51
|
Brault JJ, Jespersen JG, Goldberg AL. Peroxisome proliferator-activated receptor gamma coactivator 1alpha or 1beta overexpression inhibits muscle protein degradation, induction of ubiquitin ligases, and disuse atrophy. J Biol Chem 2010; 285:19460-71. [PMID: 20404331 PMCID: PMC2885225 DOI: 10.1074/jbc.m110.113092] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/08/2010] [Indexed: 11/06/2022] Open
Abstract
Overexpression of the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha), like exercise, increases mitochondrial content and inhibits muscle atrophy. To understand these actions, we tested whether PGC-1alpha or its close homolog, PGC-1beta, influences muscle protein turnover. In myotubes, overexpression of either coactivator increased protein content by decreasing overall protein degradation without altering protein synthesis rates. Elevated PGC-1alpha or PGC-1beta also prevented the acceleration of proteolysis induced by starvation or FoxO transcription factors and prevented the induction of autophagy and atrophy-specific ubiquitin ligases by a constitutively active FoxO3. In mouse muscles, overexpression of PGC-1beta (like PGC-1alpha) inhibited denervation atrophy, ubiquitin ligase induction, and transcription by NFkappaB. However, increasing muscle PGC-1alpha levels pharmacologically by treatment of mice with 5-aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside failed to block loss of muscle mass or induction of ubiquitin ligases upon denervation atrophy, although it prevented loss of mitochondria. This capacity of PGC-1alpha and PGC-1beta to inhibit FoxO3 and NFkappaB actions and proteolysis helps explain how exercise prevents muscle atrophy.
Collapse
Affiliation(s)
- Jeffrey J. Brault
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Jakob G. Jespersen
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Alfred L. Goldberg
- From the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
52
|
Troosters T, Probst VS, Crul T, Pitta F, Gayan-Ramirez G, Decramer M, Gosselink R. Resistance Training Prevents Deterioration in Quadriceps Muscle Function During Acute Exacerbations of Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2010; 181:1072-7. [DOI: 10.1164/rccm.200908-1203oc] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
53
|
Simulated resistance training during hindlimb unloading abolishes disuse bone loss and maintains muscle strength. J Bone Miner Res 2010; 25:564-74. [PMID: 19653816 DOI: 10.1359/jbmr.090811] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study was designed to determine the effectiveness of simulated resistance training (SRT) without weight bearing in attenuating bone and muscle loss during 28 day hindlimb unloading (HU) in mature male rats. An ambulatory control group (CC) and four groups of HU rats were used: HU, HU + anesthesia (ANHU), HU + eccentric muscle contractions (HU + ECC), and HU + isometric and eccentric muscle contractions (HU + ISO/ECC). Animals in the two SRT groups were trained once every other day at 100% daily peak isometric torque (P(0)). HU resulted in significantly lower plantarflexor muscle mass (-33% versus CC) and reduced isometric strength (-10%), which reductions were partially attenuated in both training groups. Significantly reduced total and cancellous volumetric bone mineral density (vBMD) and total bone mineral content (BMC) at the proximal tibia metaphysis (PTM) also was evidenced in HU and ANHU groups compared with both SRT groups (p < .05). Training resulted in greater increases in cortical bone mass and area compared with all other groups (p < .05). Fourfold higher material properties of PTM cancellous bone were demonstrated in SRT animals versus HU or CC animals. A significant reduction in midshaft periosteal bone formation rate (BFR) in the HU group (-99% versus CC) was completely abolished in HU + ECC (+656% versus CC). These results demonstrate that high-intensity muscle contractions, independent of weight-bearing forces, can effectively mitigate losses in muscle strength and provide a potent stimulus to bone during prolonged disuse.
Collapse
|
54
|
Doessing S, Heinemeier KM, Holm L, Mackey AL, Schjerling P, Rennie M, Smith K, Reitelseder S, Kappelgaard AM, Rasmussen MH, Flyvbjerg A, Kjaer M. Growth hormone stimulates the collagen synthesis in human tendon and skeletal muscle without affecting myofibrillar protein synthesis. J Physiol 2009; 588:341-51. [PMID: 19933753 DOI: 10.1113/jphysiol.2009.179325] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In skeletal muscle and tendon the extracellular matrix confers important tensile properties and is crucially important for tissue regeneration after injury. Musculoskeletal tissue adaptation is influenced by mechanical loading, which modulates the availability of growth factors, including growth hormone (GH) and insulin-like growth factor-I (IGF-I), which may be of key importance. To test the hypothesis that GH promotes matrix collagen synthesis in musculotendinous tissue, we investigated the effects of 14 day administration of 33-50 microg kg(-1) day(-1) recombinant human GH (rhGH) in healthy young individuals. rhGH administration caused an increase in serum GH, serum IGF-I, and IGF-I mRNA expression in tendon and muscle. Tendon collagen I mRNA expression and tendon collagen protein synthesis increased by 3.9-fold and 1.3-fold, respectively (P < 0.01 and P = 0.02), and muscle collagen I mRNA expression and muscle collagen protein synthesis increased by 2.3-fold and 5.8-fold, respectively (P < 0.01 and P = 0.06). Myofibrillar protein synthesis was unaffected by elevation of GH and IGF-I. Moderate exercise did not enhance the effects of GH manipulation. Thus, increased GH availability stimulates matrix collagen synthesis in skeletal muscle and tendon, but without any effect upon myofibrillar protein synthesis. The results suggest that GH is more important in strengthening the matrix tissue than for muscle cell hypertrophy in adult human musculotendinous tissue.
Collapse
Affiliation(s)
- Simon Doessing
- Institute of Sports Medicine, Bispebjerg Hospital, Center of Healthy Aging, Faculty of Health Sciences, University of Copenhagen, Copenhagen NV, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Fujino H, Ishihara A, Murakami S, Yasuhara T, Kondo H, Mohri S, Takeda I, Roy RR. Protective effects of exercise preconditioning on hindlimb unloading-induced atrophy of rat soleus muscle. Acta Physiol (Oxf) 2009; 197:65-74. [PMID: 19302410 DOI: 10.1111/j.1748-1716.2009.01984.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM A chronic decrease in the activation and loading levels of skeletal muscles as occurs with hindlimb unloading (HU) results in a number of detrimental changes. Several proteolytic pathways are involved with an increase in myofibrillar protein degradation associated with HU. Exercise can be used to counter this increase in proteolytic activity and, thus, may be able to protect against some of the detrimental changes associated with chronic decreased use. The purpose of the present study was to determine the potential of a single bout of preconditioning endurance exercise in attenuating the effects of 2 weeks of HU on the mass, phenotype and force-related properties of the soleus muscle in adult rats. METHODS Male Wistar rats were subjected to HU for 2 weeks. One half of the rats performed a single bout of treadmill exercise for 25 min immediately prior to the 2 weeks of HU. RESULTS Soleus mass, maximum tetanic tension, myofibrillar protein content, fatigue resistance and percentage of type I (slow) myosin heavy chain were decreased in HU rats. In addition, markers for the cathepsin, calpain, caspase and ATP-ubiquitin-proteasome proteolytic pathways were increased. The preconditioning endurance exercise bout attenuated all of the detrimental changes associated with HU, and increased HSP72 mRNA expression and protein levels. CONCLUSION These findings indicate that exercise preconditioning may be an effective countermeasure to the detrimental effects of chronic decreases in activation and loading levels on skeletal muscles and that an elevation in HSP72 may be one of the mechanisms associated with these responses.
Collapse
Affiliation(s)
- Hidemi Fujino
- Department of Rehabilitation Sciences, Kobe University Graduate School of Health Sciences, Suma-Ku, Kobe, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Phillips SM, Glover EI, Rennie MJ. Alterations of protein turnover underlying disuse atrophy in human skeletal muscle. J Appl Physiol (1985) 2009; 107:645-54. [PMID: 19608931 DOI: 10.1152/japplphysiol.00452.2009] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Unloading-induced atrophy is a relatively uncomplicated form of muscle loss, dependent almost solely on the loss of mechanical input, whereas in disease states associated with inflammation (cancer cachexia, AIDS, burns, sepsis, and uremia), there is a procatabolic hormonal and cytokine environment. It is therefore predictable that muscle loss mainly due to disuse alone would be governed by mechanisms somewhat differently from those in inflammatory states. We suggest that in vivo measurements made in human subjects using arterial-venous balance, tracer dilution, and tracer incorporation are dynamic and thus robust by comparison with static measurements of mRNA abundance and protein expression and/or phosphorylation in human muscle. In addition, measurements made with cultured cells or in animal models, all of which have often been used to infer alterations of protein turnover, appear to be different from results obtained in immobilized human muscle in vivo. In vivo measurements of human muscle protein turnover in disuse show that the primary variable that changes facilitating the loss of muscle mass is protein synthesis, which is reduced in both the postabsorptive and postprandial states; muscle proteolysis itself appears not to be elevated. The depressed postprandial protein synthetic response (a phenomenon we term "anabolic resistance") may even be accompanied by a diminished suppression of proteolysis. We therefore propose that most of the loss of muscle mass during disuse atrophy can be accounted for by a depression in the rate of protein synthesis. Thus the normal diurnal fasted-to-fed cycle of protein balance is disrupted and, by default, proteolysis becomes dominant but is not enhanced.
Collapse
Affiliation(s)
- S M Phillips
- Exercise Metabolism Research Group, Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada L8S 4K1.
| | | | | |
Collapse
|
57
|
Neuromuscular electrical stimulation reduces skeletal muscle protein degradation and stimulates insulin-like growth factors in an age- and current-dependent manner: a randomized, controlled clinical trial in major abdominal surgical patients. Ann Surg 2009; 249:738-43. [PMID: 19387331 DOI: 10.1097/sla.0b013e3181a38e71] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the effect of neuromuscular electrical stimulation (NMES) on skeletal muscle metabolism after major abdominal surgery. SUMMARY BACKGROUND DATA Protein catabolism associated with surgical interventions leads to reduced muscle strength, increased clinical complications and prolonged convalescence. Immobilization is suggested as a major stimulus for muscle wasting. This study investigates the potency of NMES on skeletal muscle growth factors and degradation processes in surgical patients. METHODS This observer blind study included 26 patients after major abdominal surgery mainly due to cancer aged 60 +/- 10 years. Starting on the first postoperative day, 1 randomly assigned thigh of each patient was treated on 4 consecutive days with NMES, whereas the other leg was used as sham-stimulated control. Thereafter, muscle biopsies from both legs were performed. Differences in mRNA level, protein expression, and enzyme activity between legs were analyzed by cross-over analysis of variance (Clinical Trial Registration Number: NCT00635440). RESULTS NMES significantly increased total RNA content and total sarcoplasmatic protein content. NMES significantly reduced ubiquitin-conjugated sarcoplasmatic proteins and proteasome activity. The mechano growth factor mRNA level correlated positively with the applied current and negatively with the body mass index of the patients. The increase in insulin like growth factor-1Ea mRNA after NMES correlated negatively with the age of the patients. CONCLUSIONS This study shows that NMES significantly increases total RNA content and reduces protein degradation in postoperative patients. Moreover, the induction of growth factors by NMES reveals dependency on body mass index, age, and applied current. We conclude that NMES is a useful clinical tool to reduce protein catabolism in postoperative patients.
Collapse
|
58
|
Farthing JP, Krentz JR, Magnus CRA. Strength training the free limb attenuates strength loss during unilateral immobilization. J Appl Physiol (1985) 2009; 106:830-6. [PMID: 19150859 DOI: 10.1152/japplphysiol.91331.2008] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The objective was to determine if strength training the free limb during a 3-wk period of unilateral immobilization attenuates strength loss in the immobilized limb through cross-education. Thirty right-handed participants were assigned to three groups. One group (n = 10) wore a cast and trained the free arm (Cast-Train). A second group (n = 10) wore a cast and did not train (Cast). A third group (n = 10) received no treatment (control). Casts were applied to the nondominant (left) wrist and hand by a physician. Strength training was maximal isometric ulnar deviation (right hand) 5 days/wk. Peak torque (dynamometer), electromyography (EMG), and muscle thickness (ultrasound) were assessed in both arms before and after the intervention. Cast-Train improved right arm strength [14.3 (SD 5.0) to 17.7 (SD 4.8) N x m; P < 0.05] with no significant muscle hypertrophy [3.73 (SD 0.43) to 3.84 (SD 0.52) cm; P = 0.09]. The immobilized arm of Cast-Train did not change in strength [13.9 (SD 4.3) to 14.2 (SD 4.6) N x m] or muscle thickness [3.61 (SD 0.51) to 3.57 (SD 0.43) cm]. The immobilized arm of Cast decreased in strength [12.2 (SD 3.8) to 10.4 (SD 2.5) N x m; P < 0.05] and muscle thickness [3.47 (SD 0.59) to 3.32 (SD 0.55) cm; P < 0.05]. Control showed no changes in the right arm [strength: 15.3 (SD 6.1) to 14.3 (SD 5.8) N x m; muscle thickness: 3.57 (SD 0.68) to 3.52 (SD 0.75) cm] or left arm [strength: 14.5 (SD 5.3) to 13.7 (SD 6.1) N x m; muscle thickness: 3.55 (SD 0.77) to 3.51 (SD 0.70) cm]. Agonist muscle activation remained unchanged after the intervention for both arms [right: 302 (SD 188) to 314 (SD 176) microV; left: 261 (SD 139) to 288 (SD 151) microV] with no group differences. Strength training of the free limb attenuated strength loss in the immobilized limb during unilateral immobilization. Strength training may have prevented muscle atrophy in the immobilized limb.
Collapse
Affiliation(s)
- Jonathan P Farthing
- College of Kinesiology, Univ of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | | | | |
Collapse
|
59
|
Bodell PW, Kodesh E, Haddad F, Zaldivar FP, Cooper DM, Adams GR. Skeletal muscle growth in young rats is inhibited by chronic exposure to IL-6 but preserved by concurrent voluntary endurance exercise. J Appl Physiol (1985) 2008; 106:443-53. [PMID: 19057004 DOI: 10.1152/japplphysiol.90831.2008] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Childhood diseases are often accompanied by chronic inflammation, which is thought to negatively impact growth. Interleukin-6 (IL-6) is typically cited as an indicator of inflammation and is linked to impaired growth. This study was designed to isolate and identify potential effects of chronic IL-6 exposure on skeletal muscle growth during development. A second aim was to determine if endurance exercise, thought to antagonize chronic inflammation, would interact with any effects of IL-6. The muscles of one leg of rapidly growing rats were exposed to IL-6 or vehicle for 14 days. Subgroups of IL-6-infused rats were provided access to running wheels. Local IL-6 infusion resulted in approximately 13% muscle growth deficit (myofibrillar protein levels). Exercise (>4,000 m/day) prevented this deficit. IL-6 infusion increased mRNA for suppressor of cytokine signaling-3 (SOCS3) and tumor necrosis factor-alpha (TNF-alpha), and this was not prevented by exercise. IL-6 infusion increased the mRNAs for atrogin, insulin-like growth factor-I (IGF-I), and IGF binding protein-4 (IGFBP4), and these effects were mitigated by exercise. Exercise stimulated an increase in total RNA ( approximately 19%) only in the IL-6-infused muscle, suggesting that a compensatory increase in translational capacity was required to maintain muscle growth. This study indicates that IL-6 exposure during periods of rapid growth in young animals can retard growth possibly via interactions with key growth factors. Relatively high volumes of endurance-type exercise do not exacerbate the negative effects of IL-6 and in fact were found to be beneficial in protecting muscle growth.
Collapse
Affiliation(s)
- P W Bodell
- Department of Physiology and Biophysics, University of California, Irvine, CA 92697-4560, USA
| | | | | | | | | | | |
Collapse
|
60
|
Heinemeier KM, Olesen JL, Haddad F, Schjerling P, Baldwin KM, Kjaer M. Effect of unloading followed by reloading on expression of collagen and related growth factors in rat tendon and muscle. J Appl Physiol (1985) 2008; 106:178-86. [PMID: 18988763 DOI: 10.1152/japplphysiol.91092.2008] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tendon tissue and the extracellular matrix of skeletal muscle respond to mechanical loading by increased collagen expression and synthesis. This response is likely a secondary effect of a mechanically induced expression of growth factors, including transforming growth factor-beta1 (TGF-beta1) and insulin-like growth factor-I (IGF-I). It is not known whether unloading of tendon tissue can reduce the expression of collagen and collagen-inducing growth factors. Furthermore, the coordinated response of tendon and muscle tissue to disuse, followed by reloading, is unclear. Female Sprague-Dawley rats were subjected to hindlimb suspension (HS) for 7 or 14 days, followed by 2, 4, 8, or 16 days of reload (RL) (n = 8 in each group). Age-matched controls were included for day 0, day 14 HS, and day 16 RL (n = 8). mRNA expression levels for collagen I (COL1A1), collagen III (COL3A1), TGF-beta1, connective tissue growth factor (CTGF), myostatin, and IGF-I isoforms were measured by real-time RT-PCR in Achilles tendon and soleus muscle. The tendon mass was unchanged, while the muscle mass was reduced by 50% after HS (P < 0.05) and returned to control levels during RL. Collagen I and III, TGF-beta1, and CTGF mRNA levels were unaltered by HS, although collagen III tended to decrease in muscle at day 7 HS. IGF-I isoforms were significantly induced in tendon after 7 days of HS (P < 0.001), and mechanogrowth factor increased in muscle at day 14 HS (P < 0.05). Reload increased muscle collagen I and III mRNA (>10-fold) (P < 0.001) and growth factor expression (P < 0.05), while the tendon response was limited to a moderate induction of collagen expression (2-fold) (P < 0.05). Unloading of tendon and muscle tissue did not reduce expression of collagen and collagen-inducing growth factors, indicating that the response to unloading is not opposite that of loading. Furthermore, the tendon response was clearly different and less pronounced than the muscle tissue response.
Collapse
Affiliation(s)
- K M Heinemeier
- Institute of Sports Medicine, Bispebjerg Hospital, DK-2400 Copenhagen NV, Denmark.
| | | | | | | | | | | |
Collapse
|
61
|
Rinaldi C, Haddad F, Bodell PW, Qin AX, Jiang W, Baldwin KM. Intergenic bidirectional promoter and cooperative regulation of the IIx and IIb MHC genes in fast skeletal muscle. Am J Physiol Regul Integr Comp Physiol 2008; 295:R208-18. [PMID: 18434443 DOI: 10.1152/ajpregu.00134.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the dynamic regulation of IIx-IIb MHC genes in the fast white medial gastrocnemius (WMG) muscle in response to intermittent resistance exercise training (RE), a model associated with a rapid shift from IIb to IIx expression (11). We investigated the effect of 4 days of RE on the transcriptional activity across the skeletal MHC gene locus in the WMG in female Sprague-Dawley rats. Our results show that RE resulted in significant shifts from IIb to IIx observed at both the pre-mRNA and mRNA levels. An antisense RNA (xII NAT) was detected in the intergenic (IG) region between IIx and IIb, extending across the entire IIx gene and into its promoter. The expression of the xII NAT was positively correlated with IIb pre-mRNA (R = +0.8), and negatively correlated with IIx pre-mRNA (R = -0.8). Transcription mapping of the IIx-IIb IG region revealed the generation of sense IIb and xII NATs from a single promoter region. This bidirectional promoter is highly conserved among species and contains several regulatory elements that may be implicated in its regulation. These results suggest that the IIx and the IIb genes are physically and functionally linked via the bidirectional promoter. In order for the IIx MHC gene to be regulated, a feedback mechanism from the IG xII NAT is needed. In conclusion, the IG bidirectional promoter generating antisense RNA appears to be essential for the coordinated regulation of the skeletal muscle MHC genes during dynamic phenotype shifts.
Collapse
Affiliation(s)
- Chiara Rinaldi
- Physiology and Biophysics Department, University of California Irvine, Irvine, CA, USA
| | | | | | | | | | | |
Collapse
|
62
|
Kollias HD, McDermott JC. Transforming growth factor-beta and myostatin signaling in skeletal muscle. J Appl Physiol (1985) 2007; 104:579-87. [PMID: 18032576 DOI: 10.1152/japplphysiol.01091.2007] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The superfamily of transforming growth factor-beta (TGF-beta) cytokines has been shown to have profound effects on cellular proliferation, differentiation, and growth. Recently, there have been major advances in our understanding of the signaling pathway(s) conveying TGF-beta signals to the nucleus to ultimately control gene expression. One tissue that is potently influenced by TGF-beta superfamily signaling is skeletal muscle. Skeletal muscle ontogeny and postnatal physiology have proven to be exquisitely sensitive to the TGF-beta superfamily cytokine milieu in various animal systems from mice to humans. Recently, major strides have been made in understanding the role of TGF-beta and its closely related family member, myostatin, in these processes. In this overview, we will review recent advances in our understanding of the TGF-beta and myostatin signaling pathways and, in particular, focus on the implications of this signaling pathway for skeletal muscle development, physiology, and pathology.
Collapse
Affiliation(s)
- Helen D Kollias
- Department of Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
| | | |
Collapse
|