51
|
Cui WW, Saint-Amant L, Kuwada JY. shocked Gene is required for the function of a premotor network in the zebrafish CNS. J Neurophysiol 2004; 92:2898-908. [PMID: 15212431 DOI: 10.1152/jn.00419.2004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The analysis of behavioral mutations in zebrafish can be a powerful strategy for identifying genes that regulate the function and development of neural circuits in the vertebrate CNS. A neurophysiological analysis of the shocked (sho) mutation that affects the initiation of swimming after mechanosensory stimulation was undertaken to identify the function of the sho gene product in the developing motor circuitry. The cutaneous Rohon-Beard (RB) mechanosensory neurons responded normally to stimulation, and muscle fibers were unaffected in sho embryos, suggesting that the output of the CNS is abnormal. Indeed whole cell patch recordings from mutant muscle cells showed normal spontaneous miniature endplate potentials, but abnormal touch-evoked endplate potentials. Furthermore, motor neuron recordings showed that bursts of rhythmic action potentials from synaptically dependent depolarizations are initiated in wild-type motor neurons after sensory stimulation or bath application of N-methyl-D-aspartate. These bursts presumably correspond to bouts of swimming. In sho motor neurons, the touch-evoked depolarizations were not sustained, resulting in an abbreviated burst of action potentials. The defective responses were not due to any obvious defect in sho motor neurons because their basic properties were normal. These results suggest that in sho embryos, there is aberrant motor processing within the CNS and that normal motor processing requires the sho gene product.
Collapse
Affiliation(s)
- Wilson W Cui
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | | | |
Collapse
|
52
|
Luna VM, Wang M, Ono F, Gleason MR, Dallman JE, Mandel G, Brehm P. Persistent electrical coupling and locomotory dysfunction in the zebrafish mutant shocked. J Neurophysiol 2004; 92:2003-9. [PMID: 15201312 DOI: 10.1152/jn.00454.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
On initial formation of neuromuscular junctions, slow synaptic signals interact through an electrically coupled network of muscle cells. After the developmental onset of muscle excitability and the transition to fast synaptic responses, electrical coupling diminishes. No studies have revealed the functional importance of the electrical coupling or its precisely timed loss during development. In the mutant zebrafish shocked (sho) electrical coupling between fast muscle cells persists beyond the time that it would normally disappear in wild-type fish. Recordings from sho indicate that muscle depolarization in response to motor neuron stimulation remains slow due to the low-pass filter characteristics of the coupled network of muscle cells. Our findings suggest that the resultant prolonged muscle depolarizations contribute to the premature termination of swimming in sho and the delayed acquisition of the normally rapid touch-triggered movements. Thus the benefits of gap junctions during early synapse development likely become a liability if not inactivated by the time that muscle would normally achieve fast autonomous function.
Collapse
Affiliation(s)
- Victor M Luna
- Dept. of Neurobiology and Behavior, State University of New York at Stony Brook, Stony Brook, NY 11794, USA
| | | | | | | | | | | | | |
Collapse
|
53
|
Brustein E, Saint-Amant L, Buss RR, Chong M, McDearmid JR, Drapeau P. Steps during the development of the zebrafish locomotor network. ACTA ACUST UNITED AC 2004; 97:77-86. [PMID: 14706693 DOI: 10.1016/j.jphysparis.2003.10.009] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review summarizes recent data from our lab concerning the development of motor activities in the developing zebrafish. The zebrafish is a leading model for studies of vertebrate development because one can obtain a large number of transparent, externally and rapidly developing embryos with motor behaviors that are easy to assess (e.g. for mutagenic screens). The emergence of embryonic motility was studied behaviorally and at the cellular level. The embryonic behaviors appear sequentially and include an early, transient period of spontaneous, alternating tail coilings, followed by responses to touch, and swimming. Patch clamp recording in vivo revealed that an electrically coupled network of a subset of spinal neurons generates spontaneous tail coiling, whereas a chemical (glutamatergic and glycinergic) synaptic drive underlies touch responses and swimming and requires input from the hindbrain. Swimming becomes sustained in larvae once serotonergic neuromodulatory effects are integrated. We end with a brief overview of the genetic tools available for the study of the molecular determinants implicated in locomotor network development in the zebrafish. Combining genetic, behavioral and cellular experimental approaches will advance our understanding of the general principles of locomotor network assembly and function.
Collapse
Affiliation(s)
- Edna Brustein
- McGill Centre for Research in Neuroscience, McGill University, 1650 Cedar Avenue, Montreal, Quebec, Canada H3G 1A4
| | | | | | | | | | | |
Collapse
|
54
|
Buckingham SD, Ali DW. Sodium and potassium currents of larval zebrafish muscle fibres. ACTA ACUST UNITED AC 2004; 207:841-52. [PMID: 14747415 DOI: 10.1242/jeb.00839] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The steady-state and kinetic properties of Na(+) and K(+) currents of inner (white) and outer (red) muscles of zebrafish larvae 4-6 days post-fertilization (d.p.f.) are described. In inner muscle, the outward currents were half-activated at -1.0 mV and half-inactivated at -30.4 mV, and completely inactivated within 100 ms of depolarization. The inward currents of inner fibres were half-activated at -7.3 mV and half-inactivated at -74.5 mV and completely inactivated within 5 ms of depolarization. Inner muscle fibres were found to support action potentials, while no action potentials could be evoked in outer muscles. In inner muscle fibres, all tested levels of depolarizing current above a threshold value evoked only one action potential. However, spiking at frequencies of up to 200 cycles s(-1) was evoked by the injection of depolarizing pulses separated by short hyperpolarizing currents. We suggest that the properties of the inward sodium and outward potassium currents permit high frequency firing in response to a pulsatile depolarizing input of the kind expected in fast swimming, whilst safeguarding against tetany during a strong depolarization.
Collapse
Affiliation(s)
- Steven D Buckingham
- Department of Biological Sciences, University of Alberta, CW-405 Biological Sciences Building, Edmonton, Alberta, T6G 2E9, Canada
| | | |
Collapse
|
55
|
Todd KJ, Slatter CAB, Ali DW. Activation of Ionotropic Glutamate Receptors on Peripheral Axons of Primary Motoneurons Mediates Transmitter Release at the Zebrafish NMJ. J Neurophysiol 2004; 91:828-40. [PMID: 14762151 DOI: 10.1152/jn.00599.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The development and function of the vertebrate neuromuscular junction (NMJ) is continually being redefined. Previous studies have indicated that glutamate may play a role in the development or function of the NMJ by associating with presynaptic receptors. We have used larval zebrafish ( Danio rerio) to investigate the presence of presynaptic ionotropic glutamate receptors (iGluRs) at the NMJ in vivo. In whole-mount zebrafish larvae, antibody staining directed to NR2A subunits colocalized with specific staining of motoneuron axon tracts. Whole cell voltage-clamp recordings of miniature endplate currents (mEPCs) from axial white muscle were performed during application of iGluR agonists and antagonists. Local perfusion of the NMJ with iGluR agonists resulted in significant increases in the frequency of spontaneous acetylcholine (ACh) release. These increases were blocked by the N-methyl-d-aspartate (NMDA) receptor antagonist d-(-)-2-amino-5-phosphonopentanoic acid (50 μM) and by the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxalene-2,3-dione (50 μM). Further pharmacological investigation revealed no effect of the kainate receptor-specific antagonist (2S,4R)-4-methylglutamate (10 μM) on kainate-induced rises in the frequency of spontaneous ACh release. However, these were blocked with the AMPA receptor-specific antagonist 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine (50 μM). Application of glutamate (1 mM) in the presence of the glutamate uptake inhibitor d-threo-β-benzyloxyaspartate(200 μM) resulted in a significant increase in the frequency of mEPCs. These results suggest the presence of AMPA and NMDA receptors in association with motoneuron axons of larval zebrafish.
Collapse
Affiliation(s)
- Keith J Todd
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | | | | |
Collapse
|
56
|
Affiliation(s)
- Charles A Lessman
- Department of Microbiology & Molecular Cell Sciences, The University of Memphis, Memphis, Tennessee 38152, USA
| |
Collapse
|
57
|
Buss RR, Bourque CW, Drapeau P. Membrane properties related to the firing behavior of zebrafish motoneurons. J Neurophysiol 2003; 89:657-64. [PMID: 12574443 DOI: 10.1152/jn.00324.2002] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The physiological and pharmacological properties of the motoneuron membrane and action potential were investigated in larval zebrafish using whole cell patch current-clamp recording techniques. Action potentials were eliminated in tetrodotoxin, repolarized by tetraethylammonium (TEA) and 3,4-diaminopyridine (3,4-AP)-sensitive potassium conductances, and had a cobalt-sensitive, high-threshold calcium component. Depolarizing current injection evoked a brief (approximately 10-30 ms) burst of action potentials that was terminated by strong, outwardly rectifying voltage-activated potassium and calcium-dependent conductances. In the presence of intracellular cesium ions, a prolonged plateau potential often followed brief depolarizations. During larval development (hatching to free-swimming), the resting membrane conductance increased in a population of motoneurons, which tended to reduce the apparent outward rectification of the membrane. The conductances contributing to action potential burst termination are hypothesized to play a role in patterning the synaptically driven motoneuron output in these rapidly swimming fish.
Collapse
Affiliation(s)
- Robert R Buss
- McGill Centre for Research in Neuroscience and Department of Biology, McGill University, Montreal, H3G 1A4 Quebec, Canada
| | | | | |
Collapse
|
58
|
Spitsbergen JM, Kent ML. The state of the art of the zebrafish model for toxicology and toxicologic pathology research--advantages and current limitations. Toxicol Pathol 2003; 31 Suppl:62-87. [PMID: 12597434 PMCID: PMC1909756 DOI: 10.1080/01926230390174959] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The zebrafish (Danio rerio) is now the pre-eminent vertebrate model system for clarification of the roles of specific genes and signaling pathways in development. The zebrafish genome will be completely sequenced within the next 1-2 years. Together with the substantial historical database regarding basic developmental biology, toxicology, and gene transfer, the rich foundation of molecular genetic and genomic data makes zebrafish a powerful model system for clarifying mechanisms in toxicity. In contrast to the highly advanced knowledge base on molecular developmental genetics in zebrafish, our database regarding infectious and noninfectious diseases and pathologic lesions in zebrafish lags far behind the information available on most other domestic mammalian and avian species, particularly rodents. Currently, minimal data are available regarding spontaneous neoplasm rates or spontaneous aging lesions in any of the commonly used wild-type or mutant lines of zebrafish. Therefore, to fully utilize the potential of zebrafish as an animal model for understanding human development, disease, and toxicology we must greatly advance our knowledge on zebrafish diseases and pathology.
Collapse
Affiliation(s)
- Jan M Spitsbergen
- Department of Environmental and Molecular Toxicology and Marine/Freshwater Biomedical Sciences Center, Oregon State University, Corvallis, Oregon 97333, USA.
| | | |
Collapse
|
59
|
Brent LJN, Drapeau P. Targeted "knockdown" of channel expression in vivo with an antisense morpholino oligonucleotide. Neuroscience 2002; 114:275-8. [PMID: 12204196 DOI: 10.1016/s0306-4522(02)00270-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have examined whether antisense morpholino oligonucleotides (morpholinos) can be used as a tool to suppress or "knockdown" the expression of ion channels during development of the zebrafish. Because the acetylcholine receptor channel is well characterized in zebrafish and is abundant as skeletal muscle is found throughout the body, we sought to knock down its expression as a general test of the feasibility of this approach. A 25-mer morpholino was designed to target the 5' region of the cloned alpha-subunit and was injected into early stage blastulae in order to trap it in all developing cells. From the time of hatching (early on the third day of development) and for a few days after, a fraction of the injected embryos were immobile, i.e. were "morphant". Injection of blastulae without the morpholino or with a control morpholino containing four mispaired bases did not affect the embryos. Although the morphant embryos were generally normal in appearance, they lacked staining with alpha-bungarotoxin or an alpha-subunit-specific monoclonal antibody. In whole muscle cell recordings from morphant embryos, miniature end-plate potentials were undetectable in many of the cells and in most they had a slower, immature time course. These results are consistent with a greatly reduced, dysfunctional level of expression of acetylcholine receptors in morphant embryos. Because of their stability and specificity, morpholinos should prove useful for targeted deletion of transmitter receptors and channels in developing zebrafish and possibly in other preparations.
Collapse
Affiliation(s)
- L J N Brent
- Centre for Research in Neuroscience and Departments of Biology and of Neurology and Neurosurgery, McGill University, 1650 Cedar Street, Montreal, Quebec, Canada H3G 1A4
| | | |
Collapse
|
60
|
Drapeau P, Saint-Amant L, Buss RR, Chong M, McDearmid JR, Brustein E. Development of the locomotor network in zebrafish. Prog Neurobiol 2002; 68:85-111. [PMID: 12450489 DOI: 10.1016/s0301-0082(02)00075-8] [Citation(s) in RCA: 271] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The zebrafish is a leading model for studies of vertebrate development and genetics. Its embryonic motor behaviors are easy to assess (e.g. for mutagenic screens), the embryos develop rapidly (hatching as larvae at 2 days) and are transparent, permitting calcium imaging and patch clamp recording in vivo. We review primarily the recent advances in understanding the cellular basis for the development of motor activities in the developing zebrafish. The motor activities are generated largely in the spinal cord and hindbrain. In the embryo these segmented structures possess a relatively small number of repeating sets of identifiable neurons. Many types of neurons as well as the two types of muscle cells have been classified based on their morphologies. Some of the molecular signals for cellular differentiation have been identified recently and mutations affecting cell development have been isolated. Embryonic motor behaviors appear in sequence and consist of an early period of transient spontaneous coiling contractions, followed by the emergence of twitching responses to touch, and later by the ability to swim. Coiling contractions are generated by an electrically coupled network of a subset of spinal neurons whereas a chemical (glutamatergic and glycinergic) synaptic drive underlies touch responses and swimming. Swimming becomes sustained in larvae once the neuromodulatory serotonergic system develops. These results indicate many similarities between developing zebrafish and other vertebrates in the properties of the synaptic drive underlying locomotion. Therefore, the zebrafish is a useful preparation for gaining new insights into the development of the neural control of vertebrate locomotion. As the types of neurons, transmitters, receptors and channels used in the locomotor network are being defined, this opens the possibility of combining cellular neurophysiology with forward and reverse molecular genetics to understand the principles of locomotor network assembly and function.
Collapse
Affiliation(s)
- Pierre Drapeau
- McGill Centre for Research in Neuroscience and Department of Biology, McGill University, Que., Montreal, Canada.
| | | | | | | | | | | |
Collapse
|
61
|
Abstract
Upon touch, twitch once zebrafish respond with one or two swimming strokes instead of typical full-blown escapes. This use-dependent fatigue is shown to be a consequence of a mutation in the tetratricopeptide domain of muscle rapsyn, inhibiting formation of subsynaptic acetylcholine receptor clusters. Physiological analysis indicates that reduced synaptic strength, attributable to loss of receptors, is augmented by a potent postsynaptic depression not seen at normal neuromuscular junctions. The synergism between these two physiological processes is causal to the use-dependent muscle fatigue. These findings offer insights into the physiological basis of human myasthenic syndrome and reveal the first demonstration of a role for rapsyn in regulating synaptic function.
Collapse
|
62
|
Use of Computer-Aided Screening for Detection of Motility Mutants in Zebrafish Embryos. ACTA ACUST UNITED AC 2002. [DOI: 10.1006/rtim.2001.0282] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
63
|
Buss RR, Drapeau P. Activation of embryonic red and white muscle fibers during fictive swimming in the developing zebrafish. J Neurophysiol 2002; 87:1244-51. [PMID: 11877498 DOI: 10.1152/jn.00659.2001] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sub-threshold, motoneuron-evoked synaptic activity was observed in zebrafish embryonic red (ER) and white (EW) muscle fibers paralyzed with a dose of D-tubocurarine insufficient to abolish synaptic activity to determine whether muscle activation was coordinated to produce the undulating body movements required for locomotion. Paired whole-cell recordings revealed a synaptic drive that alternated between ipsilateral and contralateral myotomes and exhibited a rostral-caudal delay in timing appropriate for swimming. Both ER and EW muscle were activated during fictive swimming. However, at the fastest fictive swimming rates, ER fibers were de-recruited, whereas they could be active in isolation of EW fibers at the slowest fictive swimming rates. Prior to hatching, fictive swimming was preceded by a lower frequency, more robust and rhythmic synaptic drive resembling the "coiling" behavior of fish embryos. The motor activity observed in paralyzed zebrafish closely resembled the swimming and coiling behaviors observed in these developing fishes. At the early developmental stages examined in this study, myotomal muscle recruitment and coordination were similar to that observed in adult fishes during swimming. Our results indicate that the patterned activation of myotomal muscle is set from the onset of development.
Collapse
Affiliation(s)
- Robert R Buss
- Centre for Research in Neuroscience, Montreal General Hospital Research Institute, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4, Canada
| | | |
Collapse
|
64
|
Drapeau P, Buss RR, Ali DW, Legendre P, Rotundo RL. Limits to the development of fast neuromuscular transmission in zebrafish. J Neurophysiol 2001; 86:2951-6. [PMID: 11731551 DOI: 10.1152/jn.2001.86.6.2951] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Zebrafish embryos have small and slow miniature end-plate currents (mEPCs), whereas only a few days later larval mEPCs are an order of magnitude larger and faster, being among the fastest of all neuromuscular synapses. To identify the bases for these changes we compared, in embryos and larvae, the properties and distributions of acetylcholine (ACh) receptors (AChRs) and acetylcholinesterase (AChE) as well as the ultrastructure of the developing neuromuscular junctions (NMJs). To mimic synaptic release, patches of muscle membrane were exposed briefly (for 1 ms) to a saturating concentration (10 mM) of ACh. The AChR deactivation kinetics were twice as slow in embryos compared with larvae. In both embryos and larvae, AChRs demonstrated open channel block by millimolar ACh, and this was detected during mEPCs, indicating that a high concentration of ACh is released at immature and mature NMJs. AChR and AChE distributions were compared using the selective fluorescently conjugated labels alpha-bungarotoxin and fasciculin 2, respectively. In larvae, punctate AChR clusters were detected whereas junctional AChE staining was less intense than that found at adult NMJs. Transmission electron microscopy revealed immature nerve endings in embryos that were closely juxtaposed to the surrounding muscle cells, whereas mature larval NMJs had a wider synaptic cleft with a conspicuous basal lamina over a limited region of synaptic contact. Our results indicate that ACh is released at high concentrations at immature NMJs, but its clearance is prolonged and the AChRs are dispersed, resulting in a slow mEPC time course until a mature cleft appears with densely packed faster AChRs and abundant AChE.
Collapse
Affiliation(s)
- P Drapeau
- Centre for Research in Neuroscience, Montreal General Hospital Research Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3G 1A4, Canada.
| | | | | | | | | |
Collapse
|
65
|
Buss RR, Drapeau P. Synaptic drive to motoneurons during fictive swimming in the developing zebrafish. J Neurophysiol 2001; 86:197-210. [PMID: 11431502 DOI: 10.1152/jn.2001.86.1.197] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The development of swimming behavior and the correlated activity patterns recorded in motoneurons during fictive swimming in paralyzed zebrafish larvae were examined and compared. Larvae were studied from when they hatch (after 2 days) and are first capable of locomotion to when they are active swimmers capable of capturing prey (after 4 days). High-speed (500 Hz) video imaging was used to make a basic behavioral characterization of swimming. At hatching and up to day 3, the larvae swam infrequently and in an undirected fashion. They displayed sustained bursts of contractions ('burst swimming') at an average frequency of 60-70 Hz that lasted from several seconds to a minute in duration. By day 4 the swimming had matured to a more frequent and less erratic "beat-and-glide" mode, with slower (approximately 35 Hz) beats of contractions for approximately 200 ms alternating with glides that were twice as long, lasting from just a few cycles to several minutes overall. In whole cell current-clamp recordings, motoneurons displayed similar excitatory synaptic activity and firing patterns, corresponding to either fictive burst swimming (day 2-3) or beat-and-glide swimming (day 4). The resting potentials were similar at all stages (about -70 mV) and the motoneurons were depolarized (to about -40 mV) with generally non-overshooting action potentials during fictive swimming. The frequency of sustained inputs during fictive burst swimming and of repetitive inputs during fictive beat-and glide swimming corresponded to the behavioral contraction patterns. Fictive swimming activity patterns were eliminated by application of glutamate antagonists (kynurenic acid or 6-cyano-7-nitroquinoxalene-2,3-dione and DL-2-amino-5-phosphonovaleric acid) and were modified but maintained in the presence of the glycinergic antagonist strychnine. The corresponding synaptic currents underlying the synaptic drive to motoneurons during fictive swimming could be isolated under voltage clamp and consisted of cationic [glutamatergic postsynaptic currents (PSCs)] and anionic inputs (glycinergic PSCs). Either sustained or interrupted patterns of PSCs were observed during fictive burst or beat-and-glide swimming, respectively. During beat-and-glide swimming, a tonic inward current and rhythmic glutamatergic PSCs (approximately 35 Hz) were observed. In contrast, bursts of glycinergic PSCs occurred at a higher frequency, resulting in a more tonic pattern with little evidence for synchronized activity. We conclude that a rhythmic glutamatergic synaptic drive underlies swimming and that a tonic, shunting glycinergic input acts to more closely match the membrane time constant to the fast synaptic drive.
Collapse
Affiliation(s)
- R R Buss
- Centre for Research in Neuroscience, Montreal General Hospital Research Institute, Department of Neurology, McGill University, Montreal, Quebec H3G 1A4, Canada
| | | |
Collapse
|