51
|
Chen B, Tan L, Wang Y, Yang L, Liu J, Chen D, Huang S, Mao F, Lian J. LOC102549726/miR-760-3p network is involved in the progression of ISO-induced pathological cardiomyocyte hypertrophy via endoplasmic reticulum stress. J Mol Histol 2023; 54:675-687. [PMID: 37899367 PMCID: PMC10635935 DOI: 10.1007/s10735-023-10166-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/30/2023] [Indexed: 10/31/2023]
Abstract
Pathological cardiac hypertrophy (CH) is featured by myocyte enlargement and cardiac malfunction. Multiple signaling pathways have been implicated in diverse pathological and physiological processes in CH. However, the function of LOC102549726/miR-760-3p network in CH remains unclear. Here, we characterize the functional role of LOC102549726/miR-760-3p network in CH and delineate the underlying mechanism. The expression of LncRNA LOC102549726 and hypertrophic markers was significantly increased compared to the control, while the level of miR-760-3p was decreased. Next, we examined ER stress response in a hypertrophic cardiomyocyte model. The expression of ER stress markers was greatly enhanced after incubation with ISO. The hypertrophic reaction, ER stress response, and increased potassium and calcium ion channels were alleviated by genetic downregulation of LOC102549726. It has been demonstrated that LOC102549726 functions as a competitive endogenous RNA (ceRNA) of miR-760-3p. Overexpression of miR-760-3p decreased cell surface area and substantially mitigated ER stress response; protein levels of potassium and calcium channels were also significantly up-regulated compared to the NC control. In contrast, miR-760-3p inhibition increased cell size, aggravated CH and ER stress responses, and reduced ion channels. Collectively, in this study we demonstrated that the LOC102549726/miR-760-3p network was a crucial regulator of CH development. Ion channels mediate the ER stress response and may be a downstream sensor of the LOC102549726/miR-760-3p network. Therefore, these findings advance our understanding of pathological CH and provide new insights into therapeutic targets for cardiac remodeling.
Collapse
Affiliation(s)
- Bangsheng Chen
- Emergency Medical Center, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, 315192, China
| | - Lian Tan
- Intensive Care Unit, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, 315192, China
| | - Ying Wang
- Cadiovascular Department, Ningbo Medical Center LiHuiLi Hospital, Ningbo, Zhejiang, 315100, China
| | - Lei Yang
- Emergency Medical Center, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, 315192, China
| | - Jiequan Liu
- Emergency Medical Center, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, 315192, China
| | - Danqi Chen
- Intensive Care Unit, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, 315192, China
| | - Shuaishuai Huang
- Laboratory of Renal Carcinoma, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, 315192, China
| | - Feiyan Mao
- Department of General Surgery, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, 315100, China
| | - Jiangfang Lian
- Cadiovascular Department, Ningbo Medical Center LiHuiLi Hospital, Ningbo, Zhejiang, 315100, China.
| |
Collapse
|
52
|
Chen B, Tan L, Chen D, Wang X, Liu J, Huang X, Wang Y, Huang S, Mao F, Lian J. KCNH2A561V Heterozygous Mutation Inhibits KCNH2 Protein Expression via The Activation of UPR Mediated by ATF6. Physiol Res 2023; 72:621-631. [PMID: 38015761 PMCID: PMC10751050 DOI: 10.33549/physiolres.935095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/26/2023] [Indexed: 01/05/2024] Open
Abstract
The potassium channel protein KCNH2 is encoded by KCNH2 gene, and there are more than 300 mutations of KCNH2. Unfolded protein response (UPR) is typically initiated in response to an accumulation of unfolded and/or misfolded proteins in the endoplasmic reticulum (ER). The present study aimed to explore the UPR process and the role of activating transcription factor 6 (ATF6) in the abnormal expression of potassium voltage-gated channel subfamily H member 2 (KCNH2)A561V. The wild-type (wt) KCNH2 and A561V mutant KCNH2 was constructed with his-tag. The 293 cells were used and divided into KCNH2wt+KCNH2A561V, KCNH2wt and KCNH2A561V groups. The expression levels of ATF6 and KCNH2 in different groups were detected by Western blotting, reverse transcription-quantitative PCR, immunofluorescence and immuno-coprecipitation assays. The protein types and abundance of immuno-coprecipitation samples were analyzed by mass spectrometry. The proteomic analysis of the mass spectrometry results was carried out by using the reactome database and GO (Gene Ontology) tool. The mRNA expression levels of KCNH2 and ATF6 in the KCNH2wt+KCNH2A561V group were higher compared with the KCNH2A561V group. However, the full-length protein expression of ATF6 was inhibited, indicating that ATF6 was highly activated and a substantial number of ATF6 was sheared in KCNH2wt+KCNH2A561V group compared with control group. Furthermore, A561V-KCNH2 mutation leading to the accumulation of the immature form of KCNH2 (135 kDa bands) in ER, resulting in the reduction of the ratio of 155 kDa/135 kDa. In addition, the abundance of UPR-related proteins in the KCNH2A561V group was higher compared with the KCNH2wt+KCNH2A561V group. The 'cysteine biosynthetic activity' of GO:0019344 process and the 'positive regulation of cytoplasmic translation activity' of GO:2000767 process in the KCNH2A561V group were higher compared with the KCNH2wt+KCNH2A561V group. Hence, co-expression of wild-type and A561V mutant KCNH2 in 293 cells activated the UPR process, which led to the inhibition of protein translation and synthesis, in turn inhibiting the expression of KCNH2. These results provided a theoretical basis for clinical treatment of Long QT syndrome.
Collapse
Affiliation(s)
- B Chen
- Emergency Medical Center, Ningbo Yinzhou No. 2 Hospital, Ningbo, Zhejiang, China; Department of General Surgery, Ningbo No.2 Hospital, Ningbo, China. ; Department of Cardiology, Ningbo Medical Center LiHuiLi Hospital, Ningbo, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Ma JG, Vandenberg JI, Ng CA. Development of automated patch clamp assays to overcome the burden of variants of uncertain significance in inheritable arrhythmia syndromes. Front Physiol 2023; 14:1294741. [PMID: 38089476 PMCID: PMC10712320 DOI: 10.3389/fphys.2023.1294741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 10/16/2024] Open
Abstract
Advances in next-generation sequencing have been exceptionally valuable for identifying variants in medically actionable genes. However, for most missense variants there is insufficient evidence to permit definitive classification of variants as benign or pathogenic. To overcome the deluge of Variants of Uncertain Significance, there is an urgent need for high throughput functional assays to assist with the classification of variants. Advances in parallel planar patch clamp technologies has enabled the development of automated high throughput platforms capable of increasing throughput 10- to 100-fold compared to manual patch clamp methods. Automated patch clamp electrophysiology is poised to revolutionize the field of functional genomics for inheritable cardiac ion channelopathies. In this review, we outline i) the evolution of patch clamping, ii) the development of high-throughput automated patch clamp assays to assess cardiac ion channel variants, iii) clinical application of these assays and iv) where the field is heading.
Collapse
Affiliation(s)
- Joanne G. Ma
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Jamie I. Vandenberg
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Chai-Ann Ng
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
54
|
Emigh Cortez AM, DeMarco KR, Furutani K, Bekker S, Sack JT, Wulff H, Clancy CE, Vorobyov I, Yarov-Yarovoy V. Structural modeling of hERG channel-drug interactions using Rosetta. Front Pharmacol 2023; 14:1244166. [PMID: 38035013 PMCID: PMC10682396 DOI: 10.3389/fphar.2023.1244166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
The human ether-a-go-go-related gene (hERG) not only encodes a potassium-selective voltage-gated ion channel essential for normal electrical activity in the heart but is also a major drug anti-target. Genetic hERG mutations and blockage of the channel pore by drugs can cause long QT syndrome, which predisposes individuals to potentially deadly arrhythmias. However, not all hERG-blocking drugs are proarrhythmic, and their differential affinities to discrete channel conformational states have been suggested to contribute to arrhythmogenicity. We used Rosetta electron density refinement and homology modeling to build structural models of open-state hERG channel wild-type and mutant variants (Y652A, F656A, and Y652A/F656 A) and a closed-state wild-type channel based on cryo-electron microscopy structures of hERG and EAG1 channels. These models were used as protein targets for molecular docking of charged and neutral forms of amiodarone, nifekalant, dofetilide, d/l-sotalol, flecainide, and moxifloxacin. We selected these drugs based on their different arrhythmogenic potentials and abilities to facilitate hERG current. Our docking studies and clustering provided atomistic structural insights into state-dependent drug-channel interactions that play a key role in differentiating safe and harmful hERG blockers and can explain hERG channel facilitation through drug interactions with its open-state hydrophobic pockets.
Collapse
Affiliation(s)
- Aiyana M. Emigh Cortez
- Biophysics Graduate Group, University of California, Davis, Davis, CA, United States
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Kevin R. DeMarco
- Biophysics Graduate Group, University of California, Davis, Davis, CA, United States
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
| | - Kazuharu Furutani
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Department of Pharmacology, Tokushima Bunri University, Tokushima, Japan
| | - Slava Bekker
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- American River College, Sacramento, CA, United States
| | - Jon T. Sack
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA, United States
| | - Heike Wulff
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Colleen E. Clancy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
- Center for Precision Medicine and Data Sciences, University of California, Davis, Davis, CA, United States
| | - Igor Vorobyov
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Vladimir Yarov-Yarovoy
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA, United States
- Department of Anesthesiology and Pain Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
55
|
Furutani K. Facilitation of hERG Activation by Its Blocker: A Mechanism to Reduce Drug-Induced Proarrhythmic Risk. Int J Mol Sci 2023; 24:16261. [PMID: 38003453 PMCID: PMC10671758 DOI: 10.3390/ijms242216261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Modulation of the human Ether-à-go-go-Related Gene (hERG) channel, a crucial voltage-gated potassium channel in the repolarization of action potentials in ventricular myocytes of the heart, has significant implications on cardiac electrophysiology and can be either antiarrhythmic or proarrhythmic. For example, hERG channel blockade is a leading cause of long QT syndrome and potentially life-threatening arrhythmias, such as torsades de pointes. Conversely, hERG channel blockade is the mechanism of action of Class III antiarrhythmic agents in terminating ventricular tachycardia and fibrillation. In recent years, it has been recognized that less proarrhythmic hERG blockers with clinical potential or Class III antiarrhythmic agents exhibit, in addition to their hERG-blocking activity, a second action that facilitates the voltage-dependent activation of the hERG channel. This facilitation is believed to reduce the proarrhythmic potential by supporting the final repolarizing of action potentials. This review covers the pharmacological characteristics of hERG blockers/facilitators, the molecular mechanisms underlying facilitation, and their clinical significance, as well as unresolved issues and requirements for research in the fields of ion channel pharmacology and drug-induced arrhythmias.
Collapse
Affiliation(s)
- Kazuharu Furutani
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, 180 Nishihama-Boji, Yamashiro-cho, Tokushima 770-8514, Japan
| |
Collapse
|
56
|
Jung J, Noh SH, Jo S, Song D, Kang MJ, Shin MH, Lee HJ, Pyun JC, Namkung W, Han G, Lee MG, Choi JY. Novel small molecule-mediated restoration of the surface expression and anion exchange activity of mutated pendrin causing Pendred syndrome and DFNB4. Biomed Pharmacother 2023; 167:115445. [PMID: 37690388 DOI: 10.1016/j.biopha.2023.115445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023] Open
Abstract
Variants in SLC26A4 (pendrin) are the most common reasons for genetic hearing loss and vestibular dysfunction in East Asians. In patients with Pendred syndrome and DFNB4 (autosomal recessive type of genetic hearing loss 4), caused by variants in SLC26A4, the hearing function is residual at birth and deteriorates over several years, with no curative treatment for these disorders. In the present study, we revealed that a novel small molecule restores the expression and function of mutant pendrin. High-throughput screening of 54,000 small molecules was performed. We observed that pendrin corrector (PC2-1) increased the surface expression and anion exchange activity of p.H723R pendrin (H723R-PDS), the most prevalent genetic variant that causes Pendred syndrome and DFNB4. Furthermore, in endogenous H723R-PDS-expressing human nasal epithelial cells, PC2-1 significantly increased the surface expression of pendrin. PC2-1 exhibited high membrane permeability in vitro and high micromolar concentrations in the cochlear perilymph in vivo. In addition, neither inhibition of Kv11.1 activity in the human ether-a-go-go-related gene assay nor cell toxicity in the cell proliferation assay was observed at a high PC2-1 concentration (30 μM). These preclinical data support the hypothesis of the druggability of mutant pendrin using the novel corrector molecule PC2-1. In conclusion, PC2-1 may be a new therapeutic molecule for ameliorating hearing loss and treating vestibular disorders in patients with Pendred syndrome or DFNB4.
Collapse
Affiliation(s)
- Jinsei Jung
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Won-Sang Lee Institute for Hearing Loss, Seoul 03722, Republic of Korea
| | - Shin Hye Noh
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sungwoo Jo
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Doona Song
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea; Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Republic of Korea; Translational Research Center for Protein Function Control, Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Min Jin Kang
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Won-Sang Lee Institute for Hearing Loss, Seoul 03722, Republic of Korea
| | - Mi Hwa Shin
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Won-Sang Lee Institute for Hearing Loss, Seoul 03722, Republic of Korea
| | - Hyun Jae Lee
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, USA
| | - Jae-Chul Pyun
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Wan Namkung
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea.
| | - Gyoonhee Han
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea; Department of Integrated OMICS for Biomedical Science, Yonsei University, Seoul 03722, Republic of Korea; Translational Research Center for Protein Function Control, Department of Biotechnology, Yonsei University, Seoul 03722, Republic of Korea.
| | - Min Goo Lee
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Republic of Korea, Seoul 03722, Republic of Korea.
| | - Jae Young Choi
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Won-Sang Lee Institute for Hearing Loss, Seoul 03722, Republic of Korea.
| |
Collapse
|
57
|
Samanta S, Sk MF, Koirala S, Kar P. Exploring molecular interactions of potential inhibitors against the spleen tyrosine kinase implicated in autoimmune disorders via virtual screening and molecular dynamics simulations. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023:1-29. [PMID: 37881946 DOI: 10.1080/1062936x.2023.2266364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023]
Abstract
The spleen tyrosine kinase (Syk) plays a pivotal role in immune cells' signal transduction mechanism. While fostamatinib, an FDA-approved Syk inhibitor, is currently used to treat immune thrombocytopenia, the search for improved Syk-targeted medications to treat autoimmune diseases is still underway. Herein, we screened 38,493 compounds against Syk and selected eight leads based on the docking score and ADMET properties, and performed 3× 200 ns long molecular dynamics simulations of the apo and Syk-ligand complexes. We considered R406, the active component of fostamatinib, as a control. The molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations demonstrated the lead1 (Δ G b i n d = -30.35 kcal/mol) exhibited a similar binding free energy as the control (Δ G b i n d = -29.82 kcal/mol). The Syk stabilizing effect of lead1 was also indicated in its network features, sampling space, and residual correlation motion analysis. We further generated 100 structural analogues of lead1 using deep learning, and one of the analogues displayed a better binding free energy (Δ G b i n d = -47.58 kcal/mol) compared to the control or lead1, facilitated by more favourable van der Waals interactions and lesser binding-opposing net polar forces. This analogue may be further exploited to develop effective therapeutics against Syk-associated diseases after validation in vitro and in vivo.
Collapse
Affiliation(s)
- S Samanta
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh, India
| | - M F Sk
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh, India
- Theoretical and Computational Biophysics Group, NIH Resource for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - S Koirala
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh, India
| | - P Kar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh, India
| |
Collapse
|
58
|
Goh MWS, Tozawa Y, Tero R. Assembly of Cell-Free Synthesized Ion Channel Molecules in Artificial Lipid Bilayer Observed by Atomic Force Microscopy. MEMBRANES 2023; 13:854. [PMID: 37999340 PMCID: PMC10673230 DOI: 10.3390/membranes13110854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023]
Abstract
Artificial lipid bilayer systems, such as vesicles, black membranes, and supported lipid bilayers (SLBs), are valuable platforms for studying ion channels at the molecular level. The reconstitution of the ion channels in an active form is a crucial process in studies using artificial lipid bilayer systems. In this study, we investigated the assembly of the human ether-a-go-go-related gene (hERG) channel prepared in a cell-free synthesis system. AFM topographies revealed the presence of protrusions with a uniform size in the entire SLB that was prepared with the proteoliposomes (PLs) incorporating the cell-free-synthesized hERG channel. We attributed the protrusions to hERG channel monomers, taking into consideration the AFM tip size, and identified assembled structures of the monomer that exhibited dimeric, trimeric, and tetrameric-like arrangements. We observed molecular images of the functional hERG channel reconstituted in a lipid bilayer membrane using AFM and quantitatively evaluated the association state of the cell-free synthesized hERG channel.
Collapse
Affiliation(s)
- Melvin Wei Shern Goh
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Japan
| | - Yuzuru Tozawa
- Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan;
| | - Ryugo Tero
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Japan
| |
Collapse
|
59
|
Seal S, Spjuth O, Hosseini-Gerami L, García-Ortegón M, Singh S, Bender A, Carpenter AE. Insights into Drug Cardiotoxicity from Biological and Chemical Data: The First Public Classifiers for FDA DICTrank. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.15.562398. [PMID: 37905146 PMCID: PMC10614794 DOI: 10.1101/2023.10.15.562398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Drug-induced cardiotoxicity (DICT) is a major concern in drug development, accounting for 10-14% of postmarket withdrawals. In this study, we explored the capabilities of various chemical and biological data to predict cardiotoxicity, using the recently released Drug-Induced Cardiotoxicity Rank (DICTrank) dataset from the United States FDA. We analyzed a diverse set of data sources, including physicochemical properties, annotated mechanisms of action (MOA), Cell Painting, Gene Expression, and more, to identify indications of cardiotoxicity. We found that such data, including protein targets, especially those related to ion channels (such as hERG), physicochemical properties (such as electrotopological state) as well as peak concentration in plasma offer strong predictive ability as well as valuable insights into DICT. We also found compounds annotated with particular mechanisms of action, such as cyclooxygenase inhibition, could distinguish between most-concern and no-concern DICT compounds. Cell Painting features related to ER stress discern the most-concern cardiotoxic compounds from non-toxic compounds. While models based on physicochemical properties currently provide substantial predictive accuracy (AUCPR = 0.93), this study also underscores the potential benefits of incorporating more comprehensive biological data in future DICT predictive models. With the availability of - omics data in the future, using biological data promises enhanced predictability and delivers deeper mechanistic insights, paving the way for safer therapeutic drug development. All models and data used in this study are publicly released at https://broad.io/DICTrank_Predictor.
Collapse
Affiliation(s)
- Srijit Seal
- Imaging Platform, Broad Institute of MIT and Harvard, US
| | - Ola Spjuth
- Department of Pharmaceutical Biosciences, Uppsala University, Sweden
| | | | | | - Shantanu Singh
- Imaging Platform, Broad Institute of MIT and Harvard, US
| | | | | |
Collapse
|
60
|
Chen Y, Yu X, Li W, Tang Y, Liu G. In silico prediction of hERG blockers using machine learning and deep learning approaches. J Appl Toxicol 2023; 43:1462-1475. [PMID: 37093028 DOI: 10.1002/jat.4477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/04/2023] [Accepted: 04/19/2023] [Indexed: 04/25/2023]
Abstract
The human ether-à-go-go-related gene (hERG) is associated with drug cardiotoxicity. If the hERG channel is blocked, it will lead to prolonged QT interval and cause sudden death in severe cases. Therefore, it is important to evaluate the hERG-blocking property of compounds in early drug discovery. In this study, a dataset containing 4556 compounds with IC50 values determined by patch clamp techniques on mammalian lineage cells was collected, and hERG blockers and non-blockers were distinguished according to three single thresholds and two binary thresholds. Four machine learning (ML) algorithms combining four molecular fingerprints and molecular descriptors as well as graph convolutional neural networks (GCNs) were used to construct a series of binary classification models. The results showed that the best models varied for different thresholds. The ML models implemented by support vector machine and random forest performed well based on Morgan fingerprints and molecular descriptors, with AUCs ranging from 0.884 to 0.950. GCN showed superior prediction performance with AUCs above 0.952, which might be related to its direct extraction of molecular features from the original input. Meanwhile, the classification of binary threshold was better than that of single threshold, which could provide us with a more accurate prediction of hERG blockers. At last, the applicability domain for the model was defined, and seven structural alerts that might generate hERG blockage were identified by information gain and substructure frequency analysis. Our work would be beneficial for identifying hERG blockers in chemicals.
Collapse
Affiliation(s)
- Yuanting Chen
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xinxin Yu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
61
|
Campagna N, Wall E, Lee K, Guo J, Li W, Yang T, Baranchuk A, El-Diasty M, Zhang S. Differential Effects of Remdesivir and Lumacaftor on Homomeric and Heteromeric hERG Channels. Mol Pharmacol 2023; 104:164-173. [PMID: 37419691 DOI: 10.1124/molpharm.123.000708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 07/09/2023] Open
Abstract
The human ether-a-go-go-related gene (hERG) encodes for the pore-forming subunit of the channel that conducts the rapidly activating delayed K+ current (IKr) in the heart. The hERG channel is important for cardiac repolarization, and reduction of its expression in the plasma membrane due to mutations causes long QT syndrome type 2 (LQT2). As such, promoting hERG membrane expression is a strategy to rescue mutant channel function. In the present study, we applied patch clamp, western blots, immunocytochemistry, and quantitative reverse transcription polymerase chain reaction techniques to investigate the rescue effects of two drugs, remdesivir and lumacaftor, on trafficking-defective mutant hERG channels. As our group has recently reported that the antiviral drug remdesivir increases wild-type (WT) hERG current and surface expression, we studied the effects of remdesivir on trafficking-defective LQT2-causing hERG mutants G601S and R582C expressed in HEK293 cells. We also investigated the effects of lumacaftor, a drug used to treat cystic fibrosis, that promotes CFTR protein trafficking and has been shown to rescue membrane expression of some hERG mutations. Our results show that neither remdesivir nor lumacaftor rescued the current or cell-surface expression of homomeric mutants G601S and R582C. However, remdesivir decreased while lumacaftor increased the current and cell-surface expression of heteromeric channels formed by WT hERG and mutant G601S or R582C hERG. We concluded that drugs can differentially affect homomeric WT and heteromeric WT+G601S (or WT+R582C) hERG channels. These findings extend our understanding of drug-channel interaction and may have clinical implications for patients with hERG mutations. SIGNIFICANCE STATEMENT: Various naturally occurring mutations in a cardiac potassium channel called hERG can impair channel function by decreasing cell-surface channel expression, resulting in cardiac electrical disturbances and even sudden cardiac death. Promotion of cell-surface expression of mutant hERG channels represents a strategy to rescue channel function. This work demonstrates that drugs such as remdesivir and lumacaftor can differently affect homomeric and heteromeric mutant hERG channels, which have biological and clinical implications.
Collapse
Affiliation(s)
- Noah Campagna
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Erika Wall
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Kevin Lee
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Jun Guo
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Wentao Li
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Tonghua Yang
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Adrian Baranchuk
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Mohammad El-Diasty
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| | - Shetuan Zhang
- Department of Biomedical and Molecular Sciences (N.C., E.W., K.L., J.G., W.L., T.Y., S.Z.); Division of Cardiology, Department of Medicine (A.B.); and Division of Cardiac Surgery, Department of Surgery (M.E.-D.), Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
62
|
Elizalde Uribe IA, Mendoza Lagos D, Cazares Diazleal AC, Andrade Cuellar EN, Payró Ramírez G. Family long QT syndrome type 2 associated with KCNH2 gene mutation: aborted sudden cardiac death. Monaldi Arch Chest Dis 2023; 94. [PMID: 37702700 DOI: 10.4081/monaldi.2023.2663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/28/2023] [Indexed: 09/14/2023] Open
Abstract
A complete screening was performed in a family after one of its members presented with a sudden cardiac death event. A genetic analysis revealed a mutation that led to a long QT syndrome.
Collapse
Affiliation(s)
| | - Diego Mendoza Lagos
- Cardiology Department, National Institute of Medical Science and Nutrition "Salvador Zubiran", Mexico City
| | | | | | - Gerardo Payró Ramírez
- Cardiology Department, National Institute of Medical Science and Nutrition "Salvador Zubiran", Mexico City
| |
Collapse
|
63
|
Santini L, Duranti C, Palandri C, Giammarino L, Musumeci M, Carlucci L, Capitani C, Colasurdo R, Recchia F, Cerbai E, Coppini R, Arcangeli A. Cardiac safety assessment of a novel recombinant bispecific antibody targeting the ether-à-go-go related gene 1 (hERG1)-β1 integrin macromolecular complex. Front Pharmacol 2023; 14:1237431. [PMID: 37767396 PMCID: PMC10520717 DOI: 10.3389/fphar.2023.1237431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction: In the last decades, mounting evidence has pointed out the human ether-á-go-go-related gene (hERG1) potassium channel as a novel biomarker in human cancers. However, hERG1 sustains the cardiac repolarizing current IKr and its blockade can induce a prolonged QT interval at the ECG, which increases the risk of life-threatening arrhythmias. This represents a major hindrance for targeting hERG1 for antineoplastic therapeutic purposes. Based on our discovery that hERG1 resides in a macromolecular complex with the β1 subunit of integrin adhesion receptors only in tumors, and not in the heart, we generated (and patented WO2019/015936) a novel engineered, single chain, bispecific antibody in the format of a diabody (scDb-hERG1-β1). This antibody has been proven to target with high affinity the hERG1/β1 integrin complex and to exert a good antineoplastic activity in preclinical mouse models. Methods: In the present study, we evaluated the cardiac safety of the scDb-hERG1-β1, determining the action potential duration (APD) of human cardiomyocytes, either atrial (from valve-disease patients) or ventricular (from aortic stenosis patients). Cardiac cells were incubated in vitro with i) the scDb-hERG1-β1, ii) the full length anti-hERG1 monoclonal antibody (mAb-hERG1) and iii) its single chain Fragment variable derivative (scFv-hERG1), from which the scDb-hERG1-β1 was assembled. All the tests were performed before and after treatment with the specific hERG1 blocker E4031. In addition, we have performed preliminary experiments, analyzing the effects of the scDb-hERG1/β1 in vivo measuring the QT interval length of the surface ECG after its injection intravenously in farm-pigs. Results: The scDb-hERG1-β1 did not produce any lengthening of APD compared to control (vehicle) conditions, either in atrial or ventricular cardiomyocytes, whereas both the hERG1-mAb and the scFv-hERG1 produced a significant APD prolongation. The addition of E4031 further prolonged APD. The scDb-hERG1-β1 did not produce any alterations of the QT (and QTc) interval values, once injected intravenously in farm pigs. Discussion: Overall, the above evidences plead for the cardiac safety of the scDb-hERG1-β1, suggesting that an application of this antibody for anti-cancer therapy will be untainted by cardiotoxicity.
Collapse
Affiliation(s)
- Lorenzo Santini
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Claudia Duranti
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| | - Chiara Palandri
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Lucrezia Giammarino
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Monica Musumeci
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Lucia Carlucci
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Chiara Capitani
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Rossella Colasurdo
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Fabio Recchia
- Institute of Life Sciences, Scuola Superiore Sant’Anna, Pisa, Italy
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Raffaele Coppini
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Florence, Italy
| |
Collapse
|
64
|
Kim HJ, Li M, Erlich EC, Randolph GJ, Davis MJ. ERG K + channels mediate a major component of action potential repolarization in lymphatic muscle. Sci Rep 2023; 13:14890. [PMID: 37689781 PMCID: PMC10492848 DOI: 10.1038/s41598-023-41995-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023] Open
Abstract
Smooth muscle cells in the walls of collecting lymphatic vessels fire spontaneous action potentials (APs), which conduct rapidly over the muscle layer to initiate contractions that propel lymph. Several ion channels have been implicated in the currents underlying the AP spike and the preceding diastolic depolarization, but the molecular identities of K+ channels involved in AP repolarization are unknown. Based on previous studies of other rhythmically active smooth muscles, we hypothesized that ether-a-go-go related gene (ERG) K+ channels (Kv11) play an important role in repolarization of the AP in lymphatic muscle. Message for one or more ERG channel isoforms was detected by RT-PCR analysis of lymphatic vessels from mice, rats and humans. Membrane potential recordings in smooth muscle cells of rat and human lymphatics revealed that nanomolar concentrations of ERG-1 inhibitors (E-4031 and BeKm-1) prolonged the duration of the AP plateau (normally ~ 1 s in duration) and induced multiple spikes, whereas ERG-1 activators (ICA-105574 and RPR-260243) shortened the plateau and could completely inhibit spontaneous APs. At relatively high inhibitor concentrations, the AP plateau duration lasted as long as 24 s. ERG activators reversed the effects of ERG inhibitors and vice-versa. In pressure myograph studies, ERG channel inhibition prolonged the diastolic repolarization phase of the contraction cycle and reduced the frequency of spontaneous contractions. This is the first evidence for a specific K+ channel contributing to the AP in lymphatic muscle. Our results imply that lymphatic contractile dysfunction may occur in long QT type II patients with mutations that result in ERG channel loss-of-function or impaired trafficking of the channel to the cell membrane.
Collapse
Affiliation(s)
- Hae Jin Kim
- Department of Medical Pharmacology & Physiology, University of Missouri, One Hospital Drive, MA415 Medical Sciences Building, Columbia, MO, 65212, USA
| | - Min Li
- Department of Medical Pharmacology & Physiology, University of Missouri, One Hospital Drive, MA415 Medical Sciences Building, Columbia, MO, 65212, USA
| | - Emma C Erlich
- Department of Pathology and Immunology, Washington University, St Louis, MO, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University, St Louis, MO, USA
| | - Michael J Davis
- Department of Medical Pharmacology & Physiology, University of Missouri, One Hospital Drive, MA415 Medical Sciences Building, Columbia, MO, 65212, USA.
| |
Collapse
|
65
|
El Harchi A, Hancox JC. hERG agonists pose challenges to web-based machine learning methods for prediction of drug-hERG channel interaction. J Pharmacol Toxicol Methods 2023; 123:107293. [PMID: 37468081 DOI: 10.1016/j.vascn.2023.107293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Pharmacological blockade of the IKr channel (hERG) by diverse drugs in clinical use is associated with the Long QT Syndrome that can lead to life threatening arrhythmia. Various computational tools including machine learning models (MLM) for the prediction of hERG inhibition have been developed to facilitate the throughput screening of drugs in development and optimise thus the prediction of hERG liabilities. The use of MLM relies on large libraries of training compounds for the quantitative structure-activity relationship (QSAR) modelling of hERG inhibition. The focus on inhibition omits potential effects of hERG channel agonist molecules and their associated QT shortening risk. It is instructive, therefore, to consider how known hERG agonists are handled by MLM. Here, two highly developed online computational tools for the prediction of hERG liability, Pred-hERG and HergSPred were probed for their ability to detect hERG activator drug molecules as hERG interactors. In total, 73 hERG blockers were tested with both computational tools giving overall good predictions for hERG blockers with reported IC50s below Pred-hERG and HergSPred cut-off threshold for hERG inhibition. However, for compounds with reported IC50s above this threshold such as disopyramide or sotalol discrepancies were observed. HergSPred identified all 20 hERG agonists selected as interacting with the hERG channel. Further studies are warranted to improve online MLM prediction of hERG related cardiotoxicity, by explicitly taking into account channel agonism as well as inhibition.
Collapse
Affiliation(s)
- Aziza El Harchi
- School of Physiology and Pharmacology and Neuroscience, Biomedical Sciences Building, The University of Bristol, University Walk, Bristol BS8 1TD, UK.
| | - Jules C Hancox
- School of Physiology and Pharmacology and Neuroscience, Biomedical Sciences Building, The University of Bristol, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
66
|
Mokrov GV. Multitargeting in cardioprotection: An example of biaromatic compounds. Arch Pharm (Weinheim) 2023; 356:e2300196. [PMID: 37345968 DOI: 10.1002/ardp.202300196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023]
Abstract
A multitarget drug design approach is actively developing in modern medicinal chemistry and pharmacology, especially with regard to multifactorial diseases such as cardiovascular diseases, cancer, and neurodegenerative diseases. A detailed study of many well-known drugs developed within the single-target approach also often reveals additional mechanisms of their real pharmacological action. One of the multitarget drug design approaches can be the identification of the basic pharmacophore models corresponding to a wide range of the required target ligands. Among such models in the group of cardioprotectors is the linked biaromatic system. This review develops the concept of a "basic pharmacophore" using the biaromatic pharmacophore of cardioprotectors as an example. It presents an analysis of possible biological targets for compounds corresponding to the biaromatic pharmacophore and an analysis of the spectrum of biological targets for the five most known and most studied cardioprotective drugs corresponding to this model, and their involvement in the biological effects of these drugs.
Collapse
|
67
|
Wang Z, Pan T, Shen M, Liao J, Tian Y. Cross-conjugated polymers as fluorescent probes for intracellular potassium ion detection. SENSORS AND ACTUATORS B: CHEMICAL 2023; 390:134008. [DOI: 10.1016/j.snb.2023.134008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
|
68
|
Costa F, Ocello R, Guardiani C, Giacomello A, Masetti M. Integrated Approach Including Docking, MD Simulations, and Network Analysis Highlights the Action Mechanism of the Cardiac hERG Activator RPR260243. J Chem Inf Model 2023; 63:4888-4899. [PMID: 37504578 PMCID: PMC10428221 DOI: 10.1021/acs.jcim.3c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 07/29/2023]
Abstract
hERG is a voltage-gated potassium channel involved in the heart contraction whose defections are associated with the cardiac arrhythmia Long QT Syndrome type 2. The activator RPR260243 (RPR) represents a possible candidate to pharmacologically treat LQTS2 because it enhances the opening of the channel. However, the molecular detail of its action mechanism remains quite elusive. Here, we address the problem using a combination of docking, molecular dynamics simulations, and network analysis. We show that the drug preferably binds at the interface between the voltage sensor and the pore, enhancing the canonical activation path and determining a whole-structure rearrangement of the channel that slightly impairs inactivation.
Collapse
Affiliation(s)
- Flavio Costa
- Dipartimento
di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18, 00184 Rome, Italy
| | - Riccardo Ocello
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum−Università di Bologna, via Belmeloro 6, 40126 Bologna, Italy
| | - Carlo Guardiani
- Dipartimento
di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18, 00184 Rome, Italy
| | - Alberto Giacomello
- Dipartimento
di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, via Eudossiana 18, 00184 Rome, Italy
| | - Matteo Masetti
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum−Università di Bologna, via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
69
|
Ma J, Wang NY, Jagani R, Wang HS. Proarrhythmic toxicity of low dose bisphenol A and its analogs in human iPSC-derived cardiomyocytes and human cardiac organoids through delay of cardiac repolarization. CHEMOSPHERE 2023; 328:138562. [PMID: 37004823 PMCID: PMC10121900 DOI: 10.1016/j.chemosphere.2023.138562] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/07/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
Bisphenol A (BPA) and its analogs are common environmental chemicals with many potential adverse health effects. The impact of environmentally relevant low dose BPA on human heart, including cardiac electrical properties, is not understood. Perturbation of cardiac electrical properties is a key arrhythmogenic mechanism. In particular, delay of cardiac repolarization can cause ectopic excitation of cardiomyocytes and malignant arrhythmia. This can occur as a result of genetic mutations (i.e., long QT (LQT) syndrome), or cardiotoxicity of drugs and environmental chemicals. To define the impact of low dose BPA on electrical properties of cardiomyocytes in a human-relevant model system, we examined the rapid effects of 1 nM BPA in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) using patch-clamp and confocal fluorescence imaging. Acute exposure to BPA delayed repolarization and prolonged action potential duration (APD) in hiPSC-CMs through inhibition of the hERG K+ channel. In nodal-like hiPSC-CMs, BPA acutely increased pacing rate through stimulation of the If pacemaker channel. Existing arrhythmia susceptibility determines the response of hiPSC-CMs to BPA. BPA resulted in modest APD prolongation but no ectopic excitation in baseline condition, while rapidly promoted aberrant excitations and tachycardia-like events in myocytes that had drug-simulated LQT phenotype. In hiPSC-CM-based human cardiac organoids, the effects of BPA on APD and aberrant excitation were shared by its analog chemicals, which are often used in "BPA-free" products, with bisphenol AF having the largest effects. Our results reveal that BPA and its analogs have repolarization delay-associated pro-arrhythmic toxicity in human cardiomyocytes, particularly in myocytes that are prone to arrhythmias. The toxicity of these chemicals depends on existing pathophysiological conditions of the heart, and may be particularly pronounced in susceptible individuals. An individualized approach is needed in risk assessment and protection.
Collapse
Affiliation(s)
- Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | | | - Ravikumar Jagani
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hong-Sheng Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
70
|
Huang CLH, Lei M. Cardiomyocyte electrophysiology and its modulation: current views and future prospects. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220160. [PMID: 37122224 PMCID: PMC10150219 DOI: 10.1098/rstb.2022.0160] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/10/2023] [Indexed: 05/02/2023] Open
Abstract
Normal and abnormal cardiac rhythms are of key physiological and clinical interest. This introductory article begins from Sylvio Weidmann's key historic 1950s microelectrode measurements of cardiac electrophysiological activity and Singh & Vaughan Williams's classification of cardiotropic targets. It then proceeds to introduce the insights into cardiomyocyte function and its regulation that subsequently emerged and their therapeutic implications. We recapitulate the resulting view that surface membrane electrophysiological events underlying cardiac excitation and its initiation, conduction and recovery constitute the final common path for the cellular mechanisms that impinge upon this normal or abnormal cardiac electrophysiological activity. We then consider progress in the more recently characterized successive regulatory hierarchies involving Ca2+ homeostasis, excitation-contraction coupling and autonomic G-protein signalling and their often reciprocal interactions with the surface membrane events, and their circadian rhythms. Then follow accounts of longer-term upstream modulation processes involving altered channel expression, cardiomyocyte energetics and hypertrophic and fibrotic cardiac remodelling. Consideration of these developments introduces each of the articles in this Phil. Trans. B theme issue. The findings contained in these articles translate naturally into recent classifications of cardiac electrophysiological targets and drug actions, thereby encouraging future iterations of experimental cardiac electrophysiological discovery, and testing directed towards clinical management. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.
Collapse
Affiliation(s)
- Christopher L.-H. Huang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Ming Lei
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| |
Collapse
|
71
|
Das N, Bhattacharya D, Bandopadhyay P, Dastidar UG, Paul B, Rahaman O, Hoque I, Patra B, Ganguly D, Talukdar A. Mitigating hERG Liability of Toll-Like Receptor 9 and 7 Antagonists through Structure-Based Design. ChemMedChem 2023; 18:e202300069. [PMID: 36999630 DOI: 10.1002/cmdc.202300069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/15/2023] [Accepted: 03/29/2023] [Indexed: 04/01/2023]
Abstract
hERG is considered to be a primary anti-target in the drug development process, as the K+ channel encoded by hERG plays an important role in cardiac re-polarization. It is desirable to address the hERG safety liability during early-stage development to avoid the expenses of validating leads that will eventually fail at a later stage. We have previously reported the development of highly potent quinazoline-based TLR7 and TLR9 antagonists for possible application against autoimmune disease. Initial experimental hERG assessment showed that most of the lead TLR7 and TLR9 antagonists suffer from hERG liability rendering them ineffective for further development. The present study herein describes a coordinated strategy to integrate the understanding from structure-based protein-ligand interaction to develop non- hERG binders with IC50 >30 μM with retention of TLR7/9 antagonism through a single point change in the scaffold. This structure-guided strategy can serve as a prototype for abolishing hERG liability during lead optimization.
Collapse
Affiliation(s)
- Nirmal Das
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Debomita Bhattacharya
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India
| | - Purbita Bandopadhyay
- IICB-Translational Research Unit of Excellence Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology Salt Lake, Kolkata, 700091, WB, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Uddipta Ghosh Dastidar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Barnali Paul
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Oindrila Rahaman
- IICB-Translational Research Unit of Excellence Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology Salt Lake, Kolkata, 700091, WB, India
| | - Israful Hoque
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India
| | - Binita Patra
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India
| | - Dipyaman Ganguly
- IICB-Translational Research Unit of Excellence Department of Cancer Biology and Inflammatory Disorders, CSIR-Indian Institute of Chemical Biology Salt Lake, Kolkata, 700091, WB, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| | - Arindam Talukdar
- Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata, 700032, WB, India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
72
|
Anifowose LO, Paimo OK, Adegboyega FN, Ogunyemi OM, Akano RO, Hammad SF, Ghazy MA. Molecular docking appraisal of Dysphania ambrosioides phytochemicals as potential inhibitor of a key triple-negative breast cancer driver gene. In Silico Pharmacol 2023; 11:15. [PMID: 37323538 PMCID: PMC10267046 DOI: 10.1007/s40203-023-00152-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 06/17/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a lethal and aggressive breast cancer subtype. It is characterized by the deficient expression of the three main receptors implicated in breast cancers, making it unresponsive to hormone therapy. Hence, an existing need to develop a targeted molecular therapy for TNBC. The PI3K/AKT/mTOR signaling pathway mediates critical cellular processes, including cell proliferation, survival, and angiogenesis. It is activated in approximately 10-21% of TNBCs, emphasizing the importance of this intracellular target in TNBC treatment. AKT is a prominent driver of the PI3K/AKT/mTOR pathway, validating it as a promising therapeutic target. Dysphania ambrosioides is an important ingredient of Nigeria's traditional herbal recipe for cancer treatment. Thus, our present study explores its anticancer properties through a structure-based virtual screening of 25 biologically active compounds domiciled in the plant. Interestingly, our molecular docking study identified several potent inhibitors of AKT 1 and 2 isoforms from D. ambrosioides. However, cynaroside and epicatechin gallate having a binding energy of - 9.9 and - 10.2 kcal/mol for AKT 1 and 2, respectively, demonstrate considerable drug-likeness than the reference drug (capivasertib), whose respective binding strengths for AKT 1 and 2 are - 9.5 and - 8.4 kcal/mol. Lastly, the molecular dynamics simulation experiment showed that the simulated complex systems of the best hits exhibit structural stability throughout the 50 ns run. Together, our computational modeling analysis suggests that these compounds could emerge as efficacious drug candidates in the treatment of TNBC. Nevertheless, further experimental, translational, and clinical research is required to establish an empirical clinical application. Graphical Abstract A structure-based virtual screening and simulation of Dysphania ambrosioides phytochemicals in the active pocket of AKT 1 and 2 isoforms.
Collapse
Affiliation(s)
- Lateef O. Anifowose
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State Nigeria
- Department of Biotechnology, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab, Alexandria, Egypt
| | - Oluwatomiwa K. Paimo
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Ogun State Nigeria
| | - Fikayo N. Adegboyega
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State Nigeria
- Department of Biotechnology, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab, Alexandria, Egypt
| | - Oludare M. Ogunyemi
- Department of Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State Nigeria
| | - Rukayat O. Akano
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Ogbomoso, Oyo State Nigeria
| | - Sherif F. Hammad
- Department of Biotechnology, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab, Alexandria, Egypt
| | - Mohamed A. Ghazy
- Department of Biotechnology, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab, Alexandria, Egypt
| |
Collapse
|
73
|
Usuda K, Hayashi K, Nakajima T, Kurata Y, Cui S, Kusayama T, Tsuda T, Tada H, Kato T, Sakata K, Usui S, Fujino N, Tanaka Y, Kaneko Y, Kurabayashi M, Tange S, Saito T, Ohta K, Yamagishi M, Takamura M. Mechanisms of fever-induced QT prolongation and torsades de pointes in patients with KCNH2 mutation. Europace 2023; 25:euad161. [PMID: 37386841 PMCID: PMC10310978 DOI: 10.1093/europace/euad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 05/13/2023] [Indexed: 07/01/2023] Open
Abstract
AIMS Patients with particular mutations of type-2 long QT syndrome (LQT2) are at an increased risk for malignant arrhythmia during fever. This study aimed to determine the mechanism by which KCNH2 mutations cause fever-induced QT prolongation and torsades de pointes (TdP). METHODS AND RESULTS We evaluated three KCNH2 mutations, G584S, D609G, and T613M, in the Kv11.1 S5-pore region, identified in patients with marked QT prolongation and TdP during fever. We also evaluated KCNH2 M124T and R269W, which are not associated with fever-induced QT prolongation. We characterized the temperature-dependent changes in the electrophysiological properties of the mutant Kv11.1 channels by patch-clamp recording and computer simulation. The average tail current densities (TCDs) at 35°C for G584S, WT+D609G, and WT+T613M were significantly smaller and less increased with rising temperature from 35°C to 40°C than those for WT, M124T, and R269W. The ratios of the TCDs at 40°C to 35°C for G584S, WT+D609G, and WT+T613M were significantly smaller than for WT, M124T, and R269W. The voltage dependence of the steady-state inactivation curve for WT, M124T, and R269W showed a significant positive shift with increasing temperature; however, that for G584S, WT+D609G, and WT+T613M showed no significant change. Computer simulation demonstrated that G584S, WT+D609G, and WT+T613M caused prolonged action potential durations and early afterdepolarization formation at 40°C. CONCLUSION These findings indicate that KCNH2 G584S, D609G, and T613M in the S5-pore region reduce the temperature-dependent increase in TCDs through an enhanced inactivation, resulting in QT prolongation and TdP at a febrile state in patients with LQT2.
Collapse
Affiliation(s)
- Keisuke Usuda
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Kenshi Hayashi
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Tadashi Nakajima
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yasutaka Kurata
- Department of Physiology, Kanazawa Medical University, Uchinada, Japan
| | - Shihe Cui
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Takashi Kusayama
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Toyonobu Tsuda
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Hayato Tada
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Takeshi Kato
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Kenji Sakata
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Soichiro Usui
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Noboru Fujino
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| | - Yoshihiro Tanaka
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
- Department of Preventive Medicine Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Yoshiaki Kaneko
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Shoichi Tange
- Department of Cardiovascular Medicine, Maebashi Red Cross Hospital, Maebashi, Japan
| | - Takekatsu Saito
- Department of Pediatrics, Kanazawa University, Kanazawa, Japan
| | - Kunio Ohta
- Department of Pediatrics, Kanazawa University, Kanazawa, Japan
| | | | - Masayuki Takamura
- Department of Cardiovascular Medicine, Kanazawa University Graduate School of Medical Sciences, 13-1, Takara-machi, Kanazawa Ishikawa 920-8641, Japan
| |
Collapse
|
74
|
Pliushcheuskaya P, Künze G. Recent Advances in Computer-Aided Structure-Based Drug Design on Ion Channels. Int J Mol Sci 2023; 24:ijms24119226. [PMID: 37298178 DOI: 10.3390/ijms24119226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Ion channels play important roles in fundamental biological processes, such as electric signaling in cells, muscle contraction, hormone secretion, and regulation of the immune response. Targeting ion channels with drugs represents a treatment option for neurological and cardiovascular diseases, muscular degradation disorders, and pathologies related to disturbed pain sensation. While there are more than 300 different ion channels in the human organism, drugs have been developed only for some of them and currently available drugs lack selectivity. Computational approaches are an indispensable tool for drug discovery and can speed up, especially, the early development stages of lead identification and optimization. The number of molecular structures of ion channels has considerably increased over the last ten years, providing new opportunities for structure-based drug development. This review summarizes important knowledge about ion channel classification, structure, mechanisms, and pathology with the main focus on recent developments in the field of computer-aided, structure-based drug design on ion channels. We highlight studies that link structural data with modeling and chemoinformatic approaches for the identification and characterization of new molecules targeting ion channels. These approaches hold great potential to advance research on ion channel drugs in the future.
Collapse
Affiliation(s)
- Palina Pliushcheuskaya
- Institute for Drug Discovery, Medical Faculty, University of Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany
| | - Georg Künze
- Institute for Drug Discovery, Medical Faculty, University of Leipzig, Brüderstr. 34, D-04103 Leipzig, Germany
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstr. 16-18, D-04107 Leipzig, Germany
| |
Collapse
|
75
|
Guidelli R. An Insight into the Potassium Currents of hERG and Their Simulation. Molecules 2023; 28:molecules28083514. [PMID: 37110748 PMCID: PMC10142355 DOI: 10.3390/molecules28083514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/27/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
By assuming that a stepwise outward movement of the four S4 segments of the hERG potassium channel determines a concomitant progressive increase in the flow of the permeant potassium ions, the inward and outward potassium currents can be simulated by using only one or two adjustable (i.e., free) parameters. This deterministic kinetic model differs from the stochastic models of hERG available in the literature, which usually require more than 10 free parameters. The K+ outward current of hERG contributes to the repolarization of the cardiac action potential. On the other hand, the K+ inward current increases with a positive shift in the transmembrane potential, in apparent contrast to both the electric and osmotic forces, which would concur in moving K+ ions outwards. This peculiar behavior can be explained by the appreciable constriction of the central pore midway along its length, with a radius < 1 Å and hydrophobic sacks surrounding it, as reported in an open conformation of the hERG potassium channel. This narrowing raises a barrier to the outward movement of K+ ions, inducing them to move increasingly inwards under a gradually more positive transmembrane potential.
Collapse
Affiliation(s)
- Rolando Guidelli
- Retired Professor, Department of Chemistry "Ugo Schiff", Florence University, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy
| |
Collapse
|
76
|
Qin H, Wei A, Wang Y, Wang L, Xu H, Zhan Y, Tian X, Zheng Y, Gao Z, Hu Y. Discovery of selective Na V1.8 inhibitors based on 5-chloro-2-(4,4-difluoroazepan-1-yl)-6-methyl nicotinamide scaffold for the treatment of pain. Eur J Med Chem 2023; 254:115371. [PMID: 37084597 DOI: 10.1016/j.ejmech.2023.115371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/23/2023]
Abstract
The NaV1.8 channel is a genetically validated target for pain and it is mostly expressed in the peripheral nervous system. Based on the disclosed structures of NaV1.8-selective inhibitors, we designed and synthesized a series of compounds by introducing bicyclic aromatic fragments based on the nicotinamide scaffold. In this research, a systematic structure-activity relationship study was carried out. While compound 2c possessed moderate inhibitory activity (IC50 = 50.18 ± 0.04 nM) in HEK293 cells stably expressing human NaV1.8 channels, it showed potent inhibitory activity in DRG neurons and isoform selectivity (>200-fold against human NaV1.1, NaV1.5 and NaV1.7 channels). Moreover, the analgesic potency of compound 2c was identified in a post-surgical mouse model. These data demonstrate that compound 2c can be further evaluated as a non-addictive analgesic agent with reduced cardiac liabilities.
Collapse
Affiliation(s)
- Hui Qin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, China
| | - Aihuan Wei
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China
| | - Yunqi Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Linlin Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haiyan Xu
- Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yan Zhan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, China
| | - Xuechen Tian
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China
| | - Yueming Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210046, China; Center for Neurological and Psychiatric Research and Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Youhong Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 ZuChongZhi Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100039, China.
| |
Collapse
|
77
|
Tosaka T, Kamiya K. Function Investigations and Applications of Membrane Proteins on Artificial Lipid Membranes. Int J Mol Sci 2023; 24:ijms24087231. [PMID: 37108393 PMCID: PMC10138308 DOI: 10.3390/ijms24087231] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Membrane proteins play an important role in key cellular functions, such as signal transduction, apoptosis, and metabolism. Therefore, structural and functional studies of these proteins are essential in fields such as fundamental biology, medical science, pharmacology, biotechnology, and bioengineering. However, observing the precise elemental reactions and structures of membrane proteins is difficult, despite their functioning through interactions with various biomolecules in living cells. To investigate these properties, methodologies have been developed to study the functions of membrane proteins that have been purified from biological cells. In this paper, we introduce various methods for creating liposomes or lipid vesicles, from conventional to recent approaches, as well as techniques for reconstituting membrane proteins into artificial membranes. We also cover the different types of artificial membranes that can be used to observe the functions of reconstituted membrane proteins, including their structure, number of transmembrane domains, and functional type. Finally, we discuss the reconstitution of membrane proteins using a cell-free synthesis system and the reconstitution and function of multiple membrane proteins.
Collapse
Affiliation(s)
- Toshiyuki Tosaka
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Gunma 376-8515, Japan
| | - Koki Kamiya
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Gunma 376-8515, Japan
| |
Collapse
|
78
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
79
|
Zhou W, Ye D, Tester DJ, Bains S, Giudicessi JR, Haglund-Turnquist CM, Orland KM, January CT, Eckhardt LL, Maginot KR, Ackerman MJ. Elucidation of ALG10B as a Novel Long-QT Syndrome-Susceptibility Gene. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:e003726. [PMID: 37071726 PMCID: PMC10844923 DOI: 10.1161/circgen.122.003726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/04/2022] [Indexed: 02/24/2023]
Abstract
BACKGROUND Long-QT syndrome (LQTS) is characterized by QT prolongation and increased risk for syncope, seizures, and sudden cardiac death. The majority of LQTS stems from pathogenic mutations in KCNQ1, KCNH2, or SCN5A. However, ≈10% of patients with LQTS remain genetically elusive. We utilized genome sequencing to identify a novel LQTS genetic substrate in a multigenerational genotype-negative LQTS pedigree. METHODS Genome sequencing was performed on 5 affected family members. Only rare nonsynonymous variants present in all affected family members were considered. The candidate variant was characterized functionally in patient-derived induced pluripotent stem cell and gene-edited, variant corrected, isogenic control induced pluripotent stem cell-derived cardiomyocytes. RESULTS A missense variant (p.G6S) was identified in ALG10B-encoded α-1,2-glucosyltransferase B protein. ALG10B (alpha-1,2-glucosyltransferase B protein) is a known interacting protein of KCNH2-encoded Kv11.1 (HERG [human Ether-à-go-go-related gene]). Compared with isogenic control, ALG10B-p.G6S induced pluripotent stem cell-derived cardiomyocytes showed (1) decreased protein expression of ALG10B (p.G6S, 0.7±0.18, n=8 versus control, 1.25±0.16, n=9; P<0.05), (2) significant retention of HERG in the endoplasmic reticulum (P<0.0005), and (3) a significantly prolonged action potential duration confirmed by both patch clamp (p.G6S, 531.1±38.3 ms, n=15 versus control, 324.1±21.8 ms, n=13; P<0.001) and multielectrode assay (P<0.0001). Lumacaftor-a compound known to rescue HERG trafficking-shortened the pathologically prolonged action potential duration of ALG10B-p.G6S induced pluripotent stem cell-derived cardiomyocytes by 10.6% (n=31 electrodes; P<0.001). CONCLUSIONS Here, we demonstrate that ALG10B-p.G6S downregulates ALG10B, resulting in defective HERG trafficking and action potential duration prolongation. Therefore, ALG10B is a novel LQTS-susceptibility gene underlying the LQTS phenotype observed in a multigenerational pedigree. ALG10B mutation analysis may be warranted, especially in genotype-negative patients with an LQT2-like phenotype.
Collapse
Affiliation(s)
- Wei Zhou
- Departments of Cardiovascular Medicine (Division of Heart
Rhythm Services), Pediatric and Adolescent Medicine (Division of Pediatric
Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland
Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN
| | - Dan Ye
- Departments of Cardiovascular Medicine (Division of Heart
Rhythm Services), Pediatric and Adolescent Medicine (Division of Pediatric
Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland
Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN
| | - David J. Tester
- Departments of Cardiovascular Medicine (Division of Heart
Rhythm Services), Pediatric and Adolescent Medicine (Division of Pediatric
Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland
Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN
| | - Sahej Bains
- Departments of Cardiovascular Medicine (Division of Heart
Rhythm Services), Pediatric and Adolescent Medicine (Division of Pediatric
Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland
Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN
| | - John R. Giudicessi
- Departments of Cardiovascular Medicine (Division of Heart
Rhythm Services), Pediatric and Adolescent Medicine (Division of Pediatric
Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland
Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN
- Departments of Cardiovascular Medicine
(Clinician-Investigator Training Program), Mayo Clinic, Rochester, MN
| | - Carla M. Haglund-Turnquist
- Departments of Cardiovascular Medicine (Division of Heart
Rhythm Services), Pediatric and Adolescent Medicine (Division of Pediatric
Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland
Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN
| | - Kate M. Orland
- Department of Medicine, Division of Cardiovascular
Medicine, Cellular and Molecular Arrhythmia Research Program and Inherited
Arrhythmia Clinic, University of Wisconsin-Madison, Madison, WI
| | - Craig T. January
- Department of Medicine, Division of Cardiovascular
Medicine, Cellular and Molecular Arrhythmia Research Program and Inherited
Arrhythmia Clinic, University of Wisconsin-Madison, Madison, WI
| | - Lee L. Eckhardt
- Department of Medicine, Division of Cardiovascular
Medicine, Cellular and Molecular Arrhythmia Research Program and Inherited
Arrhythmia Clinic, University of Wisconsin-Madison, Madison, WI
| | - Kathleen R. Maginot
- Department of Pediatrics, University of Wisconsin School of
Medicine and Public Health, Madison, WI
| | - Michael J. Ackerman
- Departments of Cardiovascular Medicine (Division of Heart
Rhythm Services), Pediatric and Adolescent Medicine (Division of Pediatric
Cardiology), and Molecular Pharmacology & Experimental Therapeutics (Windland
Smith Rice Sudden Death Genomics Laboratory), Mayo Clinic, Rochester, MN
| |
Collapse
|
80
|
Lottini T, Duranti C, Iorio J, Martinelli M, Colasurdo R, D’Alessandro FN, Buonamici M, Coppola S, Devescovi V, La Vaccara V, Coppola A, Coppola R, Lastraioli E, Arcangeli A. Combination Therapy with a Bispecific Antibody Targeting the hERG1/β1 Integrin Complex and Gemcitabine in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:2013. [PMID: 37046674 PMCID: PMC10093586 DOI: 10.3390/cancers15072013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/10/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents an unmet medical need. Difficult/late diagnosis as well as the poor efficacy and high toxicity of chemotherapeutic drugs result in dismal prognosis. With the aim of improving the treatment outcome of PDAC, we tested the effect of combining Gemcitabine with a novel single chain bispecific antibody (scDb) targeting the cancer-specific hERG1/β1 integrin complex. First, using the scDb (scDb-hERG1-β1) in immunohistochemistry (IHC), Western blot (WB) analysis and immunofluorescence (IF), we confirmed the presence of the hERG1/β1 integrin complex in primary PDAC samples and PDAC cell lines. Combining Gemcitabine with scDb-hERG1-β1 improved its cytotoxicity on all PDAC cells tested in vitro. We also tested the combination treatment in vivo, using an orthotopic xenograft mouse model involving ultrasound-guided injection of PDAC cells. We first demonstrated good penetration of the scDb-hERG1-β1 conjugated with indocyanine green (ICG) into tumour masses by photoacoustic (PA) imaging. Next, we tested the effects of the combination at either therapeutic or sub-optimal doses of Gemcitabine (25 or 5 mg/kg, respectively). The combination of scDb-hERG1-β1 and sub-optimal doses of Gemcitabine reduced the tumour masses to the same extent as the therapeutic doses of Gemcitabine administrated alone; yielded increased survival; and was accompanied by minimised side effects (toxicity). These data pave the way for a novel therapeutic approach to PDAC, based on the combination of low doses of a chemotherapeutic drug (to minimize adverse side effects and the onset of resistance) and the novel scDb-hERG1-β1 targeting the hERG1/β1 integrin complex as neoantigen.
Collapse
Affiliation(s)
- Tiziano Lottini
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Claudia Duranti
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Michele Martinelli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Rossella Colasurdo
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Franco Nicolás D’Alessandro
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Matteo Buonamici
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Stefano Coppola
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands
| | - Valentina Devescovi
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Vincenzo La Vaccara
- General Surgery Unit, Department of Medicine, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Rome, Italy
| | | | - Roberto Coppola
- General Surgery Unit, Department of Medicine, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 00128 Rome, Italy
| | - Elena Lastraioli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, 50134 Firenze, Italy
| |
Collapse
|
81
|
Vittorio S, Lunghini F, Pedretti A, Vistoli G, Beccari AR. Ensemble of structure and ligand-based classification models for hERG liability profiling. Front Pharmacol 2023; 14:1148670. [PMID: 37033661 PMCID: PMC10076575 DOI: 10.3389/fphar.2023.1148670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Drug-induced cardiotoxicity represents one of the most critical safety concerns in the early stages of drug development. The blockade of the human ether-à-go-go-related potassium channel (hERG) is the most frequent cause of cardiotoxicity, as it is associated to long QT syndrome which can lead to fatal arrhythmias. Therefore, assessing hERG liability of new drugs candidates is crucial to avoid undesired cardiotoxic effects. In this scenario, computational approaches have emerged as useful tools for the development of predictive models able to identify potential hERG blockers. In the last years, several efforts have been addressed to generate ligand-based (LB) models due to the lack of experimental structural information about hERG channel. However, these methods rely on the structural features of the molecules used to generate the model and often fail in correctly predicting new chemical scaffolds. Recently, the 3D structure of hERG channel has been experimentally solved enabling the use of structure-based (SB) strategies which may overcome the limitations of the LB approaches. In this study, we compared the performances achieved by both LB and SB classifiers for hERG-related cardiotoxicity developed by using Random Forest algorithm and employing a training set containing 12789 hERG binders. The SB models were trained on a set of scoring functions computed by docking and rescoring calculations, while the LB classifiers were built on a set of physicochemical descriptors and fingerprints. Furthermore, models combining the LB and SB features were developed as well. All the generated models were internally validated by ten-fold cross-validation on the TS and further verified on an external test set. The former revealed that the best performance was achieved by the LB model, while the model combining the LB and the SB attributes displayed the best results when applied on the external test set highlighting the usefulness of the integration of LB and SB features in correctly predicting unseen molecules. Overall, our predictive models showed satisfactory performances providing new useful tools to filter out potential cardiotoxic drug candidates in the early phase of drug discovery.
Collapse
Affiliation(s)
- Serena Vittorio
- Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy
| | | | - Alessandro Pedretti
- Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy
| | - Giulio Vistoli
- Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy
| | | |
Collapse
|
82
|
Farm HJ, Clerx M, Cooper F, Polonchuk L, Wang K, Gavaghan DJ, Lei CL. Importance of modelling hERG binding in predicting drug-induced action potential prolongations for drug safety assessment. Front Pharmacol 2023; 14:1110555. [PMID: 37021055 PMCID: PMC10067903 DOI: 10.3389/fphar.2023.1110555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/22/2023] [Indexed: 03/30/2023] Open
Abstract
Reduction of the rapid delayed rectifier potassium current (IKr) via drug binding to the human Ether-à-go-go-Related Gene (hERG) channel is a well recognised mechanism that can contribute to an increased risk of Torsades de Pointes. Mathematical models have been created to replicate the effects of channel blockers, such as reducing the ionic conductance of the channel. Here, we study the impact of including state-dependent drug binding in a mathematical model of hERG when translating hERG inhibition to action potential changes. We show that the difference in action potential predictions when modelling drug binding of hERG using a state-dependent model versus a conductance scaling model depends not only on the properties of the drug and whether the experiment achieves steady state, but also on the experimental protocols. Furthermore, through exploring the model parameter space, we demonstrate that the state-dependent model and the conductance scaling model generally predict different action potential prolongations and are not interchangeable, while at high binding and unbinding rates, the conductance scaling model tends to predict shorter action potential prolongations. Finally, we observe that the difference in simulated action potentials between the models is determined by the binding and unbinding rate, rather than the trapping mechanism. This study demonstrates the importance of modelling drug binding and highlights the need for improved understanding of drug trapping which can have implications for the uses in drug safety assessment.
Collapse
Affiliation(s)
- Hui Jia Farm
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Michael Clerx
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Fergus Cooper
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
| | - Liudmila Polonchuk
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Ken Wang
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - David J. Gavaghan
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
- Doctoral Training Centre, University of Oxford, Oxford, United Kingdom
- *Correspondence: David J. Gavaghan, ; Chon Lok Lei,
| | - Chon Lok Lei
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macau, China
- *Correspondence: David J. Gavaghan, ; Chon Lok Lei,
| |
Collapse
|
83
|
Wang W, Wan Q, Li M, Qu F, Liu H, Chen Y. Design, synthesis and biological evaluation of seco-DSP/DCK derivatives reversing P-glycoprotein-mediated paclitaxel resistance in A2780/T cells. Eur J Med Chem 2023; 250:115218. [PMID: 36871374 DOI: 10.1016/j.ejmech.2023.115218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023]
Abstract
P-glycoprotein transporter (P-gp, ABCB1) is a major contributor to multidrug resistance, making it a valuable target for the development of novel P-gp inhibitor to overcome multidrug resistance. In this study, forty-nine novel seco-DSPs and seco-DMDCK derivatives were synthesized and evaluated their chemo-sensitize abilities to paclitaxel in A2780/T cell lines. Most of them exhibited a comparable reversal multidrug-resistance activity than verapamil. Especially, compound 27f showed a remarkable chemo-sensitization with more than 425-fold reversal ratio in A2780/T cells. The study of preliminary pharmacological mechanism displayed that compound 27f was more effective to increase the accumulation of paclitaxel and Rhodamine 123 than verapamil via inhibiting P-gp for reversing multidrug-resistance. In addition, a higher than 40 μM IC50 values of hERG potassium channel inhibition concentration suggested that compound 27f hardly had relevant cardiac toxicity. These results indicated that compound 27f might be a potential candidate to further investigate for the development of chemosensitizer with MDR reversal activity.
Collapse
Affiliation(s)
- Weijie Wang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qi Wan
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Mengru Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Feng Qu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hongrui Liu
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| | - Ying Chen
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 201203, China.
| |
Collapse
|
84
|
Chen CY, Wu PY, Van Scoyk M, Simko SA, Chou CF, Winn RA. KCNF1 promotes lung cancer by modulating ITGB4 expression. Cancer Gene Ther 2023; 30:414-423. [PMID: 36385523 PMCID: PMC10014577 DOI: 10.1038/s41417-022-00560-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 11/17/2022]
Abstract
Lung cancer continues to be the leading cause of cancer death in the United States. Despite recent advances, the five-year survival rate for lung cancer compared to other cancers still remains fairly low. The discovery of molecular targets for lung cancer is key to the development of new approaches and therapies. Electrically silent voltage-gated potassium channel (KvS) subfamilies, which are unable to form functional homotetramers, are implicated in cell-cycle progression, cell proliferation and tumorigenesis. Here, we analyzed the expression of KvS subfamilies in human lung tumors and identified that potassium voltage-gated channel subfamily F member 1 (KCNF1) was up-regulated in non-small cell lung cancer (NSCLC). Silencing of KCNF1 in NSCLC cell lines reduced cell proliferation and tumor progression in mouse xenografts, re-established the integrity of the basement membrane, and enhanced cisplatin sensitivity. KCNF1 was predominately localized in the nucleoplasm and likely mediated its functions in an ion-independent manner. We identified integrin β4 subunit (ITGB4) as a downstream target for KCNF1. Our findings suggest that KCNF1 promotes lung cancer by enhancing ITGB4 signaling and implicate KCNF1 as a novel therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Ching-Yi Chen
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Pei-Ying Wu
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Michelle Van Scoyk
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Stephanie A Simko
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Chu-Fang Chou
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Robert A Winn
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
85
|
Bassetto CAZ, Costa F, Guardiani C, Bezanilla F, Giacomello A. Noncanonical electromechanical coupling paths in cardiac hERG potassium channel. Nat Commun 2023; 14:1110. [PMID: 36849440 PMCID: PMC9971164 DOI: 10.1038/s41467-023-36730-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/15/2023] [Indexed: 03/01/2023] Open
Abstract
Voltage-gated potassium channels are involved in many physiological processes such as nerve impulse transmission, the heartbeat, and muscle contraction. However, for many of them the molecular determinants of the gating mechanism remain elusive. Here, using a combination of theoretical and experimental approaches, we address this problem focusing on the cardiac hERG potassium channel. Network analysis of molecular dynamics trajectories reveals the presence of a kinematic chain of residues that couples the voltage sensor domain to the pore domain and involves the S4/S1 and S1/S5 subunit interfaces. Mutagenesis experiments confirm the role of these residues and interfaces in the activation and inactivation mechanisms. Our findings demonstrate the presence of an electromechanical transduction path crucial for the non-domain-swapped hERG channel gating that resembles the noncanonical path identified in domain-swapped K+ channels.
Collapse
Affiliation(s)
- Carlos A Z Bassetto
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
| | - Flavio Costa
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Rome, Italy
| | - Carlo Guardiani
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Rome, Italy
| | - Francisco Bezanilla
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, USA.
- Centro Interdisciplinario de Neurociencias, Facultad de Ciencias, Universidad de Valparaiso, Valparaiso, Chile.
| | - Alberto Giacomello
- Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
86
|
Reisqs JB, Moreau A, Sleiman Y, Charrabi A, Delinière A, Bessière F, Gardey K, Richard S, Chevalier P. Spironolactone as a Potential New Treatment to Prevent Arrhythmias in Arrhythmogenic Cardiomyopathy Cell Model. J Pers Med 2023; 13:jpm13020335. [PMID: 36836569 PMCID: PMC9960914 DOI: 10.3390/jpm13020335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a rare genetic disease associated with ventricular arrhythmias in patients. The occurrence of these arrhythmias is due to direct electrophysiological remodeling of the cardiomyocytes, namely a reduction in the action potential duration (APD) and a disturbance of Ca2+ homeostasis. Interestingly, spironolactone (SP), a mineralocorticoid receptor antagonist, is known to block K+ channels and may reduce arrhythmias. Here, we assess the direct effect of SP and its metabolite canrenoic acid (CA) in cardiomyocytes derived from human-induced pluripotent stem cells (hiPSC-CMs) of a patient bearing a missense mutation (c.394C>T) in the DSC2 gene coding for desmocollin 2 and for the amino acid replacement of arginine by cysteine at position 132 (R132C). SP and CA corrected the APD in the muted cells (vs. the control) in linking to a normalization of the hERG and KCNQ1 K+ channel currents. In addition, SP and CA had a direct cellular effect on Ca2+ homeostasis. They reduced the amplitude and aberrant Ca2+ events. In conclusion, we show the direct beneficial effects of SP on the AP and Ca2+ homeostasis of DSC2-specific hiPSC-CMs. These results provide a rationale for a new therapeutical approach to tackle mechanical and electrical burdens in patients suffering from ACM.
Collapse
Affiliation(s)
- Jean-Baptiste Reisqs
- Neuromyogene Institute, Claude Bernard University, Lyon 1, 69008 Villeurbanne, France
- PhyMedExp, INSERM, University of Montpellier, CNRS, 34000 Montpellier, France
| | - Adrien Moreau
- PhyMedExp, INSERM, University of Montpellier, CNRS, 34000 Montpellier, France
| | - Yvonne Sleiman
- PhyMedExp, INSERM, University of Montpellier, CNRS, 34000 Montpellier, France
| | - Azzouz Charrabi
- PhyMedExp, INSERM, University of Montpellier, CNRS, 34000 Montpellier, France
| | | | - Francis Bessière
- Service de Rythmologie, Hospices Civils de Lyon, 69500 Lyon, France
| | - Kevin Gardey
- Service de Rythmologie, Hospices Civils de Lyon, 69500 Lyon, France
| | - Sylvain Richard
- PhyMedExp, INSERM, University of Montpellier, CNRS, 34000 Montpellier, France
| | - Philippe Chevalier
- Neuromyogene Institute, Claude Bernard University, Lyon 1, 69008 Villeurbanne, France
- Service de Rythmologie, Hospices Civils de Lyon, 69500 Lyon, France
- Correspondence:
| |
Collapse
|
87
|
Zheng Z, Song Y. Integrated analysis of the voltage-gated potassium channel-associated gene KCNH2 across cancers. BMC Bioinformatics 2023; 24:51. [PMID: 36792990 PMCID: PMC9933257 DOI: 10.1186/s12859-023-05180-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
KCNH2 encodes the human ether-a-go-go-related gene (hERG) potassium channel and is an important repolarization reserve for regulating cardiac electrical activity. Increasing evidence suggests that it is involved in the development of various tumours, yet a thorough analysis of the underlying process has not been performed. Here, we have comprehensively examined the role of KCNH2 in multiple cancers by assessing KCNH2 gene expression, diagnostic and prognostic value, genetic alterations, immune infiltration correlations, RNA modifications, mutations, clinical correlations, interacting proteins, and associated signalling pathways. KCNH2 is differentially expressed in over 30 cancers and has a high diagnostic value for 10 tumours. Survival analysis showed that high expression of KCNH2 was associated with a poor prognosis in glioblastoma multiforme (GBM) and hepatocellular carcinoma (LIHC). Mutations and RNA methylation modifications (especially m6A) of KCNH2 are associated with its expression in multiple tumours. KCNH2 expression is correlated with tumour mutation burden, microsatellite instability, neoantigen load, and mutant-allele tumour heterogeneity. In addition, KCNH2 expression is associated with the tumour immune microenvironment and its immunosuppressive phenotype. KEGG signalling pathway enrichment analysis revealed that KCNH2 and its interacting molecules are involved in a variety of pathways related to carcinogenesis and signal regulation, such as the PI3K/Akt and focal adhesion pathways. Overall, we found that KCNH2 and its interaction molecular are expected to be immune-related biomarkers for cancer diagnosis and prognosis evaluation, and are potential regulatory targets of singalling pathways for tumour development due to their significant role in cancers.
Collapse
Affiliation(s)
- Zequn Zheng
- Department of Cardiovascular Medicine, First Affiliated Hospital of Shantou University Medical College, Shantou University, Shantou, 515000, China
| | - Yongfei Song
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Lihuili Hospital Affiliated to Ningbo University, No. 378 Dongqing Road, Yinzhou District, Ningbo, 315000, Zhejiang, China.
- Department of Cardiovascular, Lihuili Hospital Facilitated to Ningbo University, Ningbo University, Ningbo, 315211, Zhejiang, China.
| |
Collapse
|
88
|
Computational docking investigation of phytocompounds from bergamot essential oil against Serratia marcescens protease and FabI: Alternative pharmacological strategy. Comput Biol Chem 2023; 104:107829. [PMID: 36842391 DOI: 10.1016/j.compbiolchem.2023.107829] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
The rapid development of multi-drug resistant (MDR) pathogens adds urgency to search for novel and safe drugs having promising action on new and re-emerging infectious pathogens. Serratia marcescens is an MDR pathogen that causes several-healthcare associated infections. Curbing bacterial virulence, rather than inhibiting its growth, is a promising strategy to diminish the pathogenesis of infectious bacteria, reduce the development of antimicrobial resistance, and boost the host immune power to eradicate infections. Bergamot essential oil (BEO) is a remarkable source of promising therapeutics against pathogens. Therefore, the present investigation aimed to analyze the major phytocompounds from BEO against S. marcescens virulent proteins using in silico studies. The analysis of BEO phytocompounds was achieved by Gas chromatography-mass spectrometry (GC-MS) method. The molecular docking was carried out using the SP and XP docking protocol of the Glide program. The drug-likeness and pharmacokinetics properties (ADMET properties) were analyzed with SwissADME and pkCSM server. The results revealed that the major compounds present in BEO are Linalool (8.17%), D-Limonene (21.26%), and Linalyl acetate (26.91%). Molecular docking analysis revealed that these compounds docked strongly within the binding cavities of Serratia protease and FabI model which in turn curb the pathogenesis of this bacteria. Linalool interacted with the Serratia protease and FabI with a binding energy of - 3.130 kcal/mol and - 3.939 kcal/mol, respectively. Based on the pharmacokinetics findings all lead BEO phytocompounds appear to be promising drug candidates. Overall, these results represent a significant step in the development of plant-based compounds as a promising inhibitor of the virulent proteins of the MDR S. marcescens.
Collapse
|
89
|
Wei M, Wang P, Zhu X, Morishima M, Liu Y, Zheng M, Liu G, Osanai H, Yoshimura K, Kume S, Kurokawa T, Ono K. Electrophysiological evaluation of an anticancer drug gemcitabine on cardiotoxicity revealing down-regulation and modification of the activation gating properties in the human rapid delayed rectifier potassium channel. PLoS One 2023; 18:e0280656. [PMID: 36730356 PMCID: PMC9894456 DOI: 10.1371/journal.pone.0280656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/05/2023] [Indexed: 02/03/2023] Open
Abstract
Gemcitabine is an antineoplastic drug commonly used in the treatment of several types of cancers including pancreatic cancer and non-small cell lung cancer. Although gemcitabine-induced cardiotoxicity is widely recognized, the exact mechanism of cardiac dysfunction causing arrhythmias remains unclear. The objective of this study was to electrophysiologically evaluate the proarrhythmic cardiotoxicity of gemcitabine focusing on the human rapid delayed rectifier potassium channel, hERG channel. In heterologous hERG expressing HEK293 cells (hERG-HEK cells), hERG channel current (IhERG) was reduced by gemcitabine when applied for 24 h but not immediately after the application. Gemcitabine modified the activation gating properties of the hERG channel toward the hyperpolarization direction, while inactivation, deactivation or reactivation gating properties were unaffected by gemcitabine. When gemcitabine was applied to hERG-HEK cells in combined with tunicamycin, an inhibitor of N-acetylglucosamine phosphotransferase, gemcitabine was unable to reduce IhERG or shift the activation properties toward the hyperpolarization direction. While a mannosidase I inhibitor kifunensine alone reduced IhERG and the reduction was even larger in combined with gemcitabine, kifunensine was without effect on IhERG when hERG-HEK cells were pretreated with gemcitabine for 24 h. In addition, gemcitabine down-regulated fluorescence intensity for hERG potassium channel protein in rat neonatal cardiomyocyte, although hERG mRNA was unchanged. Our results suggest the possible mechanism of arrhythmias caused by gemcitabine revealing a down-regulation of IhERG through the post-translational glycosylation disruption possibly at the early phase of hERG channel glycosylation in the endoplasmic reticulum that alters the electrical excitability of cells.
Collapse
Affiliation(s)
- Mengyan Wei
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, Japan
| | - Pu Wang
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, Japan
| | - Xiufang Zhu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, Japan
| | - Masaki Morishima
- Department of Food Science and Nutrition, Faculty of Agriculture, Kindai University, Nara, Japan
| | - Yangong Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, Japan
| | - Mingqi Zheng
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, People’s Republic of China
| | - Hiroki Osanai
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, Japan
| | - Kenshi Yoshimura
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, Japan
| | - Shinichiro Kume
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, Japan
| | - Tatsuki Kurokawa
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, Japan
| | - Katsushige Ono
- Department of Pathophysiology, Oita University School of Medicine, Yufu, Oita, Japan
- * E-mail:
| |
Collapse
|
90
|
Zhang WS, Liu XP, Yue S, Wang YN, Wang Y, Xu ZR. In-situ and amplification-free imaging of hERG ion channels at single-cell level using a unique core-molecule-shell-secondary antibody SERS nanoprobe. Talanta 2023; 253:123900. [PMID: 36095940 DOI: 10.1016/j.talanta.2022.123900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 12/13/2022]
Abstract
Research on ion channels and their monoclonal antibodies plays a critical role in drug development and disease diagnosis. The current ion channel researches are often not conducted in the microenvironment for cells survival, which restricts the mechanism study of the links between the cell structure and the ion channel function. In this work, we synthesized gold core-4-mercaptobenzonitrile-sliver shell-goat anti-rabbit immunoglobulin G (Au@4-MBN@Ag@IgG) nanoparticles as surface-enhanced Raman scattering (SERS) nanoprobes for investigating the human ether-a-go-go related gene (hERG) potassium ion channel in cell membranes. This is the first attempt to study ion channels using SERS. Due to the unique core-molecule-shell structure and the silver shell of nanoprobes, strong and stable SERS signal was obtained. With the help of antibodies, the Au@4-MBN@Ag@IgG nanoprobes were captured by hERG antibodies and then bonded with hERG ion channels based on the sandwich immune response. The reporter molecule, 4-MBN, displayed a strong and sharp characteristic peak at 2233 cm-1 in the Raman silent region. The intensity of this peak denoted the concentration of antibodies and the expression of ion channel proteins. We successfully applied this amplification-free method for in-situ imaging the distribution of the hERG ion channel on the transfected HEK293 cell surface at the single-cell level. This hERG ion channel profiling strategy promises a maneuverable tool for ion channel research.
Collapse
Affiliation(s)
- Wen-Shu Zhang
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Xiao-Peng Liu
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Shuai Yue
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, PR China
| | - Ya-Ning Wang
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Yue Wang
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China
| | - Zhang-Run Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang, 110819, PR China.
| |
Collapse
|
91
|
Ma J, Niklewski PJ, Wang HS. Acute exposure to low-dose bisphenol A delays cardiac repolarization in female canine heart - Implication for proarrhythmic toxicity in large animals. Food Chem Toxicol 2023; 172:113589. [PMID: 36584932 PMCID: PMC9852101 DOI: 10.1016/j.fct.2022.113589] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
Bisphenol A (BPA) is a common environmental chemical with a range of potential adverse health effects. The impact of environmentally-relevant low dose of BPA on the electrical properties of the hearts of large animals (e.g., dog, human) is poorly defined. Perturbation of cardiac electrical properties is a key arrhythmogenic mechanism. In particular, delay of ventricular repolarization and prolongation of the QT interval of the electrocardiogram is a marker for the risk of malignant arrhythmias. We examined the acute effect of 10-9 M BPA on the electrical properties of female canine ventricular myocytes and tissues. BPA rapidly delayed action potential repolarization and prolonged action potential duration (APD). The dose response curve of BPA on APD was nonmonotonic. BPA rapidly inhibited the IKr K+ current and ICaL Ca2+ current. Computational modeling indicated that the effect of BPA on APD can be accounted for by its suppression of IKr. At the tissue level, BPA acutely prolonged the QT interval in 4 left ventricular wedges. ERβ signaling contributed to the acute effects of BPA on ventricular repolarization. Our results demonstrate that BPA has QT prolongation liability in female canine hearts. These findings have implication for the potential proarrhythmic cardiac toxicity of BPA in large animals.
Collapse
Affiliation(s)
- Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Paul J Niklewski
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Hong-Sheng Wang
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
92
|
Barrese V, Wehbe Z, Linden A, McDowell S, Forrester E, Povstyan O, McCloskey KD, Greenwood IA. Key role for Kv11.1 (ether-a-go-go related gene) channels in rat bladder contractility. Physiol Rep 2023; 11:e15583. [PMID: 36750122 PMCID: PMC9904964 DOI: 10.14814/phy2.15583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 06/01/2023] Open
Abstract
In addition, to their established role in cardiac myocytes and neurons, ion channels encoded by ether-a-go-go-related genes (ERG1-3 or kcnh2,3 and 6) (kcnh2) are functionally relevant in phasic smooth muscle. The aim of the study was to determine the expression and functional impact of ERG expression products in rat urinary bladder smooth muscle using quantitative polymerase chain reaction, immunocytochemistry, whole-cell patch-clamp and isometric tension recording. kcnh2 was expressed in rat bladder, whereas kcnh6 and kcnh3 expression were negligible. Immunofluorescence for the kcnh2 expression product Kv11.1 was detected in the membrane of isolated smooth muscle cells. Potassium currents with voltage-dependent characteristics consistent with Kv11.1 channels and sensitive to the specific blocker E4031 (1 μM) were recorded from isolated detrusor smooth muscles. Disabling Kv11.1 activity with specific blockers (E4031 and dofetilide, 0.2-20 μM) augmented spontaneous contractions to a greater extent than BKCa channel blockers, enhanced carbachol-driven activity, increased nerve stimulation-mediated contractions, and impaired β-adrenoceptor-mediated inhibitory responses. These data establish for the first time that Kv11.1 channels are key determinants of contractility in rat detrusor smooth muscle.
Collapse
Affiliation(s)
- Vincenzo Barrese
- Vascular Biology Research CentreMolecular and Clinical Sciences Research Institute, St George's University of LondonLondonUK
- Department of Neuroscience, Reproductive Sciences and DentistryUniversity of Naples Federico IINaplesItaly
| | - Zena Wehbe
- Vascular Biology Research CentreMolecular and Clinical Sciences Research Institute, St George's University of LondonLondonUK
| | - Alice Linden
- Vascular Biology Research CentreMolecular and Clinical Sciences Research Institute, St George's University of LondonLondonUK
| | - Sarah McDowell
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Elizabeth Forrester
- Vascular Biology Research CentreMolecular and Clinical Sciences Research Institute, St George's University of LondonLondonUK
| | | | - Karen D. McCloskey
- Patrick G. Johnston Centre for Cancer Research, School of Medicine, Dentistry and Biomedical SciencesQueen's University BelfastBelfastUK
| | - Iain A. Greenwood
- Vascular Biology Research CentreMolecular and Clinical Sciences Research Institute, St George's University of LondonLondonUK
| |
Collapse
|
93
|
Pandey Y, Dondapati SK, Wüstenhagen D, Kubick S. Cell-Free Synthesis and Electrophysiological Analysis of Multipass Voltage-Gated Ion Channels Tethered in Microsomal Membranes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 186:103-120. [PMID: 37640910 DOI: 10.1007/10_2023_228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Cell-free protein synthesis (CFPS) has emerged as a powerful tool for the rapid synthesis and analysis of various structurally and functionally distinct proteins. These include 'difficult-to-express' membrane proteins such as large multipass ion channel receptors. Owing to their membrane localization, eukaryotic CFPS supplemented with endoplasmic reticulum (ER)-derived microsomal vesicles has proven to be an efficient system for the synthesis of functional membrane proteins. Here we demonstrate the applicability of the eukaryotic cell-free systems based on lysates from the mammalian Chinese Hamster Ovary (CHO) and insect Spodoptera frugiperda (Sf21) cells. We demonstrate the efficiency of the systems in the de novo cell-free synthesis of the human cardiac ion channels: ether-a-go-go potassium channel (hERG) KV11.1 and the voltage-gated sodium channel hNaV1.5.
Collapse
Affiliation(s)
- Yogesh Pandey
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Institut für Biochemie und Biologie, University of Potsdam, Potsdam, OT Golm, Germany
| | - Srujan Kumar Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany.
| | - Doreen Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- Institute of Chemistry and Biochemistry-Biochemistry, Freie Universität Berlin, Berlin, Germany
- Faculty of Health Science, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
| |
Collapse
|
94
|
Juhl CR, Burgdorf J, Knudsen C, Lubberding AF, Veedfald S, Isaksen JL, Hartmann B, Frikke-Schmidt R, Mandrup-Poulsen T, Holst JJ, Kanters JK, Torekov SS. A randomized, double-blind, crossover study of the effect of the fluoroquinolone moxifloxacin on glucose levels and insulin sensitivity in young men and women. Diabetes Obes Metab 2023; 25:98-109. [PMID: 36054143 PMCID: PMC10087839 DOI: 10.1111/dom.14851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
AIM The voltage-gated potassium channel Kv 11.1 is important for repolarizing the membrane potential in excitable cells such as myocytes, pancreatic α- and β-cells. Moxifloxacin blocks the Kv 11.1 channel and increases the risk of hypoglycaemia in patients with diabetes. We investigated glucose regulation and secretion of glucoregulatory hormones in young people with and without moxifloxacin, a drug known to block the Kv 11.1 channel. MATERIALS AND METHODS The effect of moxifloxacin (800 mg/day for 4 days) or placebo on glucose regulation was assessed in a randomized, double-blind, crossover study of young men and women (age 20-40 years and body mass index 18.5-27.5 kg/m2 ) without chronic disease, using 6-h oral glucose tolerance tests and continuous glucose monitoring. RESULTS Thirty-eight participants completed the study. Moxifloxacin prolonged the QTcF interval and increased heart rate. Hypoglycaemia was more frequently observed with moxifloxacin, both during the 8 days of continuous glucose monitoring and during the oral glucose tolerance tests. Hypoglycaemia questionnaire scores were higher after intake of moxifloxacin. Moxifloxacin reduced the early plasma-glucose response (AUC0-30 min ) by 7% (95% CI: -9% to -4%, p < .01), and overall insulin response (AUC0-360 min ) decreased by 18% (95% CI: -24% to -11%, p < .01) and plasma glucagon increased by 17% (95% CI: 4%-33%, p = .03). Insulin sensitivity calculated as the Matsuda index increased by 11%, and MISI, an index of muscle insulin sensitivity, increased by 34%. CONCLUSIONS In young men and women, moxifloxacin, a drug known to block the Kv 11.1 channel, increased QT interval, decreased glucose levels and was associated with increased muscle insulin sensitivity and more frequent episodes of hypoglycaemia.
Collapse
Affiliation(s)
- Christian R Juhl
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Josephine Burgdorf
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie Knudsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anniek F Lubberding
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simon Veedfald
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas L Isaksen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Mandrup-Poulsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen K Kanters
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Signe S Torekov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
95
|
Melnikov F, Anger LT, Hasselgren C. Toward Quantitative Models in Safety Assessment: A Case Study to Show Impact of Dose-Response Inference on hERG Inhibition Models. Int J Mol Sci 2022; 24:ijms24010635. [PMID: 36614078 PMCID: PMC9820331 DOI: 10.3390/ijms24010635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Due to challenges with historical data and the diversity of assay formats, in silico models for safety-related endpoints are often based on discretized data instead of the data on a natural continuous scale. Models for discretized endpoints have limitations in usage and interpretation that can impact compound design. Here, we present a consistent data inference approach, exemplified on two data sets of Ether-à-go-go-Related Gene (hERG) K+ inhibition data, for dose-response and screening experiments that are generally applicable for in vitro assays. hERG inhibition has been associated with severe cardiac effects and is one of the more prominent safety targets assessed in drug development, using a wide array of in vitro and in silico screening methods. In this study, the IC50 for hERG inhibition is estimated from diverse historical proprietary data. The IC50 derived from a two-point proprietary screening data set demonstrated high correlation (R = 0.98, MAE = 0.08) with IC50s derived from six-point dose-response curves. Similar IC50 estimation accuracy was obtained on a public thallium flux assay data set (R = 0.90, MAE = 0.2). The IC50 data were used to develop a robust quantitative model. The model's MAE (0.47) and R2 (0.46) were on par with literature statistics and approached assay reproducibility. Using a continuous model has high value for pharmaceutical projects, as it enables rank ordering of compounds and evaluation of compounds against project-specific inhibition thresholds. This data inference approach can be widely applicable to assays with quantitative readouts and has the potential to impact experimental design and improve model performance, interpretation, and acceptance across many standard safety endpoints.
Collapse
|
96
|
Martinez K, Smith A, Ye D, Zhou W, Tester DJ, Ackerman MJ. Curcumin, a dietary natural supplement, prolongs the action potential duration of KCNE1-D85N-induced pluripotent stem cell-derived cardiomyocytes. Heart Rhythm 2022; 20:580-586. [PMID: 36586707 DOI: 10.1016/j.hrthm.2022.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Curcumin, a polyphenolic dietary natural compound and active ingredient in turmeric, exerts antioxidant, anti-inflammatory, antidiabetic, anticancer, and antiarrhythmic properties. KCNE1-D85N, present in ∼1% of white, is a common, potentially proarrhythmic variant that predisposes individuals to drug-induced QT prolongation under certain conditions. OBJECTIVE The purpose of this article was to test the hypothesis that curcumin might cause action potential duration (APD) prolongation in KCNE1-D85N-derived human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). METHODS Gene-edited/variant-corrected isogenic control and patient-specific KCNE1-D85N-containing iPSC-CMs were generated previously. Voltage-sensing dye, multielectrode array (MEA), and whole-cell patch clamp technique were used to measure APD without and with 4-hour incubation with 10 nM curcumin. RESULTS KCNE1-D85N-derived iPSC-CMs demonstrated significant APD prolongation with treatment of 10 nM curcumin. Using voltage-sensing dye, action potential duration at 90% repolarization (APD90) was 578 ± 7 ms (n = 39) at baseline and was prolonged to 658 ± 13 ms (n = 35) with curcumin incubation (P < .0001). Using MEA, APD90 at baseline was 237 ± 6 ms (n = 24) compared with 280 ± 6 ms (n = 12) with curcumin incubation (P = .0002). The whole-cell patch clamp technique confirmed these results, with APD90 being 544 ± 37 ms at baseline and 664 ± 40 ms with treatment of curcumin (P < .005). However, APD from isogenic control iPSC-CMs remained unchanged with curcumin treatment. CONCLUSION This study provides pharmacological and functional evidence to suggest that curcumin, a dietary natural supplement, might cause APD prolongation in patients with common, potentially proarrhythmic functional variants such as KCNE1-D85N. Whether this supplement is potentially dangerous for the Caucasian subpopulation that has this variant warrants further investigation.
Collapse
Affiliation(s)
- Katherine Martinez
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota; Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Annabel Smith
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota; Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Dan Ye
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota; Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Wei Zhou
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota; Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - David J Tester
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota; Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
| | - Michael J Ackerman
- Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, Minnesota; Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, Minnesota; Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
97
|
Veldhuizen J, Mann HF, Karamanova N, Van Horn WD, Migrino RQ, Brafman D, Nikkhah M. Modeling long QT syndrome type 2 on-a-chip via in-depth assessment of isogenic gene-edited 3D cardiac tissues. SCIENCE ADVANCES 2022; 8:eabq6720. [PMID: 36525500 PMCID: PMC9757749 DOI: 10.1126/sciadv.abq6720] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 11/16/2022] [Indexed: 06/09/2023]
Abstract
Long QT syndrome (LQTS) is a cardiovascular disease characterized by QT interval prolongation that can lead to sudden cardiac death. Many mutations with heterogeneous mechanisms have been identified in KCNH2, the gene that encodes for hERG (Kv11.1), which lead to onset of LQTS type 2 (LQTS2). In this work, we developed a LQTS2-diseased tissue-on-a-chip model, using 3D coculture of isogenic stem cell-derived cardiomyocytes (CMs) and cardiac fibroblasts (CFs) within an organotypic microfluidic chip technology. Primarily, we created a hiPSC line with R531W mutation in KCNH2 using CRISPR-Cas9 gene-editing technique and characterized the resultant differentiated CMs and CFs. A deficiency in hERG trafficking was identified in KCNH2-edited hiPSC-CMs, revealing a possible mechanism of R531W mutation in LQTS2 pathophysiology. Following creation of a 3D LQTS2 tissue-on-a-chip, the tissues were extensively characterized, through analysis of calcium handling and response to β-agonist. Furthermore, attempted phenotypic rescue via pharmacological intervention of LQTS2 on a chip was investigated.
Collapse
Affiliation(s)
- Jaimeson Veldhuizen
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ 85287, USA
| | - Helen F. Mann
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Nina Karamanova
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ 85012, USA
| | - Wade D. Van Horn
- School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, AZ 85287, USA
| | - Raymond Q. Migrino
- Phoenix Veterans Affairs Health Care System, Phoenix, AZ 85012, USA
- University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - David Brafman
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ 85287, USA
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering (SBHSE), Arizona State University, Tempe, AZ 85287, USA
- Biodesign Center for Personalized Diagnostics, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
98
|
Locus Coeruleus Neurons' Firing Pattern Is Regulated by ERG Voltage-Gated K + Channels. Int J Mol Sci 2022; 23:ijms232315334. [PMID: 36499661 PMCID: PMC9738708 DOI: 10.3390/ijms232315334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Locus coeruleus (LC) neurons, with their extensive innervations throughout the brain, control a broad range of physiological processes. Several ion channels have been characterized in LC neurons that control intrinsic membrane properties and excitability. However, ERG (ether-à-go-go-related gene) K+ channels that are particularly important in setting neuronal firing rhythms and automaticity have not as yet been discovered in the LC. Moreover, the neurophysiological and pathophysiological roles of ERG channels in the brain remain unclear despite their expression in several structures. By performing immunohistochemical investigations, we found that ERG-1A, ERG-1B, ERG-2 and ERG-3 are highly expressed in the LC neurons of mice. To examine the functional role of ERG channels, current-clamp recordings were performed on mouse LC neurons in brain slices under visual control. ERG channel blockade by WAY-123,398, a class III anti-arrhythmic agent, increased the spontaneous firing activity and discharge irregularity of LC neurons. Here, we have shown the presence of distinct ERG channel subunits in the LC which play an imperative role in modulating neuronal discharge patterns. Thus, we propose that ERG channels are important players behind the changes in, and/or maintenance of, LC firing patterns that are implicated in the generation of different behaviors and in several disorders.
Collapse
|
99
|
Physicochemical QSAR analysis of hERG inhibition revisited: towards a quantitative potency prediction. J Comput Aided Mol Des 2022; 36:837-849. [PMID: 36305984 DOI: 10.1007/s10822-022-00483-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023]
Abstract
In an earlier study (Didziapetris R & Lanevskij K (2016). J Comput Aided Mol Des. 30:1175-1188) we collected a database of publicly available hERG inhibition data for almost 6700 drug-like molecules and built a probabilistic Gradient Boosting classifier with a minimal set of physicochemical descriptors (log P, pKa, molecular size and topology parameters). This approach favored interpretability over statistical performance but still achieved an overall classification accuracy of 75%. In the current follow-up work we expanded the database (provided in Supplementary Information) to almost 9400 molecules and performed temporal validation of the model on a set of novel chemicals from recently published lead optimization projects. Validation results showed almost no performance degradation compared to the original study. Additionally, we rebuilt the model using AFT (Accelerated Failure Time) learning objective in XGBoost, which accepts both quantitative and censored data often reported in protein inhibition studies. The new model achieved a similar level of accuracy of discerning hERG blockers from non-blockers at 10 µM threshold, which can be conceived as close to the performance ceiling for methods aiming to describe only non-specific ligand interactions with hERG. Yet, this model outputs quantitative potency values (IC50) and is not tied to a particular classification cut-off. pIC50 from patch-clamp measurements can be predicted with R2 ≈ 0.4 and MAE < 0.5, which enables ligand ranking according to their expected potency levels. The employed approach can be valuable for quantitative modeling of various ADME and drug safety endpoints with a high prevalence of censored data.
Collapse
|
100
|
Morishita H, Perera LMB, Zhang X, Mizoi K, Ito MA, Yano K, Ogihara T. P-Glycoprotein-Mediated Pharmacokinetic Interactions Increase Pimozide hERG Channel Inhibition. J Pharm Sci 2022; 111:3411-3416. [PMID: 36181876 DOI: 10.1016/j.xphs.2022.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 01/05/2023]
Abstract
Pimozide, an antipsychotic drug, is a potent inhibitor of the hERG channel. A case of death due to cardiac arrest has been reported in a boy who received pimozide together with sertraline and aripiprazole. In this study, we focused on drug-drug interactions and investigated the relationships between transporter-mediated intracellular accumulation and the hERG inhibitory effect of pimozide. The accumulation of pimozide in cardiomyocyte-derived AC16 cells was significantly increased by sertraline and aripiprazole, which are thought to have a P-glycoprotein (P-gp) inhibitory effect, and under P-gp siRNA conditions. These results suggest P-gp inhibition increases pimozide accumulation in AC16 cells. We introduced the hERG plasmid into AC16 cells and investigated the concentration-dependent hERG inhibitory effect of pimozide from within AC16 cells. Addition of 10 nM or more pimozide significantly inhibited the hERG current with concentration dependence. These results indicate P-gp-mediated pharmacokinetic interaction increases pimozide accumulation in AC16 cells, and the subsequent elevated pimozide levels within the cells may result in an increased risk of hERG channel inhibition. Our present study calls attention to the risks associated with the combined use of cardiotoxic P-gp substrate(s) and P-gp inhibitory medicines.
Collapse
Affiliation(s)
- Hiroki Morishita
- Department of Pharmacy, Saiseikai Maebashi Hospital, 564-1 Kamishinden-machi, Maebashi-shi, Gunma 371-0821, Japan; Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan.
| | - Liyanage Manosika Buddhini Perera
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan
| | - Xieyi Zhang
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan
| | - Kenta Mizoi
- Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan
| | - Masa-Aki Ito
- Laboratory of Pharmacology, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan
| | - Kentaro Yano
- Laboratory of Drug Metabolism and Pharmacokinetics, Yokohama University of Pharmacy, 601 Matano-cho, Totsuka-ku, Yokohama, Kanagawa 245-0066, Japan
| | - Takuo Ogihara
- Laboratory of Clinical Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan; Laboratory of Biopharmaceutics, Faculty of Pharmacy, Takasaki University of Health and Welfare, 60 Nakaorui-machi, Takasaki-shi, Gunma 370-0033, Japan
| |
Collapse
|