51
|
Fain SB, Eldridge MW. Exploring new heights with pulmonary functional imaging: insights into high-altitude pulmonary edema. J Appl Physiol (1985) 2017; 122:853-854. [PMID: 28235856 DOI: 10.1152/japplphysiol.00168.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 11/22/2022] Open
Affiliation(s)
- Sean B Fain
- University of Wisconsin-Madison Medical School, Wisconsin; and
| | - Marlowe W Eldridge
- Pediatric Critical Care Medicine Departments of Pediatrics, Kinesiology and Biomedical Engineering, University of Wisconsin-Madison, Wisconsin
| |
Collapse
|
52
|
Patz MD, Sá RC, Darquenne C, Elliott AR, Asadi AK, Theilmann RJ, Dubowitz DJ, Swenson ER, Prisk GK, Hopkins SR. Susceptibility to high-altitude pulmonary edema is associated with a more uniform distribution of regional specific ventilation. J Appl Physiol (1985) 2017; 122:844-852. [PMID: 28057815 DOI: 10.1152/japplphysiol.00494.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 12/29/2016] [Accepted: 01/03/2017] [Indexed: 01/09/2023] Open
Abstract
High-altitude pulmonary edema (HAPE) is a potentially fatal condition affecting high-altitude sojourners. The biggest predictor of HAPE development is a history of prior HAPE. Magnetic resonance imaging (MRI) shows that HAPE-susceptible (with a history of HAPE), but not HAPE-resistant (with a history of repeated ascents without illness) individuals develop greater heterogeneity of regional pulmonary perfusion breathing hypoxic gas (O2 = 12.5%), consistent with uneven hypoxic pulmonary vasoconstriction (HPV). Why HPV is uneven in HAPE-susceptible individuals is unknown but may arise from regionally heterogeneous ventilation resulting in an uneven stimulus to HPV. We tested the hypothesis that ventilation is more heterogeneous in HAPE-susceptible subjects (n = 6) compared with HAPE-resistant controls (n = 7). MRI specific ventilation imaging (SVI) was used to measure regional specific ventilation and the relative dispersion (SD/mean) of SVI used to quantify baseline heterogeneity. Ventilation heterogeneity from conductive and respiratory airways was measured in normoxia and hypoxia (O2 = 12.5%) using multiple-breath washout and heterogeneity quantified from the indexes Scond and Sacin, respectively. Contrary to our hypothesis, HAPE-susceptible subjects had significantly lower relative dispersion of specific ventilation than the HAPE-resistant controls [susceptible = 1.33 ± 0.67 (SD), resistant = 2.36 ± 0.98, P = 0.05], and Sacin tended to be more uniform (susceptible = 0.085 ± 0.009, resistant = 0.113 ± 0.030, P = 0.07). Scond was not significantly different between groups (susceptible = 0.019 ± 0.007, resistant = 0.020 ± 0.004, P = 0.67). Sacin and Scond did not change significantly in hypoxia (P = 0.56 and 0.19, respectively). In conclusion, ventilation heterogeneity does not change with short-term hypoxia irrespective of HAPE susceptibility, and lesser rather than greater ventilation heterogeneity is observed in HAPE-susceptible subjects. This suggests that the basis for uneven HPV in HAPE involves vascular phenomena.NEW & NOTEWORTHY Uneven hypoxic pulmonary vasoconstriction (HPV) is thought to incite high-altitude pulmonary edema (HAPE). We evaluated whether greater heterogeneity of ventilation is also a feature of HAPE-susceptible subjects compared with HAPE-resistant subjects. Contrary to our hypothesis, ventilation heterogeneity was less in HAPE-susceptible subjects and unaffected by hypoxia, suggesting a vascular basis for uneven HPV.
Collapse
Affiliation(s)
- Michael D Patz
- Department of Anesthesiology, University of Washington, Seattle, Washington
| | - Rui C Sá
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Chantal Darquenne
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Ann R Elliott
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Amran K Asadi
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Rebecca J Theilmann
- Department of Radiology, University of California, San Diego, La Jolla, California; and
| | - David J Dubowitz
- Department of Radiology, University of California, San Diego, La Jolla, California; and
| | - Erik R Swenson
- Medical Service, Veterans Affairs Puget Sound Health Care System, University of Washington, Seattle, Washington
| | - G Kim Prisk
- Department of Medicine, University of California, San Diego, La Jolla, California.,Department of Radiology, University of California, San Diego, La Jolla, California; and
| | - Susan R Hopkins
- Department of Medicine, University of California, San Diego, La Jolla, California; .,Department of Radiology, University of California, San Diego, La Jolla, California; and
| |
Collapse
|
53
|
Foy BH, Kay D, Bordas R. Modelling responses of the inert-gas washout and MRI to bronchoconstriction. Respir Physiol Neurobiol 2017; 235:8-17. [DOI: 10.1016/j.resp.2016.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/18/2016] [Accepted: 09/20/2016] [Indexed: 10/20/2022]
|
54
|
Dietrich O, Gaass T, Reiser MF. T1 relaxation time constants, influence of oxygen, and the oxygen transfer function of the human lung at 1.5 T—A meta-analysis. Eur J Radiol 2017; 86:252-260. [DOI: 10.1016/j.ejrad.2016.11.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 12/13/2022]
|
55
|
He M, Driehuys B, Que LG, Huang YCT. Using Hyperpolarized 129Xe MRI to Quantify the Pulmonary Ventilation Distribution. Acad Radiol 2016; 23:1521-1531. [PMID: 27617823 DOI: 10.1016/j.acra.2016.07.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/22/2016] [Accepted: 07/15/2016] [Indexed: 12/31/2022]
Abstract
RATIONALE AND OBJECTIVES Ventilation heterogeneity is impossible to detect with spirometry. Alternatively, pulmonary ventilation can be imaged three-dimensionally using inhaled 129Xe magnetic resonance imaging (MRI). To date, such images have been quantified primarily based on ventilation defects. Here, we introduce a robust means to transform 129Xe MRI scans such that the underlying ventilation distribution and its heterogeneity can be quantified. MATERIALS AND METHODS Quantitative 129Xe ventilation MRI was conducted in 12 younger (24.7 ± 5.2 years) and 10 older (62.2 ± 7.2 years) healthy individuals, as well as in 9 younger (25.9 ± 6.4 yrs) and 10 older (63.2 ± 6.1 years) asthmatics. The younger healthy population was used to establish a reference ventilation distribution and thresholds for six intensity bins. These bins were used to display and quantify the ventilation defect region (VDR), the low ventilation region (LVR), and the high ventilation region (HVR). RESULTS The ventilation distribution in young subjects was roughly Gaussian with a mean and standard deviation of 0.52 ± 0.18, resulting in VDR = 2.1 ± 1.3%, LVR = 15.6 ± 5.4%, and HVR = 17.4 ± 3.1%. Older healthy volunteers exhibited a significantly right-skewed distribution (0.46 ± 0.20, P = 0.034), resulting in significantly increased VDR (7.0 ± 4.8%, P = 0.008) and LVR (24.5 ± 11.5%, P = 0.025). In the asthmatics, VDR and LVR increased in the older population, and HVR was significantly reduced (13.5 ± 4.6% vs 18.9 ± 4.5%, P = 0.009). Quantitative 129Xe MRI also revealed altered ventilation heterogeneity in response to albuterol in two asthmatics with normal spirometry. CONCLUSIONS Quantitative 129Xe MRI provides a robust and objective means to display and quantify the pulmonary ventilation distribution, even in subjects who have airway function impairment not appreciated by spirometry.
Collapse
|
56
|
Arai TJ, Theilmann RJ, Sá RC, Villongco MT, Hopkins SR. The effect of lung deformation on the spatial distribution of pulmonary blood flow. J Physiol 2016; 594:6333-6347. [PMID: 27273807 PMCID: PMC5088230 DOI: 10.1113/jp272030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/31/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Pulmonary perfusion measurement using magnetic resonance imaging combined with deformable image registration enabled us to quantify the change in the spatial distribution of pulmonary perfusion at different lung volumes. The current study elucidated the effects of tidal volume lung inflation [functional residual capacity (FRC) + 500 ml and FRC + 1 litre] on the change in pulmonary perfusion distribution. Changes in hydrostatic pressure distribution as well as transmural pressure distribution due to the change in lung height with tidal volume inflation are probably bigger contributors to the redistribution of pulmonary perfusion than the changes in pulmonary vasculature resistance caused by lung tissue stretch. ABSTRACT Tidal volume lung inflation results in structural changes in the pulmonary circulation, potentially affecting pulmonary perfusion. We hypothesized that perfusion is recruited to regions receiving the greatest deformation from a tidal breath, thus ensuring ventilation-perfusion matching. Density-normalized perfusion (DNP) magnetic resonance imaging data were obtained in healthy subjects (n = 7) in the right lung at functional residual capacity (FRC), FRC+500 ml, and FRC+1.0 l. Using deformable image registration, the displacement of a sagittal lung slice acquired at FRC to the larger volumes was calculated. Registered DNP images were normalized by the mean to estimate perfusion redistribution (nDNP). Data were evaluated across gravitational regions (dependent, middle, non-dependent) and by lobes (upper, RUL; middle, RML; lower, RLL). Lung inflation did not alter mean DNP within the slice (P = 0.10). The greatest expansion was seen in the dependent region (P < 0.0001: dependent vs non-dependent, P < 0.0001: dependent vs middle) and RLL (P = 0.0015: RLL vs RUL, P < 0.0001: RLL vs RML). Neither nDNP recruitment to RLL [+500 ml = -0.047(0.145), +1 litre = 0.018(0.096)] nor to dependent lung [+500 ml = -0.058(0.126), +1 litre = -0.023(0.106)] were found. Instead, redistribution was seen in decreased nDNP in the non-dependent [+500 ml = -0.075(0.152), +1 litre = -0.137(0.167)) and increased nDNP in the gravitational middle lung [+500 ml = 0.098(0.058), +1 litre = 0.093(0.081)] (P = 0.01). However, there was no significant lobar redistribution (P < 0.89). Contrary to our hypothesis, based on the comparison between gravitational and lobar perfusion data, perfusion was not redistributed to the regions of the most inflation. This suggests that either changes in hydrostatic pressure or transmural pressure distribution in the gravitational direction are implicated in the redistribution of perfusion away from the non-dependent lung.
Collapse
Affiliation(s)
- Tatsuya J Arai
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rebecca J Theilmann
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- The Pulmonary Imaging Laboratory, University of California, San Diego, La Jolla, CA, USA
| | - Rui Carlos Sá
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- The Pulmonary Imaging Laboratory, University of California, San Diego, La Jolla, CA, USA
| | - Michael T Villongco
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- The Pulmonary Imaging Laboratory, University of California, San Diego, La Jolla, CA, USA
| | - Susan R Hopkins
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA.
- The Pulmonary Imaging Laboratory, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
57
|
Pusterla O, Bauman G, Wielpütz MO, Nyilas S, Latzin P, Heussel CP, Bieri O. Rapid 3D in vivo 1H human lung respiratory imaging at 1.5 T using ultra-fast balanced steady-state free precession. Magn Reson Med 2016; 78:1059-1069. [DOI: 10.1002/mrm.26503] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/17/2016] [Accepted: 09/18/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Orso Pusterla
- Division of Radiological Physics, Department of Radiology; University of Basel Hospital; Basel Switzerland
- Department of Biomedical Engineering; University of Basel; Basel Switzerland
| | - Grzegorz Bauman
- Division of Radiological Physics, Department of Radiology; University of Basel Hospital; Basel Switzerland
- Department of Biomedical Engineering; University of Basel; Basel Switzerland
| | - Mark O. Wielpütz
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine; Thoraxklinik at University Hospital Heidelberg; Heidelberg Germany
- Department of Diagnostic and Interventional Radiology; University Hospital of Heidelberg; Heidelberg Germany
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL); Heidelberg Germany
| | - Sylvia Nyilas
- Division of Respiratory Medicine, Department of Pediatrics; University Children's Hospital of Bern; Bern Switzerland
- Department of Pediatric Pneumology; University Children's Hospital Basel (UKBB); Basel Switzerland
| | - Philipp Latzin
- Division of Respiratory Medicine, Department of Pediatrics; University Children's Hospital of Bern; Bern Switzerland
- Department of Pediatric Pneumology; University Children's Hospital Basel (UKBB); Basel Switzerland
| | - Claus P. Heussel
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine; Thoraxklinik at University Hospital Heidelberg; Heidelberg Germany
- Department of Diagnostic and Interventional Radiology; University Hospital of Heidelberg; Heidelberg Germany
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL); Heidelberg Germany
| | - Oliver Bieri
- Division of Radiological Physics, Department of Radiology; University of Basel Hospital; Basel Switzerland
- Department of Biomedical Engineering; University of Basel; Basel Switzerland
| |
Collapse
|
58
|
Ebner L, Kammerman J, Driehuys B, Schiebler ML, Cadman RV, Fain SB. The role of hyperpolarized 129xenon in MR imaging of pulmonary function. Eur J Radiol 2016; 86:343-352. [PMID: 27707585 DOI: 10.1016/j.ejrad.2016.09.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 09/15/2016] [Indexed: 01/29/2023]
Abstract
In the last two decades, functional imaging of the lungs using hyperpolarized noble gases has entered the clinical stage. Both helium (3He) and xenon (129Xe) gas have been thoroughly investigated for their ability to assess both the global and regional patterns of lung ventilation. With advances in polarizer technology and the current transition towards the widely available 129Xe gas, this method is ready for translation to the clinic. Currently, hyperpolarized (HP) noble gas lung MRI is limited to selected academic institutions; yet, the promising results from initial clinical trials have drawn the attention of the pulmonary medicine community. HP 129Xe MRI provides not only 3-dimensional ventilation imaging, but also unique capabilities for probing regional lung physiology. In this review article, we aim to (1) provide a brief overview of current ventilation MR imaging techniques, (2) emphasize the role of HP 129Xe MRI within the array of different imaging strategies, (3) discuss the unique imaging possibilities with HP 129Xe MRI, and (4) propose clinical applications.
Collapse
Affiliation(s)
- Lukas Ebner
- Cardiothoracic Imaging, Duke University Medical Center, Department of Radiology, Duke University, Durham, NC, USA
| | - Jeff Kammerman
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| | | | - Mark L Schiebler
- Department of Radiology, University of Wisconsin, Madison, WI, USA
| | - Robert V Cadman
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| | - Sean B Fain
- Departments of Medical Physics, Radiology, and Biomedical Engineering, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
59
|
Verbanck S, Paiva M. Last Word on Viewpoint: Could lobar flow sequencing account for convection-dependent ventilation heterogeneity in normal man? J Appl Physiol (1985) 2016; 121:593. [PMID: 27543660 DOI: 10.1152/japplphysiol.00513.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Sylvia Verbanck
- Respiratory Division, University Hospital UZ Brussel, Brussels, Belgium; and
| | - Manuel Paiva
- Respiratory Division, University Hospital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
60
|
Couch MJ, Fox MS, Viel C, Gajawada G, Li T, Ouriadov AV, Albert MS. Fractional ventilation mapping using inert fluorinated gas MRI in rat models of inflammation and fibrosis. NMR IN BIOMEDICINE 2016; 29:545-552. [PMID: 26866511 DOI: 10.1002/nbm.3493] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 12/11/2015] [Accepted: 01/01/2016] [Indexed: 06/05/2023]
Abstract
The purpose of this study was to extend established methods for fractional ventilation mapping using (19) F MRI of inert fluorinated gases to rat models of pulmonary inflammation and fibrosis. In this study, five rats were instilled with lipopolysaccharide (LPS) in the lungs two days prior to imaging, six rats were instilled with bleomycin in the lungs two weeks prior to imaging and an additional four rats were used as controls. (19) F MR lung imaging was performed at 3 T with rats continuously breathing a mixture of sulfur hexafluoride and O2 . Fractional ventilation maps were obtained using a wash-out approach, by switching the breathing mixture to pure O2 , and acquiring images following each successive wash-out breath. The mean fractional ventilation (r) was 0.29 ± 0.05 for control rats, 0.23 ± 0.10 for LPS-instilled rats and 0.19 ± 0.03 for bleomycin-instilled rats. Bleomycin-instilled rats had a significantly decreased mean r value compared with controls (P = 0.010). Although LPS-instilled rats had a slightly reduced mean r value, this trend was not statistically significant (P = 0.556). Fractional ventilation gradients were calculated in the anterior/posterior (A/P) direction, and the mean A/P gradient was -0.005 ± 0.008 cm(-1) for control rats, 0.013 ± 0.005 cm(-1) for LPS-instilled rats and 0.009 ± 0.018 cm(-1) for bleomycin-instilled rats. Fractional ventilation gradients were significantly different for control rats compared with LPS-instilled rats only (P = 0.016). The ventilation gradients calculated from control rats showed the expected gravitational relationship, while ventilation gradients calculated from LPS- and bleomycin-instilled rats showed the opposite trend. Histology confirmed that LPS-instilled rats had a significantly elevated alveolar wall thickness, while bleomycin-instilled rats showed signs of substantial fibrosis. Overall, (19)F MRI may be able to detect the effects of pulmonary inflammation and fibrosis using a simple and inexpensive imaging approach that can potentially be translated to humans.
Collapse
Affiliation(s)
- Marcus J Couch
- Lakehead University, Thunder Bay, Ontario, Canada
- Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada
| | - Matthew S Fox
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Chris Viel
- Lakehead University, Thunder Bay, Ontario, Canada
- Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada
| | - Gowtham Gajawada
- Lakehead University, Thunder Bay, Ontario, Canada
- Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada
| | - Tao Li
- Lakehead University, Thunder Bay, Ontario, Canada
- Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada
| | - Alexei V Ouriadov
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - Mitchell S Albert
- Lakehead University, Thunder Bay, Ontario, Canada
- Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada
| |
Collapse
|
61
|
Stewart NJ, Wild JM. MRI methods for structural and functional assessment of the lungs: proton and multinuclear. IMAGING 2016. [DOI: 10.1183/2312508x.10002115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
62
|
Kruger SJ, Nagle SK, Couch MJ, Ohno Y, Albert M, Fain SB. Functional imaging of the lungs with gas agents. J Magn Reson Imaging 2016; 43:295-315. [PMID: 26218920 PMCID: PMC4733870 DOI: 10.1002/jmri.25002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/26/2015] [Indexed: 12/22/2022] Open
Abstract
This review focuses on the state-of-the-art of the three major classes of gas contrast agents used in magnetic resonance imaging (MRI)-hyperpolarized (HP) gas, molecular oxygen, and fluorinated gas--and their application to clinical pulmonary research. During the past several years there has been accelerated development of pulmonary MRI. This has been driven in part by concerns regarding ionizing radiation using multidetector computed tomography (CT). However, MRI also offers capabilities for fast multispectral and functional imaging using gas agents that are not technically feasible with CT. Recent improvements in gradient performance and radial acquisition methods using ultrashort echo time (UTE) have contributed to advances in these functional pulmonary MRI techniques. The relative strengths and weaknesses of the main functional imaging methods and gas agents are compared and applications to measures of ventilation, diffusion, and gas exchange are presented. Functional lung MRI methods using these gas agents are improving our understanding of a wide range of chronic lung diseases, including chronic obstructive pulmonary disease, asthma, and cystic fibrosis in both adults and children.
Collapse
Affiliation(s)
- Stanley J. Kruger
- Department of Medical Physics, University of Wisconsin – Madison, WI, U.S.A
| | - Scott K. Nagle
- Department of Medical Physics, University of Wisconsin – Madison, WI, U.S.A
- Department of Radiology, University of Wisconsin – Madison, WI, U.S.A
- Department of Pediatrics, University of Wisconsin – Madison, WI, U.S.A
| | - Marcus J. Couch
- Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada
- Biotechnology Program, Lakehead University, Thunder Bay, ON, Canada
| | - Yoshiharu Ohno
- Department of Radiology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mitchell Albert
- Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada
- Department of Chemistry, Lakehead University, Thunder Bay, ON, Canada
| | - Sean B. Fain
- Department of Medical Physics, University of Wisconsin – Madison, WI, U.S.A
- Department of Radiology, University of Wisconsin – Madison, WI, U.S.A
- Department of Biomedical Engineering, University of Wisconsin – Madison, WI, U.S.A
| |
Collapse
|
63
|
Hamedani H, Clapp JT, Kadlecek SJ, Emami K, Ishii M, Gefter WB, Xin Y, Cereda M, Shaghaghi H, Siddiqui S, Rossman MD, Rizi RR. Regional Fractional Ventilation by Using Multibreath Wash-in (3)He MR Imaging. Radiology 2016; 279:917-24. [PMID: 26785042 DOI: 10.1148/radiol.2015150495] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To assess the feasibility and optimize the accuracy of the multibreath wash-in hyperpolarized helium 3 ((3)He) approach to ventilation measurement by using magnetic resonance (MR) imaging as well as to examine the physiologic differences that this approach reveals among nonsmokers, asymptomatic smokers, and patients with chronic obstructive pulmonary disease (COPD). Materials and Methods All experiments were approved by the local institutional review board and compliant with HIPAA. Informed consent was obtained from all subjects. To measure fractional ventilation, the authors administered a series of identical normoxic hyperpolarized gas breaths to the subject; after each inspiration, an image was acquired during a short breath hold. Signal intensity buildup was fit to a recursive model that regionally solves for fractional ventilation. This measurement was successfully performed in nine subjects: three healthy nonsmokers (one man, two women; mean age, 45 years ± 4), three asymptomatic smokers (three men; mean age, 51 years ± 5), and three patients with COPD (three men; mean age, 59 years ± 5). Repeated measures analysis of variance was performed, followed by post hoc tests with Bonferroni correction, to assess the differences among the three cohorts. Results Whole-lung fractional ventilation as measured with hyperpolarized (3)He in all subjects (mean, 0.24 ± 0.06) showed a strong correlation with global fractional ventilation as measured with a gas delivery device (R(2) = 0.96, P < .001). Significant differences between the means of whole-lung fractional ventilation (F2,10 = 7.144, P = .012) and fractional ventilation heterogeneity (F2,10 = 7.639, P = .010) were detected among cohorts. In patients with COPD, the protocol revealed regions wherein fractional ventilation varied substantially over multiple breaths. Conclusion Multibreath wash-in hyperpolarized (3)He MR imaging of fractional ventilation is feasible in human subjects and demonstrates very good global (whole-lung) precision. Fractional ventilation measurement with this physiologically realistic approach reveals significant differences between patients with COPD and healthy subjects. To minimize error, several sources of potential bias must be corrected when calculating fractional ventilation. (©) RSNA, 2016 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Hooman Hamedani
- From the Department of Radiology (H.H., J.T.C., S.J.K., K.E., M.I., W.B.G., Y.X., H.S., S.S., R.R.R.), Department of Anesthesiology and Critical Care (M.C.), and Pulmonary, Allergy and Critical Care Division (M.D.R.), University of Pennsylvania, 308 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104
| | - Justin T Clapp
- From the Department of Radiology (H.H., J.T.C., S.J.K., K.E., M.I., W.B.G., Y.X., H.S., S.S., R.R.R.), Department of Anesthesiology and Critical Care (M.C.), and Pulmonary, Allergy and Critical Care Division (M.D.R.), University of Pennsylvania, 308 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104
| | - Stephen J Kadlecek
- From the Department of Radiology (H.H., J.T.C., S.J.K., K.E., M.I., W.B.G., Y.X., H.S., S.S., R.R.R.), Department of Anesthesiology and Critical Care (M.C.), and Pulmonary, Allergy and Critical Care Division (M.D.R.), University of Pennsylvania, 308 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104
| | - Kiarash Emami
- From the Department of Radiology (H.H., J.T.C., S.J.K., K.E., M.I., W.B.G., Y.X., H.S., S.S., R.R.R.), Department of Anesthesiology and Critical Care (M.C.), and Pulmonary, Allergy and Critical Care Division (M.D.R.), University of Pennsylvania, 308 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104
| | - Masaru Ishii
- From the Department of Radiology (H.H., J.T.C., S.J.K., K.E., M.I., W.B.G., Y.X., H.S., S.S., R.R.R.), Department of Anesthesiology and Critical Care (M.C.), and Pulmonary, Allergy and Critical Care Division (M.D.R.), University of Pennsylvania, 308 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104
| | - Warren B Gefter
- From the Department of Radiology (H.H., J.T.C., S.J.K., K.E., M.I., W.B.G., Y.X., H.S., S.S., R.R.R.), Department of Anesthesiology and Critical Care (M.C.), and Pulmonary, Allergy and Critical Care Division (M.D.R.), University of Pennsylvania, 308 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104
| | - Yi Xin
- From the Department of Radiology (H.H., J.T.C., S.J.K., K.E., M.I., W.B.G., Y.X., H.S., S.S., R.R.R.), Department of Anesthesiology and Critical Care (M.C.), and Pulmonary, Allergy and Critical Care Division (M.D.R.), University of Pennsylvania, 308 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104
| | - Maurizio Cereda
- From the Department of Radiology (H.H., J.T.C., S.J.K., K.E., M.I., W.B.G., Y.X., H.S., S.S., R.R.R.), Department of Anesthesiology and Critical Care (M.C.), and Pulmonary, Allergy and Critical Care Division (M.D.R.), University of Pennsylvania, 308 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104
| | - Hoora Shaghaghi
- From the Department of Radiology (H.H., J.T.C., S.J.K., K.E., M.I., W.B.G., Y.X., H.S., S.S., R.R.R.), Department of Anesthesiology and Critical Care (M.C.), and Pulmonary, Allergy and Critical Care Division (M.D.R.), University of Pennsylvania, 308 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104
| | - Sarmad Siddiqui
- From the Department of Radiology (H.H., J.T.C., S.J.K., K.E., M.I., W.B.G., Y.X., H.S., S.S., R.R.R.), Department of Anesthesiology and Critical Care (M.C.), and Pulmonary, Allergy and Critical Care Division (M.D.R.), University of Pennsylvania, 308 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104
| | - Milton D Rossman
- From the Department of Radiology (H.H., J.T.C., S.J.K., K.E., M.I., W.B.G., Y.X., H.S., S.S., R.R.R.), Department of Anesthesiology and Critical Care (M.C.), and Pulmonary, Allergy and Critical Care Division (M.D.R.), University of Pennsylvania, 308 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104
| | - Rahim R Rizi
- From the Department of Radiology (H.H., J.T.C., S.J.K., K.E., M.I., W.B.G., Y.X., H.S., S.S., R.R.R.), Department of Anesthesiology and Critical Care (M.C.), and Pulmonary, Allergy and Critical Care Division (M.D.R.), University of Pennsylvania, 308 Stemmler Hall, 3450 Hamilton Walk, Philadelphia, PA 19104
| |
Collapse
|
64
|
Cook FR, Geier ET, Asadi AK, Sá RC, Prisk GK. Rapid Prototyping of Inspired Gas Delivery System for Pulmonary MRI Research. 3D PRINTING AND ADDITIVE MANUFACTURING 2015; 2:196-203. [PMID: 27917393 PMCID: PMC4981153 DOI: 10.1089/3dp.2015.0027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Specific ventilation imaging (SVI) is a noninvasive magnetic resonance imaging (MRI)-based method for determining the regional distribution of inspired air in the lungs, useful for the assessment of pulmonary function in medical research. This technique works by monitoring the rate of magnetic resonance signal change in response to a series of imposed step changes in inspired oxygen concentration. The current SVI technique requires a complex system of tubes, valves, and electronics that are used to supply and rapidly switch inspired gases while subjects are imaged, which makes the technique difficult to translate into the clinical setting. This report discusses the design and implementation of custom three-dimensional (3D) printed hardware that greatly simplifies SVI measurement of lung function. Several hardware prototypes were modeled using computer-aided design software and printed for evaluation. After finalization of the design, the new delivery system was evaluated based on O2 and N2 concentration step responses and validated against the current SVI protocol. The design performed rapid switching of supplied gas within 250 ms and consistently supplied the desired concentration of O2 during operation. It features a reduction in the number of commercial hardware components, from five to one, and a reduction in the number of gas lines between the operator's room and the scanner room, from four to one, as well as a substantially reduced preparation time from 25 to 5 min. 3D printing is well suited to the design of inexpensive custom MRI compatible hardware, making it particularly useful in imaging-based research.
Collapse
Affiliation(s)
- Fredrick Roscoe Cook
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Eric T. Geier
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - Amran K. Asadi
- Department of Radiology, University of California, San Diego, La Jolla, California
| | - Rui Carlos Sá
- Department of Medicine, University of California, San Diego, La Jolla, California
| | - G. Kim Prisk
- Department of Medicine, University of California, San Diego, La Jolla, California
- Department of Radiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
65
|
Voskrebenzev A, Gutberlet M, Becker L, Wacker F, Vogel-Claussen J. Reproducibility of fractional ventilation derived by Fourier decomposition after adjusting for tidal volume with and without an MRI compatible spirometer. Magn Reson Med 2015; 76:1542-1550. [PMID: 26745750 DOI: 10.1002/mrm.26047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/20/2015] [Accepted: 10/22/2015] [Indexed: 12/17/2022]
Abstract
PURPOSE To reduce the influence of tidal volume on fractional ventilation (FV) derived by Fourier decomposition (FD). METHODS Twelve volunteers were examined on a 1.5 Tesla scanner. Spoiled gradient echo imaging of coronal and sagittal slices of the lung were performed. The tidal volume variations between different acquisitions were studied by reproducibility and repeatability measurements. To adjust the FV derived by FD for tidal volume differences between the measurements, during all acquisitions, the lung volume changes were measured by a spirometer and used to calculate a global FV parameter. As an alternative, using the FD data, the lung area changes were calculated and used for the adjustment. RESULTS Reproducibility analysis of unadjusted coronal FV showed a determination coefficient of R2 = 71% and an intraclass correlation coefficient of ICC = 93%. Differences in the measurements could be ascribed to different tidal volumes. Area adjusted values exhibited an increased R2 of 84% and a higher ICC of 97%. For the coronal middle slice/sagittal slices in free breathing, the inter-volunteer coefficient of variation was reduced from 0.23/0.28 (unadjusted) to 0.16/0.20 (spirometer) or 0.12/0.13 (area). CONCLUSION The calculation of lung area changes is sufficient to increase the reproducibility of FV in a volunteer cohort avoiding the need for an MRI compatible spirometer. Magn Reson Med 76:1542-1550, 2016. © 2015 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Andreas Voskrebenzev
- Diagnostic and Interventional Radiology, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Marcel Gutberlet
- Diagnostic and Interventional Radiology, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Lena Becker
- Diagnostic and Interventional Radiology, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Frank Wacker
- Diagnostic and Interventional Radiology, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Jens Vogel-Claussen
- Diagnostic and Interventional Radiology, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany.
| |
Collapse
|
66
|
Lumb AB, Burns AD, Figueroa Rosette JA, Gradzik KB, Ingham DB, Pourkashanian M. Computational fluid dynamic modelling of the effect of ventilation mode and tracheal tube position on air flow in the large airways. Anaesthesia 2015; 70:577-84. [PMID: 25581493 DOI: 10.1111/anae.13003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2014] [Indexed: 11/29/2022]
Abstract
We have used computational fluid dynamic modelling to study the effects of tracheal tube size and position on regional gas flow in the large airways. Using a three-dimensional mathematical model, we simulated flow with and without a tracheal tube, replicating both physiological and artificial breathing. Ventilation through a tracheal tube increased proportional flow to the left lung from 39.5% with no tube to 43.1-47.2%, depending on tube position. Ventilation mode and tube distance from the carina had no effect on flow. Lateral displacement and deflection of the tube increased ventilation to the ipsilateral lung; for example, when deflected 10° to the left of centre, flow to the left lung increased from 43.8 to 53.7%. Because of the small diameter of a tracheal tube relative to the trachea, gas exits a tube at high velocity such that regional ventilation may be affected by changes in the position and angle of the tube.
Collapse
Affiliation(s)
- A B Lumb
- School of Medicine, University of Leeds, Leeds, UK
| | | | | | | | | | | |
Collapse
|
67
|
Hamedani H, Shaghaghi H, Kadlecek SJ, Xin Y, Han B, Siddiqui S, Rajaei J, Ishii M, Rossman M, Rizi RR. Vertical gradients in regional alveolar oxygen tension in supine human lung imaged by hyperpolarized 3He MRI. NMR IN BIOMEDICINE 2014; 27:1439-50. [PMID: 25395184 PMCID: PMC5033039 DOI: 10.1002/nbm.3227] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 09/22/2014] [Accepted: 09/22/2014] [Indexed: 06/04/2023]
Abstract
The purpose of this study was to evaluate whether regional alveolar oxygen tension (P(A)O2) vertical gradients imaged with hyperpolarized (3)He can identify smoking-induced pulmonary alterations. These gradients are compared with common clinical measurements including pulmonary function tests (PFTs), the six minute walk test, and the St. George's Respiratory Questionnaire. 8 healthy non-smokers, 12 asymptomatic smokers, and 7 symptomatic subjects with chronic obstructive pulmonary disease (COPD) underwent two sets of back-to-back P(A)O2 imaging acquisitions in the supine position in two opposite directions (top to bottom and bottom to top), followed by clinically standard pulmonary tests. The whole-lung mean, standard deviation (DP(A)O2) and vertical gradients of P(A)O2 along the slices were extracted, and the results were compared with clinically derived metrics. Statistical tests were performed to analyze the differences between cohorts. The anterior-posterior vertical gradients and DP(A)O2 effectively differentiated all three cohorts (p < 0.05). The average vertical gradient P(A)O2 in healthy subjects was -1.03 ± 0.51 Torr/cm toward lower values in the posterior/dependent regions. The directional gradient was absent in smokers (0.36 ± 1.22 Torr/cm) and was in the opposite direction in COPD subjects (2.18 ± 1.54 Torr/cm). The vertical gradients correlated with smoking history (p = 0.004); body mass index (p = 0.037), PFT metrics (forced expiratory volume in 1 s, p = 0.025; residual volume/total lung capacity percent predicted, p = 0.033) and with distance walked in 6 min (p = 0.009). Regional P(A)O2 data indicate that cigarette smoke induces physiological alterations that are not being detected by the most widely used physiological tests.
Collapse
Affiliation(s)
- Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Hoora Shaghaghi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Stephen J. Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Biao Han
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Sarmad Siddiqui
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Jennia Rajaei
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Masaru Ishii
- Departments of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, United States
| | - Milton Rossman
- Department of Pulmonary and Critical Care, Johns Hopkins University of Pennsylvania, Philadelphia, PA, Baltimore, MD, United States
| | - Rahim R. Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
68
|
Miller GW, Mugler JP, Sá RC, Altes TA, Prisk GK, Hopkins SR. Advances in functional and structural imaging of the human lung using proton MRI. NMR IN BIOMEDICINE 2014; 27:1542-56. [PMID: 24990096 PMCID: PMC4515033 DOI: 10.1002/nbm.3156] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/30/2014] [Accepted: 06/01/2014] [Indexed: 05/05/2023]
Abstract
The field of proton lung MRI is advancing on a variety of fronts. In the realm of functional imaging, it is now possible to use arterial spin labeling (ASL) and oxygen-enhanced imaging techniques to quantify regional perfusion and ventilation, respectively, in standard units of measurement. By combining these techniques into a single scan, it is also possible to quantify the local ventilation-perfusion ratio, which is the most important determinant of gas-exchange efficiency in the lung. To demonstrate potential for accurate and meaningful measurements of lung function, this technique was used to study gravitational gradients of ventilation, perfusion, and ventilation-perfusion ratio in healthy subjects, yielding quantitative results consistent with expected regional variations. Such techniques can also be applied in the time domain, providing new tools for studying temporal dynamics of lung function. Temporal ASL measurements showed increased spatial-temporal heterogeneity of pulmonary blood flow in healthy subjects exposed to hypoxia, suggesting sensitivity to active control mechanisms such as hypoxic pulmonary vasoconstriction, and illustrating that to fully examine the factors that govern lung function it is necessary to consider temporal as well as spatial variability. Further development to increase spatial coverage and improve robustness would enhance the clinical applicability of these new functional imaging tools. In the realm of structural imaging, pulse sequence techniques such as ultrashort echo-time radial k-space acquisition, ultrafast steady-state free precession, and imaging-based diaphragm triggering can be combined to overcome the significant challenges associated with proton MRI in the lung, enabling high-quality three-dimensional imaging of the whole lung in a clinically reasonable scan time. Images of healthy and cystic fibrosis subjects using these techniques demonstrate substantial promise for non-contrast pulmonary angiography and detailed depiction of airway disease. Although there is opportunity for further optimization, such approaches to structural lung imaging are ready for clinical testing.
Collapse
Affiliation(s)
- G. Wilson Miller
- Center for In-Vivo Hyperpolarized Gas MRI, Department of Radiology & Medical Imaging
- Department of Biomedical Engineering University of Virginia Charlottesville, VA
- Address correspondence to: Wilson Miller, Radiology Research, 480 Ray C. Hunt Dr., Box 801339, Charlottesville, VA 22908, Phone: 434-243-9216, Fax: 434-924-9435,
| | - John P. Mugler
- Center for In-Vivo Hyperpolarized Gas MRI, Department of Radiology & Medical Imaging
- Department of Biomedical Engineering University of Virginia Charlottesville, VA
| | - Rui C. Sá
- Department of Medicine, Pulmonary Imaging Laboratory, University of California, San Diego La Jolla, CA
| | - Talissa A. Altes
- Center for In-Vivo Hyperpolarized Gas MRI, Department of Radiology & Medical Imaging
| | - G. Kim Prisk
- Department of Medicine, Pulmonary Imaging Laboratory, University of California, San Diego La Jolla, CA
- Department of Radiology, University of California, San Diego La Jolla, CA
| | - Susan R. Hopkins
- Department of Medicine, Pulmonary Imaging Laboratory, University of California, San Diego La Jolla, CA
- Department of Radiology, University of California, San Diego La Jolla, CA
| |
Collapse
|
69
|
Cereda M, Xin Y, Kadlecek S, Hamedani H, Rajaei J, Clapp J, Rizi RR. Hyperpolarized gas diffusion MRI for the study of atelectasis and acute respiratory distress syndrome. NMR IN BIOMEDICINE 2014; 27:1468-78. [PMID: 24920074 PMCID: PMC4232982 DOI: 10.1002/nbm.3136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/03/2014] [Accepted: 04/21/2014] [Indexed: 06/03/2023]
Abstract
Considerable uncertainty remains about the best ventilator strategies for the mitigation of atelectasis and associated airspace stretch in patients with acute respiratory distress syndrome (ARDS). In addition to several immediate physiological effects, atelectasis increases the risk of ventilator-associated lung injury, which has been shown to significantly worsen ARDS outcomes. A number of lung imaging techniques have made substantial headway in clarifying the mechanisms of atelectasis. This paper reviews the contributions of computed tomography, positron emission tomography, and conventional MRI to understanding this phenomenon. In doing so, it also reveals several important shortcomings inherent to each of these approaches. Once these shortcomings have been made apparent, we describe how hyperpolarized (HP) gas MRI--a technique that is uniquely able to assess responses to mechanical ventilation and lung injury in peripheral airspaces--is poised to fill several of these knowledge gaps. The HP-MRI-derived apparent diffusion coefficient (ADC) quantifies the restriction of (3) He diffusion by peripheral airspaces, thereby obtaining pulmonary structural information at an extremely small scale. Lastly, this paper reports the results of a series of experiments that measured ADC in mechanically ventilated rats in order to investigate (i) the effect of atelectasis on ventilated airspaces, (ii) the relationship between positive end-expiratory pressure (PEEP), hysteresis, and the dimensions of peripheral airspaces, and (iii) the ability of PEEP and surfactant to reduce airspace dimensions after lung injury. An increase in ADC was found to be a marker of atelectasis-induced overdistension. With recruitment, higher airway pressures were shown to reduce stretch rather than worsen it. Moving forward, HP MRI has significant potential to shed further light on the atelectatic processes that occur during mechanical ventilation.
Collapse
Affiliation(s)
- Maurizio Cereda
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA
| | - Yi Xin
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen Kadlecek
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Hooman Hamedani
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennia Rajaei
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Justin Clapp
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Rahim R. Rizi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
70
|
Couch MJ, Ball IK, Li T, Fox MS, Ouriadov AV, Biman B, Albert MS. Inert fluorinated gas MRI: a new pulmonary imaging modality. NMR IN BIOMEDICINE 2014; 27:1525-1534. [PMID: 25066661 DOI: 10.1002/nbm.3165] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 06/06/2014] [Accepted: 06/12/2014] [Indexed: 06/03/2023]
Abstract
Fluorine-19 ((19)F) MRI of the lungs using inhaled inert fluorinated gases can potentially provide high quality images of the lungs that are similar in quality to those from hyperpolarized (HP) noble gas MRI. Inert fluorinated gases have the advantages of being nontoxic, abundant, and inexpensive compared with HP gases. Due to the high gyromagnetic ratio of (19)F, there is sufficient thermally polarized signal for imaging, and averaging within a single breath-hold is possible due to short longitudinal relaxation times. Therefore, the gases do not need to be hyperpolarized prior to their use in MRI. This eliminates the need for an expensive polarizer and expensive isotopes. Inert fluorinated gas MRI of the lungs has been previously demonstrated in animals, and more recently in healthy volunteers and patients with lung diseases. The ongoing improvements in image quality demonstrate the potential of (19)F MRI for visualizing the distribution of ventilation in human lungs and detecting functional biomarkers. In this brief review, the development of inert fluorinated gas MRI, current progress, and future prospects are discussed. The current state of HP noble gas MRI is also briefly discussed in order to provide context to the development of this new imaging modality. Overall, this may be a viable clinical imaging modality that can provide useful information for the diagnosis and management of chronic respiratory diseases.
Collapse
Affiliation(s)
- Marcus J Couch
- Lakehead University, Thunder Bay, Ontario, Canada; Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada
| | | | | | | | | | | | | |
Collapse
|
71
|
Pennati F, Salito C, Baroni G, Woods J, Aliverti A. Comparison between multivolume CT-based surrogates of regional ventilation in healthy subjects. Acad Radiol 2014; 21:1268-75. [PMID: 25126974 DOI: 10.1016/j.acra.2014.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 05/22/2014] [Accepted: 05/27/2014] [Indexed: 01/14/2023]
Abstract
RATIONALE AND OBJECTIVES The assessment of regional ventilation is of critical importance when investigating lung function during disease progression and planning of pulmonary interventions. Recently, different computed tomography (CT)-based parameters have been proposed as surrogates of lung ventilation. The aim of the present study was to compare these parameters, namely variations of density (ΔHU), specific volume (sVol), and specific gas volume (ΔSVg) between different lung volumes, in relation to their topographic distribution within the lung. MATERIALS AND METHODS Ten healthy volunteers were scanned via high-resolution CT at residual volume (RV) and total lung capacity (TLC); ΔHU, sVol, and ΔSVg were mapped voxel by voxel after registering TLC onto RV. Variations of the three parameters along the vertical and horizontal directions were analyzed. RESULTS Along the vertical direction (from ventral to dorsal regions), a strong dependence on gravity was found in ΔHU and sVol, with greater values in the dorsal regions of the lung (P < .001), whereas ΔSVg was more homogeneously distributed within the lung. Conversely, along the caudocranial direction (from lung bases to apexes) where no gravitational gradient is present, the three parameters behaved similarly, with lower values at the apices. CONCLUSIONS ΔHU, sVol, and ΔSVg behave differently along the gravity direction. As the greater amount of air delivered to the dependent portion of the lung supplies a larger number of alveoli, the amount of gas delivered to alveoli compared to the mass of tissue is not gravity dependent. The minimization of gravity dependence in the distribution of ventilation when using ΔSVg suggests that this parameter is more reliable to discriminate healthy from pathologic regions.
Collapse
Affiliation(s)
- Francesca Pennati
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.zza L. da Vinci, 32, 20133 Milano, Italy
| | - Caterina Salito
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.zza L. da Vinci, 32, 20133 Milano, Italy
| | - Guido Baroni
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.zza L. da Vinci, 32, 20133 Milano, Italy
| | - Jason Woods
- Pulmonary Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Andrea Aliverti
- Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, P.zza L. da Vinci, 32, 20133 Milano, Italy.
| |
Collapse
|
72
|
|
73
|
Sá RC, Asadi AK, Theilmann RJ, Hopkins SR, Prisk GK, Darquenne C. Validating the distribution of specific ventilation in healthy humans measured using proton MR imaging. J Appl Physiol (1985) 2014; 116:1048-56. [PMID: 24505099 DOI: 10.1152/japplphysiol.00982.2013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Specific ventilation imaging (SVI) uses proton MRI to quantitatively map the distribution of specific ventilation (SV) in the human lung, using inhaled oxygen as a contrast agent. To validate this recent technique, we compared the quantitative measures of heterogeneity of the SV distribution in a 15-mm sagittal slice of lung obtained in 10 healthy supine subjects, (age 37 ± 10 yr, forced expiratory volume in 1 s 97 ± 7% predicted) using SVI to those obtained in the whole lung from multiple-breath nitrogen washout (MBW). Using the analysis of Lewis et al. (Lewis SM, Evans JW, Jalowayski AA. J App Physiol 44: 416-423, 1978), the most likely distribution of SV from the MBW data was computed and compared with the distribution of SV obtained from SVI, after normalizing for the difference in tidal volume. The average SV was 0.30 ± 0.10 MBW, compared with 0.36 ± 0.10 SVI (P = 0.01). The width of the distribution, a measure of the heterogeneity, obtained using both methods was comparable: 0.51 ± 0.06 and 0.47 ± 0.08 in MBW and SVI, respectively (P = 0.15). The MBW estimated width of the SV distribution was 0.05 (10.7%) higher than that estimated using SVI, and smaller than the intertest variability of the MBW estimation [inter-MBW (SD) for the width of the SV distribution was 0.08 (15.8)%]. To assess reliability, SVI was performed twice on 13 subjects showing small differences between measurements of SV heterogeneity (typical error 0.05, 12%). In conclusion, quantitative estimations of SV heterogeneity from SVI are reliable and similar to those obtained using MBW, with SVI providing spatial information that is absent in MBW.
Collapse
Affiliation(s)
- Rui Carlos Sá
- Pulmonary Imaging Laboratory, Department of Medicine, University of California, San Diego, La Jolla, California
| | | | | | | | | | | |
Collapse
|
74
|
Affiliation(s)
- G Kim Prisk
- Department of Medicine, University of California, San Diego, California
| | | |
Collapse
|
75
|
Renne J, Lauermann P, Hinrichs J, Schönfeld C, Sorrentino S, Gutberlet M, Jakob P, Wacker F, Vogel-Claussen J. Clinical use of oxygen-enhanced T1 mapping MRI of the lung: reproducibility and impact of closed versus loose fit oxygen delivery system. J Magn Reson Imaging 2013; 41:60-6. [PMID: 24339056 DOI: 10.1002/jmri.24535] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 11/14/2013] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To evaluate the reproducibility of oxygen-enhanced magnetic resonance imaging (MRI), and the influence of different gas delivery methods, in a clinical environment. MATERIALS AND METHODS Twelve healthy volunteers were examined on two visits with an inversion recovery snapshot fast low angle shot sequence on a 1.5 T system. Coronal slices were obtained breathing room air as well as 100% oxygen with a flow rate of 15 L/min. For oxygen delivery a standard nontight face mask and a full closed air-cushion face mask were used. T1 relaxation times and the oxygen transfer function (OTF) were calculated. RESULTS The mean T1 values did not change significantly between the two visits (P > 0.05). The T1 values breathing 100% oxygen obtained using the full closed mask were significantly lower (1093 ± 38 msec; P < 0.05) compared to the standard mask (1157 ± 52 msec). Accordingly, the OTF was significantly higher for the full closed mask (P < 0.05). The OTF changed significantly on the second visit using the standard mask (P < 0.05). The full closed mask showed lower interindividual variation for both the T1 values (3.5% vs. 4.5%) as well as the OTF (12.4% vs. 22.0%) and no difference of the OTF on the second visit (P > 0.05). CONCLUSION Oxygen-enhanced T1 mapping MRI produces reproducible data when using a full closed face mask.
Collapse
Affiliation(s)
- Julius Renne
- Diagnostic and Interventional Radiology, Hannover Medical School, Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Horn FC, Deppe MH, Marshall H, Parra-Robles J, Wild JM. Quantification of regional fractional ventilation in human subjects by measurement of hyperpolarized 3He washout with 2D and 3D MRI. J Appl Physiol (1985) 2013; 116:129-39. [PMID: 24311749 DOI: 10.1152/japplphysiol.00378.2013] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multiple-breath washout hyperpolarized (3)He MRI was used to calculate regional parametric images of fractional ventilation (r) as the ratio of fresh gas entering a volume unit to the total end inspiratory volume of the unit. Using a single dose of inhaled hyperpolarized gas and a total acquisition time of under 1 min, gas washout was measured by dynamic acquisitions during successive breaths with a fixed delay. A two-dimensional (2D) imaging protocol was investigated in four healthy subjects in the supine position, and in a second protocol the capability of extending the washout imaging to a three-dimensional (3D) acquisition covering the whole lungs was tested. During both protocols, subjects were breathing comfortably, only restricted by synchronization of breathing to the sequence timings. The 3D protocol was also successfully tested on one patient with cystic fibrosis. Mean r values from each volunteer were compared with global gas volume turnover, as calculated from flow measurement at the mouth divided by total lung volume (from MRI images), and a significant correlation (r = 0.74, P < 0.05) was found. The effects of gravity on R were investigated, and an average decrease in r of 5.5%/cm (Δr = 0.016 ± 0.006 cm(-1)) from posterior to anterior was found in the right lung. Intersubject reproducibility of r imaging with the 2D and 3D protocol was tested, and a significant correlation between repeated experiments was found in a pixel-by-pixel comparison. The proposed methods can be used to measure r on a regional basis.
Collapse
Affiliation(s)
- Felix C Horn
- Academic Unit of Radiology, University of Sheffield, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | | | | | | | | |
Collapse
|
77
|
Ax M, Karlsson LL, Sanchez-Crespo A, Lindahl SGE, Linnarsson D, Mure M, Petersson J. Regional lung ventilation in humans during hypergravity studied with quantitative SPECT. Respir Physiol Neurobiol 2013; 189:558-64. [PMID: 24004984 DOI: 10.1016/j.resp.2013.08.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 07/23/2013] [Accepted: 08/15/2013] [Indexed: 11/28/2022]
Abstract
Recently we challenged the view that arterial desaturation during hypergravity is caused by redistribution of blood flow to dependent lung regions by demonstrating a paradoxical redistribution of blood flow towards non-dependent regions. We have now quantified regional ventilation in 10 healthy supine volunteers at normal and three times normal gravity (1G and 3G). Regional ventilation was measured with Technegas ((99m)Tc) and quantitative single photon emission computed tomography (SPECT). Hypergravity caused arterial desaturation, mean decrease 8%, p<0.05 vs. 1G. The ratio for mean ventilation per voxel for non-dependent and dependent lung regions was 0.81±0.12 during 1G and 1.63±0.35 during 3G (mean±SD), p<0.0001. Thus, regional ventilation was shifted from dependent to non-dependent regions. We suggest that arterial desaturation during hypergravity is caused by quantitatively different redistributions of blood flow and ventilation. To our knowledge, this is the first study presenting high-resolution measurements of regional ventilation in humans breathing normally during hypergravity.
Collapse
Affiliation(s)
- M Ax
- Department of Anesthesiology and Intensive Care, Karolinska University Hospital Solna, 171 76 Stockholm, Sweden; Department of Physiology and Pharmacology, Section of Anesthesiology and Intensive Care Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
78
|
Arai TJ, Villongco CT, Villongco MT, Hopkins SR, Theilmann RJ. Affine transformation registers small scale lung deformation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2013; 2012:5298-301. [PMID: 23367125 DOI: 10.1109/embc.2012.6347190] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To evaluate the nature of small scale lung deformation between multiple pulmonary magnetic resonance images, two different kinematic intensity based image registration techniques: affine and bicubic Hermite interpolation were tested. The affine method estimates uniformly distributed deformation metrics throughout the lung. The bicubic Hermite method allows the expression of heterogeneously distributed deformation metrics such as Lagrangian strain. A cardiac triggered inversion recovery technique was used to obtain 10 sequential images of pulmonary vessel structure in a sagittal plane in the right lung at FRC in 4 healthy subjects (Age: 28.5(6.2)). One image was used as the reference image, and the remaining images (target images) were warped onto the reference image using both image registration techniques. The normalized correlation between the reference and the transformed target images within the lung domain was used as a cost function for optimization, and the root mean square (RMS) of image intensity difference was used to evaluate the quality of the registration. Both image registration techniques significantly improved the RMS compared with non-registered target images (p= 0.04). The spatial mean (µE) and standard deviation (σ(E)) of Lagrangian strain were computed based on the spatial distribution of lung deformation approximated by the bicubic Hermite method, and were measured on the order of 10(-3) or less, which is virtually negligible. As a result, small scale lung deformation between FRC lung volumes is spatially uniform, and can be simply characterized by affine deformation even though the bicubic Hermite method is capable of expressing complicated spatial patterns of lung deformation.
Collapse
Affiliation(s)
- Tatsuya J Arai
- Pulmonary Imaging Laboratory, Department of iBioengineering, Univ. of California, San Diego, La Jolla, CA 92093-0623, USA.
| | | | | | | | | |
Collapse
|
79
|
|
80
|
Tedjasaputra V, Sá RC, Arai TJ, Holverda S, Theilmann RJ, Chen WT, Wagner PD, Davis CK, Kim Prisk G, Hopkins SR. The heterogeneity of regional specific ventilation is unchanged following heavy exercise in athletes. J Appl Physiol (1985) 2013; 115:126-35. [PMID: 23640585 DOI: 10.1152/japplphysiol.00778.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Heavy exercise increases ventilation-perfusion mismatch and decreases pulmonary gas exchange efficiency. Previous work using magnetic resonance imaging (MRI) arterial spin labeling in athletes has shown that, after 45 min of heavy exercise, the spatial heterogeneity of pulmonary blood flow was increased in recovery. We hypothesized that the heterogeneity of regional specific ventilation (SV, the local tidal volume over functional residual capacity ratio) would also be increased following sustained exercise, consistent with the previously documented changes in blood flow heterogeneity. Trained subjects (n = 6, maximal O2 consumption = 61 ± 7 ml·kg(-1)·min(-1)) cycled 45 min at their individually determined ventilatory threshold. Oxygen-enhanced MRI was used to quantify SV in a sagittal slice of the right lung in supine posture pre- (preexercise) and 15- and 60-min postexercise. Arterial spin labeling was used to measure pulmonary blood flow in the same slice bracketing the SV measures. Heterogeneity of SV and blood flow were quantified by relative dispersion (RD = SD/mean). The alveolar-arterial oxygen difference was increased during exercise, 23.3 ± 5.3 Torr, compared with rest, 6.3 ± 3.7 Torr, indicating a gas exchange impairment during exercise. No significant change in RD of SV was seen after exercise: preexercise 0.78 ± 0.15, 15 min postexercise 0.81 ± 0.13, 60 min postexercise 0.78 ± 0.08 (P = 0.5). The RD of blood flow increased significantly postexercise: preexercise 1.00 ± 0.12, 15 min postexercise 1.15 ± 0.10, 45 min postexercise 1.10 ± 0.10, 60 min postexercise 1.19 ± 0.11, 90 min postexercise 1.11 ± 0.12 (P < 0.005). The lack of a significant change in RD of SV postexercise, despite an increase in the RD of blood flow, suggests that airways may be less susceptible to the effects of exercise than blood vessels.
Collapse
Affiliation(s)
- Vince Tedjasaputra
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Henderson AC, Sá RC, Theilmann RJ, Buxton RB, Prisk GK, Hopkins SR. The gravitational distribution of ventilation-perfusion ratio is more uniform in prone than supine posture in the normal human lung. J Appl Physiol (1985) 2013; 115:313-24. [PMID: 23620488 DOI: 10.1152/japplphysiol.01531.2012] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The gravitational gradient of intrapleural pressure is suggested to be less in prone posture than supine. Thus the gravitational distribution of ventilation is expected to be more uniform prone, potentially affecting regional ventilation-perfusion (Va/Q) ratio. Using a novel functional lung magnetic resonance imaging technique to measure regional Va/Q ratio, the gravitational gradients in proton density, ventilation, perfusion, and Va/Q ratio were measured in prone and supine posture. Data were acquired in seven healthy subjects in a single sagittal slice of the right lung at functional residual capacity. Regional specific ventilation images quantified using specific ventilation imaging and proton density images obtained using a fast gradient-echo sequence were registered and smoothed to calculate regional alveolar ventilation. Perfusion was measured using arterial spin labeling. Ventilation (ml·min(-1)·ml(-1)) images were combined on a voxel-by-voxel basis with smoothed perfusion (ml·min(-1)·ml(-1)) images to obtain regional Va/Q ratio. Data were averaged for voxels within 1-cm gravitational planes, starting from the most gravitationally dependent lung. The slope of the relationship between alveolar ventilation and vertical height was less prone than supine (-0.17 ± 0.10 ml·min(-1)·ml(-1)·cm(-1) supine, -0.040 ± 0.03 prone ml·min(-1)·ml(-1)·cm(-1), P = 0.02) as was the slope of the perfusion-height relationship (-0.14 ± 0.05 ml·min(-1)·ml(-1)·cm(-1) supine, -0.08 ± 0.09 prone ml·min(-1)·ml(-1)·cm(-1), P = 0.02). There was a significant gravitational gradient in Va/Q ratio in both postures (P < 0.05) that was less in prone (0.09 ± 0.08 cm(-1) supine, 0.04 ± 0.03 cm(-1) prone, P = 0.04). The gravitational gradients in ventilation, perfusion, and regional Va/Q ratio were greater supine than prone, suggesting an interplay between thoracic cavity configuration, airway and vascular tree anatomy, and the effects of gravity on Va/Q matching.
Collapse
Affiliation(s)
- A Cortney Henderson
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | | | | | | | | | | |
Collapse
|
82
|
Emami K, Xu Y, Hamedani H, Profka H, Kadlecek S, Xin Y, Ishii M, Rizi RR. Accelerated fractional ventilation imaging with hyperpolarized Gas MRI. Magn Reson Med 2013; 70:1353-9. [PMID: 23400938 DOI: 10.1002/mrm.24582] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 10/24/2012] [Accepted: 11/12/2012] [Indexed: 11/11/2022]
Abstract
PURPOSE To investigate the utility of accelerated imaging to enhance multibreath fractional ventilation (r) measurement accuracy using hyperpolarized gas MRI. Undersampling shortens the breath-hold time, thereby reducing the O2 -induced signal decay and allows subjects to maintain a more physiologically relevant breathing pattern. Additionally, it may improve r estimation accuracy by reducing radiofrequency destruction of hyperpolarized gas. METHODS Image acceleration was achieved using an eight-channel phased array coil. Undersampled image acquisition was simulated in a series of ventilation images and data was reconstructed for various matrix sizes (48-128) using generalized auto-calibrating partially parallel acquisition. Parallel accelerated r imaging was also performed on five mechanically ventilated pigs. RESULTS Optimal acceleration factor was fairly invariable (2.0-2.2×) over the range of simulated resolutions. Estimation accuracy progressively improved with higher resolutions (39-51% error reduction). In vivo r values were not significantly different between the two methods: 0.27 ± 0.09, 0.35 ± 0.06, 0.40 ± 0.04 (standard) versus 0.23 ± 0.05, 0.34 ± 0.03, 0.37 ± 0.02 (accelerated); for anterior, medial, and posterior slices, respectively, whereas the corresponding vertical r gradients were significant (P < 0.001): 0.021 ± 0.007 (standard) versus 0.019 ± 0.005 (accelerated) (cm(-1) ). CONCLUSION Quadruple phased array coil simulations resulted in an optimal acceleration factor of ∼2× independent of imaging resolution. Results advocate undersampled image acceleration to improve accuracy of fractional ventilation measurement with hyperpolarized gas MRI.
Collapse
Affiliation(s)
- Kiarash Emami
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Asadi AK, Cronin MV, Sá RC, Theilmann RJ, Holverda S, Hopkins SR, Buxton RB, Prisk GK. Spatial-temporal dynamics of pulmonary blood flow in the healthy human lung in response to altered FI(O2). J Appl Physiol (1985) 2012; 114:107-18. [PMID: 23104691 DOI: 10.1152/japplphysiol.00433.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The temporal dynamics of blood flow in the human lung have been largely unexplored due to the lack of appropriate technology. Using the magnetic resonance imaging method of arterial spin labeling (ASL) with subject-gated breathing, we produced a dynamic series of flow-weighted images in a single sagittal slice of the right lung with a spatial resolution of ~1 cm(3) and a temporal resolution of ~10 s. The mean flow pattern determined from a set of reference images was removed to produce a time series of blood flow fluctuations. The fluctuation dispersion (FD), defined as the spatial standard deviation of each flow fluctuation map, was used to quantify the changes in distribution of flow in six healthy subjects in response to 100 breaths of hypoxia (FI(O(2)) = 0.125) or hyperoxia (FI(O(2)) = 1.0). Two reference frames were used in calculation, one determined from the initial set of images (FD(global)), and one determined from the mean of each corresponding baseline or challenge period (FD(local)). FD(local) thus represented changes in temporal variability as a result of intervention, whereas FD(global) encompasses both FD(local) and any generalized redistribution of flow associated with switching between two steady-state patterns. Hypoxic challenge resulted in a significant increase (96%, P < 0.001) in FD(global) from the normoxic control period and in FD(local) (46%, P = 0.0048), but there was no corresponding increase in spatial relative dispersion (spatial standard deviation of the images divided by the mean; 8%, not significant). There was a smaller increase in FD(global) in response to hyperoxia (47%, P = 0.0015) for the single slice, suggestive of a more general response of the pulmonary circulation to a change from normoxia to hyperoxia. These results clearly demonstrate a temporal change in the sampled distribution of pulmonary blood flow in response to hypoxia, which is not observed when considering only the relative dispersion of the spatial distribution.
Collapse
Affiliation(s)
- Amran K Asadi
- Department of Medicine, University of California, San Diego, La Jolla, California 92093-0852, USA
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Emami K, Xu Y, Hamedani H, Xin Y, Profka H, Rajaei J, Kadlecek S, Ishii M, Rizi RR. Multislice fractional ventilation imaging in large animals with hyperpolarized gas MRI. NMR IN BIOMEDICINE 2012; 25:1015-1025. [PMID: 22290603 PMCID: PMC3362674 DOI: 10.1002/nbm.2763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 11/17/2011] [Accepted: 11/22/2011] [Indexed: 05/31/2023]
Abstract
The noninvasive assessment of regional lung ventilation is of critical importance in the quantification of the severity of disease and evaluation of response to therapy in many pulmonary diseases. This work presents, for the first time, the implementation of a hyperpolarized (HP) gas MRI technique to measure whole-lung regional fractional ventilation (r) in Yorkshire pigs (n = 5) through the use of a gas mixing and delivery device in the supine position. The proposed technique utilizes a series of back-to-back HP gas breaths with images acquired during short end-inspiratory breath-holds. In order to decouple the radiofrequency pulse decay effect from the ventilatory signal build-up in the airways, the regional distribution of the flip angle (α) was estimated in the imaged slices by acquiring a series of back-to-back images with no interscan time delay during a breath-hold at the tail end of the ventilation sequence. Analysis was performed to assess the sensitivity of the multislice ventilation model to noise, oxygen and the number of flip angle images. The optimal α value was determined on the basis of the minimization of the error in r estimation: α(opt) = 5-6º for the set of acquisition parameters in pigs. The mean r values for the group of pigs were 0.27 ± 0.09, 0.35 ± 0.06 and 0.40 ± 0.04 for the ventral, middle and dorsal slices, respectively (excluding conductive airways r 0.9). A positive gravitational (ventral-dorsal) ventilation gradient effect was present in all animals. The trachea and major conductive airways showed a uniform near-unity r value, with progressively smaller values corresponding to smaller diameter airways, and ultimately leading to lung parenchyma. The results demonstrate the feasibility of the measurement of the fractional ventilation in large species, and provide a platform to address the technical challenges associated with long breathing time scales through the optimization of acquisition parameters in species with a pulmonary physiology very similar to that of humans.
Collapse
Affiliation(s)
- Kiarash Emami
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Schnidrig S, Casaulta C, Schibler A, Riedel T. Influence of end-expiratory level and tidal volume on gravitational ventilation distribution during tidal breathing in healthy adults. Eur J Appl Physiol 2012; 113:591-8. [PMID: 22872368 DOI: 10.1007/s00421-012-2469-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 07/25/2012] [Indexed: 10/27/2022]
Abstract
Our understanding of regional filling of the lung and regional ventilation distribution is based on studies using stepwise inhalation of radiolabelled tracer gases, magnetic resonance imaging and positron emission tomography. We aimed to investigate whether these differences in ventilation distribution at different end-expiratory levels (EELs) and tidal volumes (V (T)s) held also true during tidal breathing. Electrical impedance tomography (EIT) measurements were performed in ten healthy adults in the right lateral position. Five different EELs with four different V (T)s at each EEL were tested in random order, resulting in 19 combinations. There were no measurements for the combination of the highest EEL/highest V (T). EEL and V (T) were controlled by visual feedback based on airflow. The fraction of ventilation directed to different slices of the lung (VENT(RL1)-VENT(RL8)) and the rate of the regional filling of each slice versus the total lung were analysed. With increasing EEL but normal tidal volume, ventilation was preferentially distributed to the dependent lung and the filling of the right and left lung was more homogeneous. With increasing V (T) and maintained normal EEL (FRC), ventilation was preferentially distributed to the dependent lung and regional filling became more inhomogeneous (p < 0.05). We could demonstrate that regional and temporal ventilation distribution during tidal breathing was highly influenced by EEL and V (T).
Collapse
Affiliation(s)
- Silvia Schnidrig
- Division of Paediatric and Neonatal Intensive Care Medicine, Department of Paediatrics, Inselspital, University Children's Hospital and University of Bern, 3010 Bern, Switzerland
| | | | | | | |
Collapse
|
86
|
Simon BA, Kaczka DW, Bankier AA, Parraga G. What can computed tomography and magnetic resonance imaging tell us about ventilation? J Appl Physiol (1985) 2012; 113:647-57. [PMID: 22653989 DOI: 10.1152/japplphysiol.00353.2012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This review provides a summary of pulmonary functional imaging approaches for determining pulmonary ventilation, with a specific focus on multi-detector x-ray computed tomography and magnetic resonance imaging (MRI). We provide the important functional definitions of pulmonary ventilation typically used in medicine and physiology and discuss the fact that some of the imaging literature describes gas distribution abnormalities in pulmonary disease that may or may not be related to the physiological definition or clinical interpretation of ventilation. We also review the current state-of-the-field in terms of the key physiological questions yet unanswered related to ventilation and gas distribution in lung disease. Current and emerging imaging research methods are described, including their strengths and the challenges that remain to translate these methods to more wide-spread research and clinical use. We also examine how computed tomography and MRI might be used in the future to gain more insight into gas distribution and ventilation abnormalities in pulmonary disease.
Collapse
Affiliation(s)
- Brett A Simon
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
87
|
Robertson HT, Buxton RB. Imaging for lung physiology: what do we wish we could measure? J Appl Physiol (1985) 2012; 113:317-27. [PMID: 22582217 DOI: 10.1152/japplphysiol.00146.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of imaging as a tool for investigating lung physiology is growing at an accelerating pace. Looking forward, we wished to identify unresolved issues in lung physiology that might realistically be addressed by imaging methods in development or imaging approaches that could be considered. The role of imaging is framed in terms of the importance of good spatial and temporal resolution and the types of questions that could be addressed as these technical capabilities improve. Recognizing that physiology is fundamentally a quantitative science, a recurring emphasis is on the need for imaging methods that provide reliable measurements of specific physiological parameters. The topics included necessarily reflect our perspective on what are interesting questions and are not meant to be a comprehensive review. Nevertheless, we hope that this essay will be a spur to physiologists to think about how imaging could usefully be applied in their research and to physical scientists developing new imaging methods to attack challenging questions imaging could potentially answer.
Collapse
Affiliation(s)
- H Thomas Robertson
- Department of Medicine, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
88
|
Swan AJ, Clark AR, Tawhai MH. A computational model of the topographic distribution of ventilation in healthy human lungs. J Theor Biol 2012; 300:222-31. [PMID: 22326472 PMCID: PMC3308631 DOI: 10.1016/j.jtbi.2012.01.042] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 01/25/2012] [Accepted: 01/27/2012] [Indexed: 11/24/2022]
Abstract
The topographic distribution of ventilation in the lungs is determined by the interaction of several factors, including lung shape, airway tree geometry, posture, and tissue deformation. Inter-species differences in lung structure-function and technical difficulty in obtaining high resolution imaging of the upright human lung means that it is not straightforward to experimentally determine the contribution of each of these factors to ventilation distribution. We present a mathematical model for predicting the topological distribution of inhaled air in the upright healthy human lung, based on anatomically structured model geometries and biophysical equations for model function. Gravitational deformation of the lung tissue is predicted using a continuum model. Airflow is simulated in anatomically based conducting airways coupled to geometrically simplified terminal acinar units with varying volume-dependent compliances. The predicted ventilation distribution is hence governed by local tissue density and elastic recoil pressure, airway resistance and acinar compliance. Results suggest that there is significant spatial variation in intrinsic tissue properties in the lungs. The model confirms experimental evidence that in the healthy lungs tissue compliance has a far greater effect than airway resistance on the spatial distribution of ventilation, and hence a realistic description of tissue deformation is essential in models of ventilation.
Collapse
Affiliation(s)
- Annalisa J Swan
- Auckland Bioengineering Institute, University of Auckland, 70 Symonds St, Auckland, New Zealand
| | - Alys R Clark
- Auckland Bioengineering Institute, University of Auckland, 70 Symonds St, Auckland, New Zealand
| | - Merryn H Tawhai
- Auckland Bioengineering Institute, University of Auckland, 70 Symonds St, Auckland, New Zealand
| |
Collapse
|
89
|
Verbanck S, Paiva M, Schuermans D, Hanon S, Vincken W, Van Muylem A. Relationships between the lung clearance index and conductive and acinar ventilation heterogeneity. J Appl Physiol (1985) 2011; 112:782-90. [PMID: 22162528 DOI: 10.1152/japplphysiol.01221.2011] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The lung clearance index (LCI) derived from a multiple breath washout test has regained considerable popularity in recent years, alternatively being promoted as an early detection tool or a marker of small airways function. In this study, we systematically investigated the link between LCI and indexes of acinar and conductive airways ventilation heterogeneity (Sacin, Scond) to assess potential contributions from both lung zones. Relationships were examined in 55 normal subjects after provocation, where only Scond is known to be markedly increased, and in 55 asthma patients after bronchodilation, in whom both Scond and Sacin ranged between normal and abnormal. LCI was correlated to Scond in both groups (R = 0.37-0.43; P < 0.01 for both); in the asthma group, LCI was also tightly correlated to Sacin (R = 0.70; P < 0.001). Potential mechanisms operational at various levels of the bronchial tree were identified by considering washout curvilinearity in addition to LCI to distinguish specific ventilation and dead space effects (also illustrated by simple 2-compartment model simulations). Although the asthma data clearly demonstrate that LCI can reflect very peripheral ventilation heterogeneities, the normal provocation data also convincingly show that LCI increases may be the exclusive result of far more proximal ventilation heterogeneities. Because LCI potentially includes heterogeneities at all length scales, it is suggested that ventilation imaging in combination with LCI measurement at the mouth could identify the scale of relevant ventilation heterogeneities. In the meantime, interpretations of LCI results in the clinic based on washout curves collected at the mouth should be handled with caution.
Collapse
Affiliation(s)
- Sylvia Verbanck
- Respiratory Division, Univ. Hospital UZ Brussel, Laarbeeklaan 101, 1090 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
90
|
King GG. Current and emerging imaging in relation to drug discovery in airways disease. Pulm Pharmacol Ther 2011; 24:497-504. [DOI: 10.1016/j.pupt.2011.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 07/18/2011] [Accepted: 07/20/2011] [Indexed: 11/16/2022]
|