51
|
Kim J, Lee J, Kim S, Yoon D, Kim J, Sung DJ. Role of creatine supplementation in exercise-induced muscle damage: A mini review. J Exerc Rehabil 2015; 11:244-50. [PMID: 26535213 PMCID: PMC4625651 DOI: 10.12965/jer.150237] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 10/14/2015] [Indexed: 11/22/2022] Open
Abstract
Muscle damage is induced by both high-intensity resistance and endurance exercise. Creatine is a widely used dietary supplement to improve exercise performance by reducing exercise-induced muscle damage. Many researchers have suggested that taking creatine reduces muscle damage by decreasing the inflammatory response and oxidative stress, regulating calcium homeostasis, and activating satellite cells. However, the underlying mechanisms of creatine and muscle damage have not been clarified. Therefore, this review discusses the regulatory effects of creatine on muscle damage by compiling the information collected from basic science and sports science research.
Collapse
Affiliation(s)
- Jooyoung Kim
- College of Physical Education, Kookmin University, Seoul, Korea
| | - Joohyung Lee
- College of Physical Education, Kookmin University, Seoul, Korea
| | - Seungho Kim
- Department of Football Management, Munkyung College, Mungyeong, Korea
| | - Daeyoung Yoon
- Department of Football Management, Munkyung College, Mungyeong, Korea
| | - Jieun Kim
- College of Physical Education, Kookmin University, Seoul, Korea
| | - Dong Jun Sung
- Division of Sport Science, Konkuk University, Choongju, Korea
| |
Collapse
|
52
|
Candow DG, Vogt E, Johannsmeyer S, Forbes SC, Farthing JP. Strategic creatine supplementation and resistance training in healthy older adults. Appl Physiol Nutr Metab 2015; 40:689-94. [DOI: 10.1139/apnm-2014-0498] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Creatine supplementation in close proximity to resistance training may be an important strategy for increasing muscle mass and strength; however, it is unknown whether creatine supplementation before or after resistance training is more effective for aging adults. Using a double-blind, repeated measures design, older adults (50–71 years) were randomized to 1 of 3 groups: creatine before (CR-B: n = 15; creatine (0.1 g/kg) immediately before resistance training and placebo (0.1 g/kg cornstarch maltodextrin) immediately after resistance training), creatine after (CR-A: n = 12; placebo immediately before resistance training and creatine immediately after resistance training), or placebo (PLA: n = 12; placebo immediately before and immediately after resistance training) for 32 weeks. Prior to and following the study, body composition (lean tissue, fat mass; dual-energy X-ray absorptiometry) and muscle strength (1-repetition maximum leg press and chest press) were assessed. There was an increase over time for lean tissue mass and muscle strength and a decrease in fat mass (p < 0.05). CR-A resulted in greater improvements in lean tissue mass (Δ 3.0 ± 1.9 kg) compared with PLA (Δ 0.5 ± 2.1 kg; p < 0.025). Creatine supplementation, independent of the timing of ingestion, increased muscle strength more than placebo (leg press: CR-B, Δ 36.6 ± 26.6 kg; CR-A, Δ 40.8 ± 38.4 kg; PLA, Δ 5.6 ± 35.1 kg; chest press: CR-B, Δ 15.2 ± 13.0 kg; CR-A, Δ 15.7 ± 12.5 kg; PLA, Δ 1.9 ± 14.7 kg; p < 0.025). Compared with resistance training alone, creatine supplementation improves muscle strength, with greater gains in lean tissue mass resulting from post-exercise creatine supplementation.
Collapse
Affiliation(s)
- Darren G. Candow
- Faculty of Kinesiology & Health Studies, University of Regina, Regina, SK S4S 0A2, Canada
| | - Emelie Vogt
- Faculty of Kinesiology & Health Studies, University of Regina, Regina, SK S4S 0A2, Canada
| | - Sarah Johannsmeyer
- Faculty of Kinesiology & Health Studies, University of Regina, Regina, SK S4S 0A2, Canada
| | - Scott C. Forbes
- Human Kinetics, Okanagan College, Penticton, BC V2A 8E1, Canada
| | - Jonathan P. Farthing
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| |
Collapse
|
53
|
Effects of dietary creatine supplementation for 8 weeks on neuromuscular coordination and learning in male albino mouse following neonatal hypoxic ischemic insult. Neurol Sci 2014; 36:765-70. [DOI: 10.1007/s10072-014-2041-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/10/2014] [Indexed: 01/26/2023]
|
54
|
Allah Yar R, Akbar A, Iqbal F. Creatine monohydrate supplementation for 10 weeks mediates neuroprotection and improves learning/memory following neonatal hypoxia ischemia encephalopathy in female albino mice. Brain Res 2014; 1595:92-100. [PMID: 25446460 DOI: 10.1016/j.brainres.2014.11.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/01/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
Abstract
Currently there are no uniform standard treatments for newborn suffering from cerebral hypoxia-ischemia (HI) and to find new and effective strategies for treating the HI injury remains a key direction for future research. Present study was designed to demonstrate that optimal dose (1 or 3%) of creatine monohydrate (Cr) for the treatment of neonatal HI in female albino mice. On postnatal day 10, animals were subjected to left carotid artery ligation followed by 8% hypoxia for 25 minutes. Following weaning on postnatal day 20, mice were divided into three treatments on the basis of diet supplementation (Normal rodent diet, 1% and 3% creatine supplemented diet) for 10 week. A battery of neurological tests (Rota rod, open field and Morris water maze) was used to demonstrate effect of Cr supplementation on neurofunction and infarct size following HI. Open field test results indicated that Cr supplementation had significantly improved locomotory and exploratory behavior in subjects. It was observed that Cr treated mice showed better neuromuscular coordination (rota rod) and improved spatial memory (Morris Water Maze test). A significant affect of creatine supplementation in reducing infarct size was also observed. Post hoc analysis of post hoc multiple comparisons revealed that mice supplemented with 3% Cr for 10 weeks performed better during Morris water maze test while 1% Cr supplementation improved the exploratory behavior and gain in body weight than control group indicating that Cr supplementation has the potential to improve the neurofunction following neonatal brain damage. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Razia Allah Yar
- Institute of Pure and Applied Biology, Zoology Division. Bahauddin Zakariya University Multan 60800, Pakistan
| | - Atif Akbar
- Department of Statistics. Bahauddin Zakariya University Multan 60800, Pakistan
| | - Furhan Iqbal
- Institute of Pure and Applied Biology, Zoology Division. Bahauddin Zakariya University Multan 60800, Pakistan.
| |
Collapse
|
55
|
Iqbal S, Ali M, Iqbal F. Long term creatine monohydrate supplementation, following neonatal hypoxic ischemic insult, improves neuromuscular coordination and spatial learning in male albino mouse. Brain Res 2014; 1603:76-83. [PMID: 25445997 DOI: 10.1016/j.brainres.2014.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/22/2014] [Accepted: 10/01/2014] [Indexed: 11/26/2022]
Abstract
Creatine is known to rescue animals following brain damage. Present study was designed to demonstrate the effect of long term (15 week) supplementation of 2% creatine monohydrate (Cr), following neonatal hypoxic ischemic insult, on learning and memory formation in male albino mouse. Albino mice pups were subjected to right common carotid artery ligation followed by 8% hypoxia for 25 minutes. Following weaning, animals were separated and grouped on the basis of dietry supplementation for 15 weeks followed by a battery of neurological tests including Morris water maze, open field and rota rod. It was observed that HI mice fed on 2% Cr for 15 weeks performed better than their littermates mice on normal rodent diet during water maze (learning and memory) and rotating rod (neuro-muscular coordination and balance) test while the results of open field test remained unaffected. It was also observed that Cr treated animals had a reduced brain infarct volume than untreated but this difference did not reached statistical significance. We have also observed an overall increase in body weight in Cr treated mice during the study. Over all our results are indicating that long term Cr supplementation is beneficial for male albino following hypoxic ischemic insult.
Collapse
Affiliation(s)
- Shahid Iqbal
- Institute of Pure and Applied Biology, Zoology Division. Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Ali
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University Multan 60800, Pakistan
| | - Furhan Iqbal
- Institute of Pure and Applied Biology, Zoology Division. Bahauddin Zakariya University, Multan, Pakistan.
| |
Collapse
|
56
|
D'Antona G, Nabavi SM, Micheletti P, Di Lorenzo A, Aquilani R, Nisoli E, Rondanelli M, Daglia M. Creatine, L-carnitine, and ω3 polyunsaturated fatty acid supplementation from healthy to diseased skeletal muscle. BIOMED RESEARCH INTERNATIONAL 2014; 2014:613890. [PMID: 25243159 PMCID: PMC4163371 DOI: 10.1155/2014/613890] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/19/2014] [Accepted: 08/06/2014] [Indexed: 12/22/2022]
Abstract
Myopathies are chronic degenerative pathologies that induce the deterioration of the structure and function of skeletal muscle. So far a definitive therapy has not yet been developed and the main aim of myopathy treatment is to slow the progression of the disease. Current nonpharmacological therapies include rehabilitation, ventilator assistance, and nutritional supplements, all of which aim to delay the onset of the disease and relieve its symptoms. Besides an adequate diet, nutritional supplements could play an important role in the treatment of myopathic patients. Here we review the most recent in vitro and in vivo studies investigating the role supplementation with creatine, L-carnitine, and ω3 PUFAs plays in myopathy treatment. Our results suggest that these dietary supplements could have beneficial effects; nevertheless continued studies are required before they could be recommended as a routine treatment in muscle diseases.
Collapse
Affiliation(s)
- Giuseppe D'Antona
- Department of Molecular Medicine and Laboratory for Motor Activities in Rare Diseases (LUSAMMR), University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, P.O. Box 19395-5487, Tehran, Iran
| | - Piero Micheletti
- Department of Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100 Pavia, Italy
| | - Arianna Di Lorenzo
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Roberto Aquilani
- Maugeri Foundation IRCCS, Montescano Scientific Institute, Via Per Montescano 31, 27040 Montescano, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Medical Biotechnology and Translational Medicine, University of Milan, Via Vanvitelli 32, 20129 Milan, Italy
| | - Mariangela Rondanelli
- Human Nutrition Section, Health Sciences Department, University of Pavia, Azienda di Servizi alla Persona, Via Emilia 12, 27100 Pavia, Italy
| | - Maria Daglia
- Department of Drug Sciences, Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
57
|
Clark RV, Walker AC, O'Connor-Semmes RL, Leonard MS, Miller RR, Stimpson SA, Turner SM, Ravussin E, Cefalu WT, Hellerstein MK, Evans WJ. Total body skeletal muscle mass: estimation by creatine (methyl-d3) dilution in humans. J Appl Physiol (1985) 2014; 116:1605-13. [PMID: 24764133 DOI: 10.1152/japplphysiol.00045.2014] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Current methods for clinical estimation of total body skeletal muscle mass have significant limitations. We tested the hypothesis that creatine (methyl-d3) dilution (D3-creatine) measured by enrichment of urine D3-creatinine reveals total body creatine pool size, providing an accurate estimate of total body skeletal muscle mass. Healthy subjects with different muscle masses [n = 35: 20 men (19-30 yr, 70-84 yr), 15 postmenopausal women (51-62 yr, 70-84 yr)] were housed for 5 days. Optimal tracer dose was explored with single oral doses of 30, 60, or 100 mg D3-creatine given on day 1. Serial plasma samples were collected for D3-creatine pharmacokinetics. All urine was collected through day 5. Creatine and creatinine (deuterated and unlabeled) were measured by liquid chromatography mass spectrometry. Total body creatine pool size and muscle mass were calculated from D3-creatinine enrichment in urine. Muscle mass was also measured by magnetic resonance imaging (MRI), dual-energy x-ray absorptiometry (DXA), and traditional 24-h urine creatinine. D3-creatine was rapidly absorbed and cleared with variable urinary excretion. Isotopic steady-state of D3-creatinine enrichment in the urine was achieved by 30.7 ± 11.2 h. Mean steady-state enrichment in urine provided muscle mass estimates that correlated well with MRI estimates for all subjects (r = 0.868, P < 0.0001), with less bias compared with lean body mass assessment by DXA, which overestimated muscle mass compared with MRI. The dilution of an oral D3-creatine dose determined by urine D3-creatinine enrichment provides an estimate of total body muscle mass strongly correlated with estimates from serial MRI with less bias than total lean body mass assessment by DXA.
Collapse
Affiliation(s)
- Richard V Clark
- Muscle Metabolism Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline R&D, Research Triangle Park, North Carolina;
| | - Ann C Walker
- Muscle Metabolism Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline R&D, Research Triangle Park, North Carolina
| | - Robin L O'Connor-Semmes
- Muscle Metabolism Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline R&D, Research Triangle Park, North Carolina
| | - Michael S Leonard
- Muscle Metabolism Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline R&D, Research Triangle Park, North Carolina
| | - Ram R Miller
- Muscle Metabolism Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline R&D, Research Triangle Park, North Carolina
| | - Stephen A Stimpson
- Muscle Metabolism Discovery Performance Unit, Metabolic Pathways and Cardiovascular Therapeutic Area, GlaxoSmithKline R&D, Research Triangle Park, North Carolina
| | | | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana; and
| | - William T Cefalu
- Pennington Biomedical Research Center, Baton Rouge, Louisiana; and
| | - Marc K Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, California
| | | |
Collapse
|
58
|
Candow DG, Zello GA, Ling B, Farthing JP, Chilibeck PD, McLeod K, Harris J, Johnson S. Comparison of Creatine Supplementation Before Versus After Supervised Resistance Training in Healthy Older Adults. Res Sports Med 2014; 22:61-74. [DOI: 10.1080/15438627.2013.852088] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Darren G. Candow
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Saskatchewan, Canada
| | - Gordon A. Zello
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Binbing Ling
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jonathan P. Farthing
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Philip D. Chilibeck
- College of Kinesiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Katherine McLeod
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Saskatchewan, Canada
| | - Jonathan Harris
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Saskatchewan, Canada
| | - Shanthi Johnson
- Faculty of Kinesiology and Health Studies, University of Regina, Regina, Saskatchewan, Canada
| |
Collapse
|
59
|
Abstract
Preserving or restoring adequate nutritional status is a key factor to delay the onset of chronic diseases and to accelerate recovery from acute illnesses. In particular, consistent and robust data show the loss of muscle mass, that is, sarcopenia, is clinically relevant since it is closely related to increased morbidity and mortality in healthy individuals and patients. Sarcopenia is defined as the age-related loss of muscle mass and function. International study groups have recently proposed separate definitions and diagnostic criteria for sarcopenia. Unfortunately, the rate of agreement in assessing the prevalence of sarcopenia is just fair, which highlights the need for a common effort to harmonize definitions and diagnostic criteria. Sarcopenia should be distinct from myopenia, which is the disease-associated loss of muscle mass, although in clinical practice it may be impossible to separate them (i.e., in old cancer patients). The pathogenesis of sarcopenia is complex and multifactorial. Consequently, its treatment should target the different factors involved, including quantitatively and qualitatively inappropriate food intake and reduced physical activity.
Collapse
Affiliation(s)
| | - Chiara Gori
- Department of Clinical Medicine, Sapienza University, Rome, Italy
| | - Serena Rianda
- Department of Clinical Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
60
|
Samjoo IA, Safdar A, Hamadeh MJ, Raha S, Tarnopolsky MA. The effect of endurance exercise on both skeletal muscle and systemic oxidative stress in previously sedentary obese men. Nutr Diabetes 2013; 3:e88. [PMID: 24042701 PMCID: PMC3789133 DOI: 10.1038/nutd.2013.30] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 07/09/2013] [Accepted: 08/01/2013] [Indexed: 12/17/2022] Open
Abstract
Background: Obesity is associated with low-grade systemic inflammation, in part because of secretion of proinflammatory cytokines, resulting into peripheral insulin resistance (IR). Increased oxidative stress is proposed to link adiposity and chronic inflammation. The effects of endurance exercise in modulating these outcomes in insulin-resistant obese adults remain unclear. We investigated the effect of endurance exercise on markers of oxidative damage (4-hydroxy-2-nonenal (4-HNE), protein carbonyls (PCs)) and antioxidant enzymes (superoxide dismutase (SOD), catalase) in skeletal muscle; urinary markers of oxidative stress (8-hydroxy-2-deoxyguanosine (8-OHdG), 8-isoprostane); and plasma cytokines (C-reactive protein (CRP), interleukin-6 (IL-6), leptin, adiponectin). Methods: Age- and fitness-matched sedentary obese and lean men (n=9 per group) underwent 3 months of moderate-intensity endurance cycling training with a vastus lateralis biopsy, 24-h urine sample and venous blood samples taken before and after the intervention. Results: Obese subjects had increased levels of oxidative damage: 4-HNE (+37% P⩽0.03) and PC (+63% P⩽0.02); evidence of increased adaptive response to oxidative stress because of elevated levels of copper/zinc SOD (Cu/ZnSOD) protein content (+84% P⩽0.01); increased markers of inflammation: CRP (+737% P⩽0.0001) and IL-6 (+85% P⩽0.03), and these correlated with increased markers of obesity; and increased leptin (+262% P⩽0.0001) with lower adiponectin (−27% P⩽0.01) levels vs lean controls. Training reduced 4-HNE (−10% P⩽0.04), PC (−21% P⩽0.05), 8-isoprostane (−26% P⩽0.02) and leptin levels (−33% P⩽0.01); had a tendency to decrease IL-6 levels (−21% P=0.07) and IR (−17% P=0.10); and increased manganese SOD (MnSOD) levels (+47% P⩽0.01). Conclusion: Endurance exercise reduced skeletal muscle-specific and systemic oxidative damage while improving IR and cytokine profile associated with obesity, independent of weight loss. Hence, exercise is a useful therapeutic modality to reduce risk factors associated with the pathogenesis of IR in obesity.
Collapse
Affiliation(s)
- I A Samjoo
- 1] Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada [2] Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | | | | | | | | |
Collapse
|
61
|
Cornelis MC, Hu FB. Systems Epidemiology: A New Direction in Nutrition and Metabolic Disease Research. Curr Nutr Rep 2013; 2. [PMID: 24278790 DOI: 10.1007/s13668-013-0052-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Systems epidemiology applied to the field of nutrition has potential to provide new insight into underlying mechanisms and ways to study the health effects of specific foods more comprehensively. Human intervention and population-based studies have identified i) common genetic factors associated with several nutrition-related traits and ii) dietary factors altering the expression of genes and levels of proteins and metabolites related to inflammation, lipid metabolism and/or gut microbial metabolism, results of high relevance to metabolic disease. System-level tools applied type 2 diabetes and related conditions have revealed new pathways that are potentially modified by diet and thus offer additional opportunities for nutritional investigations. Moving forward, harnessing the resources of existing large prospective studies within which biological samples have been archived and diet and lifestyle have been measured repeatedly within individual will enable systems-level data to be integrated, the outcome of which will be improved personalized optimal nutrition for prevention and treatment of disease.
Collapse
Affiliation(s)
- Marilyn C Cornelis
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts, USA
| | | |
Collapse
|
62
|
Abstract
BACKGROUND Progressive muscle weakness is a main symptom of most hereditary and acquired muscle diseases. Creatine improves muscle performance in healthy individuals. This is an update of our 2007 Cochrane review that evaluated creatine treatment in muscle disorders. Previous updates were in 2009 and 2011. OBJECTIVES To evaluate the efficacy of creatine compared to placebo for the treatment of muscle weakness in muscle diseases. SEARCH METHODS On 11 September 2012, we searched the Cochrane Neuromuscular Disease Group Specialized Register, CENTRAL (2012, Issue 9 in The Cochrane Library), MEDLINE (January 1966 to September 2012) and EMBASE (January 1980 to September 2012) for randomised controlled trials (RCTs) of creatine used to treat muscle diseases. SELECTION CRITERIA RCTs or quasi-RCTs of creatine treatment compared to placebo in hereditary muscle diseases or idiopathic inflammatory myopathies. DATA COLLECTION AND ANALYSIS Two authors independently applied the selection criteria, assessed trial quality and extracted data. We obtained missing data from investigators. MAIN RESULTS A total of 14 trials, including 364 randomised participants, met the selection criteria. The risk of bias was low in most studies. Only one trial had a high risk of selection, performance and detection bias. No new studies were identified at this update.Meta-analysis of six trials in muscular dystrophies including 192 participants revealed a significant increase in muscle strength in the creatine group compared to placebo, with a mean difference of 8.47%; (95% confidence intervals (CI) 3.55 to 13.38). Pooled data of four trials including 115 participants showed that a significantly higher number of participants felt better during creatine treatment compared to placebo with a risk ratio of 4.51 (95% CI 2.33 to 8.74). One trial in 37 participants with idiopathic inflammatory myopathies also showed a significant improvement in functional performance. No trial reported any clinically relevant adverse event.In metabolic myopathies, meta-analyses of three cross-over trials including 33 participants revealed no significant difference in muscle strength. One trial reported a significant deterioration of activities of daily living (mean difference 0.54 on a 1 to 10 scale; 95% CI 0.14 to 0.93) and an increase in muscle pain during high-dose creatine treatment in McArdle disease. AUTHORS' CONCLUSIONS High quality evidence from RCTs shows that short- and medium-term creatine treatment increases muscle strength in muscular dystrophies. There is also evidence that creatine improves functional performance in muscular dystrophy and idiopathic inflammatory myopathy. Creatine is well tolerated in these people. High quality but limited evidence from RCTs does not show significant improvement in muscle strength in metabolic myopathies. High-dose creatine treatment impaired activities of daily living and increased muscle pain in McArdle disease.
Collapse
Affiliation(s)
- Rudolf A Kley
- Department of Neurology, University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany.
| | | | | |
Collapse
|
63
|
Wall BT, van Loon LJC. Nutritional strategies to attenuate muscle disuse atrophy. Nutr Rev 2013; 71:195-208. [PMID: 23550781 DOI: 10.1111/nure.12019] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Situations such as recovery from injury or illness require otherwise healthy humans to undergo periods of disuse, which lead to considerable losses of skeletal muscle mass and, subsequently, numerous negative health consequences. It has been established that prolonged disuse (>10 days) leads to a decline in basal and postprandial rates of muscle protein synthesis, without an apparent change in muscle protein breakdown. It also seems, however, that an early and transient (1-5 days) increase in basal muscle protein breakdown may also contribute to disuse atrophy. A period of disuse reduces energy requirements and appetite. Consequently, food intake generally declines, resulting in an inadequate dietary protein consumption to allow proper muscle mass maintenance. Evidence suggests that maintaining protein intake during a period of disuse attenuates disuse atrophy. Furthermore, supplementation with dietary protein and/or essential amino acids can be applied to further aid in muscle mass preservation during disuse. Such strategies are of particular relevance to the older patient at risk of developing sarcopenia. More work is required to elucidate the impact of disuse on basal and postprandial rates of muscle protein synthesis and breakdown. Such information will provide novel targets for nutritional interventions to further attenuate muscle disuse atrophy and, as such, support healthy aging.
Collapse
Affiliation(s)
- Benjamin T Wall
- Department of Human Movement Sciences, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht 6200 MD, The Netherlands
| | | |
Collapse
|
64
|
Abstract
Studies performed in the last fifteen years have clearly established that the bioactive sphingolipid sphingosine 1-phosphate (S1P) affects various different biological properties of myogenic precursor cells as well as physiological features of adult skeletal muscle. Noticeably, in myogenic precursor cells multiple growth factors and cytokines cross-communicate with S1P axis and the engagement of distinct S1P receptor subtypes appears to be crucially implicated in transmitting specific biological effects. This paper summarizes current research findings and discloses the potential for new therapeutics designed to alter S1P signaling with the aim of improving skeletal muscle repair.
Collapse
Affiliation(s)
- Paola Bruni
- Dipartimento di Scienze Biochimiche, Università di Firenze, Firenze, Italy.
| | | |
Collapse
|
65
|
Cooper R, Naclerio F, Allgrove J, Jimenez A. Creatine supplementation with specific view to exercise/sports performance: an update. J Int Soc Sports Nutr 2012; 9:33. [PMID: 22817979 PMCID: PMC3407788 DOI: 10.1186/1550-2783-9-33] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/20/2012] [Indexed: 11/23/2022] Open
Abstract
Creatine is one of the most popular and widely researched natural supplements. The majority of studies have focused on the effects of creatine monohydrate on performance and health; however, many other forms of creatine exist and are commercially available in the sports nutrition/supplement market. Regardless of the form, supplementation with creatine has regularly shown to increase strength, fat free mass, and muscle morphology with concurrent heavy resistance training more than resistance training alone. Creatine may be of benefit in other modes of exercise such as high-intensity sprints or endurance training. However, it appears that the effects of creatine diminish as the length of time spent exercising increases. Even though not all individuals respond similarly to creatine supplementation, it is generally accepted that its supplementation increases creatine storage and promotes a faster regeneration of adenosine triphosphate between high intensity exercises. These improved outcomes will increase performance and promote greater training adaptations. More recent research suggests that creatine supplementation in amounts of 0.1 g/kg of body weight combined with resistance training improves training adaptations at a cellular and sub-cellular level. Finally, although presently ingesting creatine as an oral supplement is considered safe and ethical, the perception of safety cannot be guaranteed, especially when administered for long period of time to different populations (athletes, sedentary, patient, active, young or elderly).
Collapse
Affiliation(s)
- Robert Cooper
- Centre for Sports Science and Human Performance, School of Science, University of Greenwich at Medway, Central Avenue, Chatham Maritime, Kent, ME4 4TB, United Kingdom.
| | | | | | | |
Collapse
|
66
|
Abstract
BACKGROUND The FRG1-transgenic mouse displays muscle dysfunction and atrophy reminiscent of fascioscapulohumeral muscular dystrophy (FSHD) and could provide a model to determine potential therapeutic interventions. METHODS To determine if FRG1 mice benefit from treatments that improve muscle mass and function, mice were treated with creatine alone (Cr) or in combination with treadmill exercise (CrEX). RESULTS The CrEx treatment increased quadriceps weight, mitochondrial content (cytochome c oxidase (COX) activity, COX subunit one and four protein), and induced greater improvements in grip strength and rotarod fall speed. While Cr increased COX subunits one and four protein, no effect on muscle mass or performance was found. Since Cr resulted in no functional improvements, the benefits of CrEx may be mediated by exercise; however, the potential synergistic action of the combined treatment cannot be excluded. CONCLUSION Treatment with CrEx attenuates atrophy and muscle dysfunction associated with FRG1 overexpression. These data suggest exercise and creatine supplementation may benefit individuals with FSHD.
Collapse
|
67
|
Candow DG, Forbes SC, Little JP, Cornish SM, Pinkoski C, Chilibeck PD. Effect of nutritional interventions and resistance exercise on aging muscle mass and strength. Biogerontology 2012; 13:345-58. [PMID: 22684187 DOI: 10.1007/s10522-012-9385-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 05/24/2012] [Indexed: 12/22/2022]
Abstract
Sarcopenia, defined as the age-related loss of muscle mass, has a negative effect on strength, functional independence and overall quality of life. Sarcopenia is a multifactorial phenomenon characterized by changes in muscle morphology, protein and hormonal kinetics, oxidative stress, inflammation, physical activity and nutrition. It is well known that resistance exercise increases aging muscle mass and strength and these physiological adaptations from exercise may be further enhanced with certain nutritional interventions. Research indicates that essential amino acids and milk-based proteins, creatine monohydrate, essential fatty acids, and vitamin D may all have beneficial effects on aging muscle biology.
Collapse
Affiliation(s)
- Darren G Candow
- Faculty of Kinesiology & Health Studies, University of Regina, 3737 Wascana Parkway, Regina, SK, S4S 0A2, Canada.
| | | | | | | | | | | |
Collapse
|
68
|
Effect of short-term creatine monohydrate supplementation on indirect markers of cellular damage in young soccer players. Sci Sports 2012. [DOI: 10.1016/j.scispo.2011.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
69
|
Creatine-induced glucose uptake in type 2 diabetes: a role for AMPK-α? Amino Acids 2012; 43:1803-7. [DOI: 10.1007/s00726-012-1246-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 02/02/2012] [Indexed: 10/28/2022]
|
70
|
GUALANO BRUNO, DE SALLES PAINNELI VITOR, ROSCHEL HAMILTON, ARTIOLI GUILHERMEGIANNINI, NEVES MANOEL, DE SÁ PINTO ANALÚCIA, DA SILVA MARIAELIZABETHROSSI, CUNHA MARIAROSÁRIA, OTADUY MARIACONCEPCIÓNGARCÍA, DA COSTA LEITE CLAUDIA, FERREIRA JÚLIOCÉSAR, PEREIRA ROSAMARIA, BRUM PATRÍCIACHAKUR, BONFÁ ELOISA, LANCHA ANTONIOHERBERT. Creatine in Type 2 Diabetes. Med Sci Sports Exerc 2011; 43:770-8. [DOI: 10.1249/mss.0b013e3181fcee7d] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
71
|
Wallimann T, Tokarska-Schlattner M, Schlattner U. The creatine kinase system and pleiotropic effects of creatine. Amino Acids 2011; 40:1271-96. [PMID: 21448658 PMCID: PMC3080659 DOI: 10.1007/s00726-011-0877-3] [Citation(s) in RCA: 483] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 12/02/2010] [Indexed: 11/24/2022]
Abstract
The pleiotropic effects of creatine (Cr) are based mostly on the functions of the enzyme creatine kinase (CK) and its high-energy product phosphocreatine (PCr). Multidisciplinary studies have established molecular, cellular, organ and somatic functions of the CK/PCr system, in particular for cells and tissues with high and intermittent energy fluctuations. These studies include tissue-specific expression and subcellular localization of CK isoforms, high-resolution molecular structures and structure–function relationships, transgenic CK abrogation and reverse genetic approaches. Three energy-related physiological principles emerge, namely that the CK/PCr systems functions as (a) an immediately available temporal energy buffer, (b) a spatial energy buffer or intracellular energy transport system (the CK/PCr energy shuttle or circuit) and (c) a metabolic regulator. The CK/PCr energy shuttle connects sites of ATP production (glycolysis and mitochondrial oxidative phosphorylation) with subcellular sites of ATP utilization (ATPases). Thus, diffusion limitations of ADP and ATP are overcome by PCr/Cr shuttling, as most clearly seen in polar cells such as spermatozoa, retina photoreceptor cells and sensory hair bundles of the inner ear. The CK/PCr system relies on the close exchange of substrates and products between CK isoforms and ATP-generating or -consuming processes. Mitochondrial CK in the mitochondrial outer compartment, for example, is tightly coupled to ATP export via adenine nucleotide transporter or carrier (ANT) and thus ATP-synthesis and respiratory chain activity, releasing PCr into the cytosol. This coupling also reduces formation of reactive oxygen species (ROS) and inhibits mitochondrial permeability transition, an early event in apoptosis. Cr itself may also act as a direct and/or indirect anti-oxidant, while PCr can interact with and protect cellular membranes. Collectively, these factors may well explain the beneficial effects of Cr supplementation. The stimulating effects of Cr for muscle and bone growth and maintenance, and especially in neuroprotection, are now recognized and the first clinical studies are underway. Novel socio-economically relevant applications of Cr supplementation are emerging, e.g. for senior people, intensive care units and dialysis patients, who are notoriously Cr-depleted. Also, Cr will likely be beneficial for the healthy development of premature infants, who after separation from the placenta depend on external Cr. Cr supplementation of pregnant and lactating women, as well as of babies and infants are likely to be of benefit for child development. Last but not least, Cr harbours a global ecological potential as an additive for animal feed, replacing meat- and fish meal for animal (poultry and swine) and fish aqua farming. This may help to alleviate human starvation and at the same time prevent over-fishing of oceans.
Collapse
Affiliation(s)
- Theo Wallimann
- Institute of Cell Biology, ETH Zurich, Zurich, Switzerland.
| | | | | |
Collapse
|
72
|
Rawson ES, Venezia AC. Use of creatine in the elderly and evidence for effects on cognitive function in young and old. Amino Acids 2011; 40:1349-62. [PMID: 21394604 DOI: 10.1007/s00726-011-0855-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Accepted: 11/10/2010] [Indexed: 11/30/2022]
Abstract
The ingestion of the dietary supplement creatine (about 20 g/day for 5 days or about 2 g/day for 30 days) results in increased skeletal muscle creatine and phosphocreatine. Subsequently, the performance of high-intensity exercise tasks, which rely heavily on the creatine-phosphocreatine energy system, is enhanced. The well documented benefits of creatine supplementation in young adults, including increased lean body mass, increased strength, and enhanced fatigue resistance are particularly important to older adults. With aging and reduced physical activity, there are decreases in muscle creatine, muscle mass, bone density, and strength. However, there is evidence that creatine ingestion may reverse these changes, and subsequently improve activities of daily living. Several groups have demonstrated that in older adults, short-term high-dose creatine supplementation, independent of exercise training, increases body mass, enhances fatigue resistance, increases muscle strength, and improves the performance of activities of daily living. Similarly, in older adults, concurrent creatine supplementation and resistance training increase lean body mass, enhance fatigue resistance, increase muscle strength, and improve performance of activities of daily living to a greater extent than resistance training alone. Additionally, creatine supplementation plus resistance training results in a greater increase in bone mineral density than resistance training alone. Higher brain creatine is associated with improved neuropsychological performance, and recently, creatine supplementation has been shown to increase brain creatine and phosphocreatine. Subsequent studies have demonstrated that cognitive processing, that is either experimentally (following sleep deprivation) or naturally (due to aging) impaired, can be improved with creatine supplementation. Creatine is an inexpensive and safe dietary supplement that has both peripheral and central effects. The benefits afforded to older adults through creatine ingestion are substantial, can improve quality of life, and ultimately may reduce the disease burden associated with sarcopenia and cognitive dysfunction.
Collapse
Affiliation(s)
- Eric S Rawson
- Department of Exercise Science, 131 CEH, Bloomsburg University, Bloomsburg, PA 17815, USA.
| | | |
Collapse
|
73
|
Abstract
BACKGROUND Progressive muscle weakness is a main symptom of most hereditary and acquired muscle diseases. Creatine improves muscle performance in healthy individuals. This is an update of our 2007 Cochrane review that evaluated creatine treatment in muscle disorders. OBJECTIVES To evaluate the efficacy of creatine compared to placebo for the treatment of muscle weakness in muscle diseases. SEARCH STRATEGY We searched the Cochrane Neuromuscular Disease Group Specialized Register (4 October 2010), the Cochrane Central Register of Controlled Trials (11 October 2010, Issue 4, 2010 in The Cochrane Library), MEDLINE (January 1966 to September 2010) and EMBASE (January 1980 to September 2010) for randomised controlled trials (RCT) of creatine used to treat muscle diseases. SELECTION CRITERIA RCTs or quasi-RCTs of creatine treatment compared to placebo in hereditary muscle diseases or idiopathic inflammatory myopathies. DATA COLLECTION AND ANALYSIS Two authors independently applied the selection criteria, assessed trial quality and extracted data. We obtained missing data from investigators. MAIN RESULTS The updated searches identified two new studies. A total of 14 trials, including 364 randomised participants, met the selection criteria. Meta-analysis of six trials in muscular dystrophies including 192 participants revealed a significant increase in muscle strength in the creatine group compared to placebo, with a weighted mean difference of 8.47%; (95% confidence intervals (CI) 3.55 to 13.38). Pooled data of four trials including 115 participants showed that a significantly higher number of patients felt better during creatine treatment compared to placebo with a risk ratio of 4.51 (95% CI 2.33 to 8.74). One trial in 37 participants with idiopathic inflammatory myopathies also showed a significant improvement in functional performance. No trial reported any clinically relevant adverse event. In metabolic myopathies, meta-analyses of three cross-over trials including 33 participants revealed no significant difference in muscle strength. One trial reported a significant deterioration of ADL (mean difference 0.54 on a 1 to 10 scale; 95% CI 0.14 to 0.93) and an increase in muscle pain during high-dose creatine treatment in McArdle disease. AUTHORS' CONCLUSIONS High quality evidence from RCTs shows that short- and medium-term creatine treatment increases muscle strength in muscular dystrophies. There is also evidence that creatine improves functional performance in muscular dystrophy and idiopathic inflammatory myopathy. Creatine is well tolerated in these people. High quality but limited evidence from RCTs does not show significant improvement in muscle strength in metabolic myopathies. High-dose creatine treatment impaired ADL and increased muscle pain in McArdle disease.
Collapse
Affiliation(s)
- Rudolf A Kley
- Department of Neurology, University Hospital Bergmannsheil, Ruhr University Bochum, Buerkle-de-la-Camp-Platz 1, Bochum, Germany, 44789
| | | | | |
Collapse
|
74
|
Wittwer J, Rubio-Aliaga I, Hoeft B, Bendik I, Weber P, Daniel H. Nutrigenomics in human intervention studies: Current status, lessons learned and future perspectives. Mol Nutr Food Res 2011; 55:341-58. [DOI: 10.1002/mnfr.201000512] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 12/01/2010] [Accepted: 12/02/2010] [Indexed: 11/08/2022]
|
75
|
Safdar A, deBeer J, Tarnopolsky MA. Dysfunctional Nrf2-Keap1 redox signaling in skeletal muscle of the sedentary old. Free Radic Biol Med 2010; 49:1487-93. [PMID: 20708680 DOI: 10.1016/j.freeradbiomed.2010.08.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 06/15/2010] [Accepted: 08/04/2010] [Indexed: 12/22/2022]
Abstract
The role of nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) and Kelch-like ECH-associated protein 1 (Keap1) redox signaling has not been characterized in human skeletal muscle despite an extensive delineation of oxidative stress in the etiology of aging and sarcopenia. We assessed whether the age-associated decline in antioxidant response is due, at least in part, to dysfunction in Nrf2-Keap1 redox signaling. We also evaluated whether an active lifestyle can conserve skeletal muscle cellular redox status via activation of Nrf2-Keap1 signaling. Here we show that a recreationally active lifestyle is associated with the activation of upstream modulators that induce the Nrf2-mediated antioxidant response cascade in skeletal muscle of the elderly. Conversely, a sedentary lifestyle is negatively associated with these adaptations mainly because of dysregulation of Nrf2-Keap1 redox signaling that renders the intracellular environment prone to reactive oxygen species-mediated toxicity. Our results indicate that an active lifestyle is an important determinant of cellular redox status. We propose that the metabolic induction of Nrf2-Keap1 redox signaling promises to be a viable therapy for attenuating oxidative stress-mediated damage in skeletal muscle associated with physical inactivity.
Collapse
Affiliation(s)
- Adeel Safdar
- Department of Kinesiology, McMaster University, Hamilton, ON L8N 3Z5, Canada
| | | | | |
Collapse
|
76
|
Gualano B, Acquesta FM, Ugrinowitsch C, Tricoli V, Serrão JC, Lancha Junior AH. Efeitos da suplementação de creatina sobre força e hipertrofia muscular: atualizações. REV BRAS MED ESPORTE 2010. [DOI: 10.1590/s1517-86922010000300013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A suplementação de creatina vem sendo utilizada amplamente na tentativa de aumentar força e massa magra em sujeitos saudáveis e atletas. Além disso, diversos estudos têm sido conduzidos no intuito de desvendar os mecanismos responsáveis pelas eventuais adaptações a esse suplemento. Diante disso, essa revisão teve como objetivos: 1) discutir os principais estudos que investigaram os efeitos da suplementação de creatina na força e hipertrofia; e 2) reunir as evidências acerca dos possíveis mecanismos responsáveis pelo aumento de força e massa magra como consequência desse suplemento, enfatizando os mais recentes achados e as perspectivas sobre o tema. De fato, existem fortes evidências demonstrando que a suplementação de creatina é capaz de promover aumentos de força e hipertrofia. Os efeitos desse suplemento sobre a retenção hídrica, o balanço proteico, a expressão de genes/proteínas associados à hipertrofia e ativação de células satélites, podem explicar as adaptações musculoesqueléticas observadas. Diante desses achados, os potenciais efeitos terapêuticos desse suplemento emergem como um futuro e promissor campo de estudo.
Collapse
Affiliation(s)
- Bruno Gualano
- Escola de Educação Física e Esporte; Faculdade de Medicina
| | | | | | | | | | | |
Collapse
|
77
|
Safdar A, Hamadeh MJ, Kaczor JJ, Raha S, deBeer J, Tarnopolsky MA. Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults. PLoS One 2010; 5:e10778. [PMID: 20520725 PMCID: PMC2875392 DOI: 10.1371/journal.pone.0010778] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 04/01/2010] [Indexed: 02/07/2023] Open
Abstract
The role of mitochondrial dysfunction and oxidative stress has been extensively characterized in the aetiology of sarcopenia (aging-associated loss of muscle mass) and muscle wasting as a result of muscle disuse. What remains less clear is whether the decline in skeletal muscle mitochondrial oxidative capacity is purely a function of the aging process or if the sedentary lifestyle of older adult subjects has confounded previous reports. The objective of the present study was to investigate if a recreationally active lifestyle in older adults can conserve skeletal muscle strength and functionality, chronic systemic inflammation, mitochondrial biogenesis and oxidative capacity, and cellular antioxidant capacity. To that end, muscle biopsies were taken from the vastus lateralis of young and age-matched recreationally active older and sedentary older men and women (N = 10/group; female symbol = male symbol). We show that a physically active lifestyle is associated with the partial compensatory preservation of mitochondrial biogenesis, and cellular oxidative and antioxidant capacity in skeletal muscle of older adults. Conversely a sedentary lifestyle, associated with osteoarthritis-mediated physical inactivity, is associated with reduced mitochondrial function, dysregulation of cellular redox status and chronic systemic inflammation that renders the skeletal muscle intracellular environment prone to reactive oxygen species-mediated toxicity. We propose that an active lifestyle is an important determinant of quality of life and molecular progression of aging in skeletal muscle of the elderly, and is a viable therapy for attenuating and/or reversing skeletal muscle strength declines and mitochondrial abnormalities associated with aging.
Collapse
Affiliation(s)
- Adeel Safdar
- Department of Kinesiology, McMaster University, Hamilton, Ontario, Canada
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Mazen J. Hamadeh
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Jan J. Kaczor
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Sandeep Raha
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Justin deBeer
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Mark A. Tarnopolsky
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
78
|
Young JF, Larsen LB, Malmendal A, Nielsen NC, Straadt IK, Oksbjerg N, Bertram HC. Creatine-induced activation of antioxidative defence in myotube cultures revealed by explorative NMR-based metabonomics and proteomics. J Int Soc Sports Nutr 2010; 7:9. [PMID: 20205771 PMCID: PMC2822831 DOI: 10.1186/1550-2783-7-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 02/04/2010] [Indexed: 11/10/2022] Open
Abstract
Background Creatine is a key intermediate in energy metabolism and supplementation of creatine has been used for increasing muscle mass, strength and endurance. Creatine supplementation has also been reported to trigger the skeletal muscle expression of insulin like growth factor I, to increase the fat-free mass and improve cognition in elderly, and more explorative approaches like transcriptomics has revealed additional information. The aim of the present study was to reveal additional insight into the biochemical effects of creatine supplementation at the protein and metabolite level by integrating the explorative techniques, proteomics and NMR metabonomics, in a systems biology approach. Methods Differentiated mouse myotube cultures (C2C12) were exposed to 5 mM creatine monohydrate (CMH) for 24 hours. For proteomics studies, lysed myotubes were analyzed in single 2-DGE gels where the first dimension of protein separation was pI 5-8 and second dimension was a 12.5% Criterion gel. Differentially expressed protein spots of significance were excised from the gel, desalted and identified by peptide mass fingerprinting using MALDI-TOF MS. For NMR metabonomic studies, chloroform/methanol extractions of the myotubes were subjected to one-dimensional 1H NMR spectroscopy and the intracellular oxidative status of myotubes was assessed by intracellular DCFH2 oxidation after 24 h pre-incubation with CMH. Results The identified differentially expressed proteins included vimentin, malate dehydrogenase, peroxiredoxin, thioredoxin dependent peroxide reductase, and 75 kDa and 78 kDa glucose regulated protein precursors. After CMH exposure, up-regulated proteomic spots correlated positively with the NMR signals from creatine, while down-regulated proteomic spots were negatively correlated with these NMR signals. The identified differentially regulated proteins were related to energy metabolism, glucose regulated stress, cellular structure and the antioxidative defence system. The suggested improvement of the antioxidative defence was confirmed by a reduced intracellular DCFH2 oxidation with increasing concentrations of CMH in the 24 h pre-incubation medium. Conclusions The explorative approach of this study combined with the determination of a decreased intracellular DCFH2 oxidation revealed an additional stimulation of cellular antioxidative mechanisms when myotubes were exposed to CMH. This may contribute to an increased exercise performance mediated by increased ability to cope with training-induced increases in oxidative stress.
Collapse
Affiliation(s)
- Jette F Young
- Department of Food Science, Faculty of Agricultural Sciences, University of Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
79
|
Tarnopolsky MA. Caffeine and Creatine Use in Sport. ANNALS OF NUTRITION AND METABOLISM 2010; 57 Suppl 2:1-8. [DOI: 10.1159/000322696] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
80
|
Sakkas GK, Schambelan M, Mulligan K. Can the use of creatine supplementation attenuate muscle loss in cachexia and wasting? Curr Opin Clin Nutr Metab Care 2009; 12:623-7. [PMID: 19741514 PMCID: PMC2905310 DOI: 10.1097/mco.0b013e328331de63] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Weight loss and low BMI due to an underlying illness have been associated with increased mortality, reduced functional capacity, and diminished quality of life. There is a need for well tolerated, long-term approaches to maintain body weight in patients with cachexia or wasting. The purpose of this review is to highlight the scientific and clinical evidence derived from the recent literature investigating the rationale for and potential medical use of creatine supplementation in patients with cachexia or wasting. RECENT FINDINGS Some studies have demonstrated that supplementation with creatine can increase creatine reserves in skeletal muscle and increase muscle mass and performance in various disease states that affect muscle size and function. The mechanisms underlying these effects are not clear. It has been suggested that creatine supplementation may increase intramuscular phosphocreatine stores and promote more rapid recovery of adenosine triphosphate levels following exercise, thus allowing users to exercise for longer periods or at higher intensity levels. Other hypothesized mechanisms include attenuation of proinflammatory cytokines, stimulation of satellite cell proliferation and upregulation of genes that promote protein synthesis and cell repair. SUMMARY Creatine is a generally well tolerated, low-cost, over-the-counter nutritional supplement that shows potential in improving lean body mass and functionality in patients with wasting diseases. However, placebo-controlled studies have shown variable effects, with improvements in some and not in others. Additional studies with longer follow-up are required to identify the populations that might benefit most from creatine supplementation.
Collapse
Affiliation(s)
- Giorgos K. Sakkas
- Department of Medicine, University of Thessaly, Greece
- Center for Research and Technology, Thessaly, Greece
| | - Morris Schambelan
- Department of Medicine, University of California, San Francisco, CA, USA
- Division of Endocrinology, San Francisco General Hospital, San Francisco, CA, USA
| | - Kathleen Mulligan
- Department of Medicine, University of California, San Francisco, CA, USA
- Division of Endocrinology, San Francisco General Hospital, San Francisco, CA, USA
| |
Collapse
|
81
|
Three weeks of creatine monohydrate supplementation affects dihydrotestosterone to testosterone ratio in college-aged rugby players. Clin J Sport Med 2009; 19:399-404. [PMID: 19741313 DOI: 10.1097/jsm.0b013e3181b8b52f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE This study investigated resting concentrations of selected androgens after 3 weeks of creatine supplementation in male rugby players. It was hypothesized that the ratio of dihydrotestosterone (DHT, a biologically more active androgen) to testosterone (T) would change with creatine supplementation. DESIGN Double-blind placebo-controlled crossover study with a 6-week washout period. SETTING Rugby Institute in South Africa. PARTICIPANTS College-aged rugby players (n = 20) volunteered for the study, which took place during the competitive season. INTERVENTIONS Subjects loaded with creatine (25 g/day creatine with 25 g/day glucose) or placebo (50 g/day glucose) for 7 days followed by 14 days of maintenance (5 g/day creatine with 25 g/day glucose or 30 g/day glucose placebo). MAIN OUTCOME MEASURES Serum T and DHT were measured and ratio calculated at baseline and after 7 days and 21 days of creatine supplementation (or placebo). Body composition measurements were taken at each time point. RESULTS After 7 days of creatine loading, or a further 14 days of creatine maintenance dose, serum T levels did not change. However, levels of DHT increased by 56% after 7 days of creatine loading and remained 40% above baseline after 14 days maintenance (P < 0.001). The ratio of DHT:T also increased by 36% after 7 days creatine supplementation and remained elevated by 22% after the maintenance dose (P < 0.01). CONCLUSIONS Creatine supplementation may, in part, act through an increased rate of conversion of T to DHT. Further investigation is warranted as a result of the high frequency of individuals using creatine supplementation and the long-term safety of alterations in circulating androgen composition. STATEMENT OF CLINICAL RELEVANCE: Although creatine is a widely used ergogenic aid, the mechanisms of action are incompletely understood, particularly in relation to dihydrotestosterone, and therefore the long-term clinical safety cannot be guaranteed.
Collapse
|
82
|
Baguet A, Reyngoudt H, Pottier A, Everaert I, Callens S, Achten E, Derave W. Carnosine loading and washout in human skeletal muscles. J Appl Physiol (1985) 2009; 106:837-42. [DOI: 10.1152/japplphysiol.91357.2008] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carnosine (β-alanyl-l-histidine) is present in high concentrations in human skeletal muscles. The oral ingestion of β-alanine, the rate-limiting precursor in carnosine synthesis, has been shown to elevate the muscle carnosine content both in trained and untrained humans. Little human data exist about the dynamics of the muscle carnosine content, its metabolic regulation, and its dependence on muscle fiber type. The present study aimed to investigate in three skeletal muscle types the supplementation-induced amplitude of carnosine synthesis and its subsequent elimination on cessation of supplementation (washout). Fifteen untrained males participated in a placebo-controlled double-blind study. They were supplemented for 5–6 wk with either 4.8 g/day β-alanine or placebo. Muscle carnosine was quantified in soleus, tibialis anterior, and medial head of the gastrocnemius by proton magnetic resonance spectroscopy (MRS), before and after supplementation and 3 and 9 wk into washout. The β-alanine supplementation significantly increased the carnosine content in soleus by 39%, in tibialis by 27%, and in gastrocnemius by 23% and declined postsupplementation at a rate of 2–4%/wk. Average muscle carnosine remained increased compared with baseline at 3 wk of washout (only one-third of the supplementation-induced increase had disappeared) and returned to baseline values within 9 wk at group level. Following subdivision into high responders (+55%) and low responders (+15%), washout period was 15 and 6 wk, respectively. In the placebo group, carnosine remained relatively constant with variation coefficients of 9–15% over a 3-mo period. It can be concluded that carnosine is a stable compound in human skeletal muscle, confirming the absence of carnosinase in myocytes. The present study shows that washout periods for crossover designs in supplementation studies for muscle metabolites may sometimes require months rather than weeks.
Collapse
|
83
|
Gualano B, Artioli GG, Poortmans JR, Lancha Junior AH. Exploring the therapeutic role of creatine supplementation. Amino Acids 2009; 38:31-44. [PMID: 19253023 DOI: 10.1007/s00726-009-0263-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 02/11/2009] [Indexed: 12/12/2022]
Abstract
Creatine (Cr) plays a central role in energy provision through a reaction catalyzed by phosphorylcreatine kinase. Furthermore, this amine enhances both gene expression and satellite cell activation involved in hypertrophic response. Recent findings have indicated that Cr supplementation has a therapeutic role in several diseases characterized by atrophic conditions, weakness, and metabolic disturbances (i.e., in the muscle, bone, lung, and brain). Accordingly, there has been an evidence indicating that Cr supplementation is capable of attenuating the degenerative state in some muscle disorders (i.e., Duchenne and inflammatory myopathies), central nervous diseases (i.e., Parkinson's, Huntington's, and Alzheimer's), and bone and metabolic disturbances (i.e., osteoporosis and type II diabetes). In light of this, Cr supplementation could be used as a therapeutic tool for the elderly. The aim of this review is to summarize the main studies conducted in this field and to highlight the scientific and clinical perspectives of this promising therapeutic supplement.
Collapse
Affiliation(s)
- Bruno Gualano
- Laboratory of Applied Nutrition and Metabolism, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
84
|
Abstract
OBJECTIVE : To evaluate the evidence for dietary recommendations in older adult athletes. DESIGN : Interpretive review of the literature. RESULTS : Regarding resistance training, a protein intake of slightly more than 0.8 g/kg/d is required to optimize gains in muscle strength. The early provision of protein and carbohydrate following a weight training session can enhance resultant strength and fat-free mass gains. Supplementation with creatine monohydrate (approximately 5 g/d) can potentiate some of the gains in strength and fat free mass attained through resistance exercise training. Regarding endurance exercise training, there are no studies evaluating carbohydrate loading, during-event, or postexercise carbohydrate/nutritional replacement in older adults. CONCLUSIONS : The amount and timing of dietary protein is important to maximize strength and gains in fat-free mass during resistance exercise training. Creatine monohydrate supplementation can potentiate some of these gains during the first 4 to 6 months of training. Older adults should consume adequate carbohydrates during endurance training (6-8 g/kg/d) and may benefit from the provision of carbohydrate and protein in the early recovery phase following endurance exercise to maximize glycogen re-synthesis for a subsequent exercise bout. There is no scientific reason to assume that older athletes will respond differently to the pre- and during-race fluid and carbohydrate replacement strategies suggested for younger athletes. The consensus guidelines outlined by the American College of Sports Medicine should therefore be followed for all athletes, regardless of their age.
Collapse
|
85
|
Abstract
PURPOSE OF REVIEW To present food components showing evidence for improved sport performance in the light of the scientific literature from the past 2 years. RECENT FINDINGS Appropriate nutrition is essential for sport performance. Nutritional products containing carbohydrates, proteins, vitamins, and minerals have been widely used by athletes to provide something extra to the daily allowance. Currently, the field of interest is shifting from macronutrients and fluids to physiologically active isolated food components. Several of them have been demonstrated to improve sport performance at a higher level than expected with a well balanced diet. In the present review, we will focus on the benefits of creatine, caffeine, branched-chain amino acids, and more particularly leucine, beta-alanine, bicarbonate, and glycerol ingestion on exercise performance. SUMMARY A bulk of products are sold on the market labeled with various performance benefit statements without any scientific evidence. These food components are often used without a full understanding or evaluation of the potential benefits and risks associated with their use. There is thus a real need to classify food components on the basis of their evidence-based effectiveness.
Collapse
Affiliation(s)
- Louise Deldicque
- Université catholique de Louvain, Institut d'éducation physique et de réadaptation, Louvain-la-Neuve, Belgium
| | | |
Collapse
|