae - little caves in the plasma membrane that are particularly abundant in endothelial cells, amongst others - are now known to be involved not only in endothelial transcytosis (e.g. of albumin) but also in cholesterol homeostasis (LDL-transport) and, importantly, in signal transduction such as insulin signalling and nitric oxide signalling in endothelial function and regulation of vasomotor tone, as well as signalling by growth factor receptors - such as TGF-beta - which may participate in renal scarring. It is suggested that caveolae may represent crucial sites where possible new druggable targets in nephrosis may be found.
Collapse
Affiliation(s)
- Richard Pe van Dokkum
- Department of Clinical Pharmacology, University of Groningen/University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, Netherlands
| | | |
Collapse
|