51
|
Dărăbuș DM, Pac CP, Roşca C, Munteanu M. Macular dynamics and visual acuity prognosis in retinal vein occlusions - ways to connect. Rom J Ophthalmol 2023; 67:312-324. [PMID: 37876516 PMCID: PMC10591427 DOI: 10.22336/rjo.2023.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Background and Objectives: This study aimed to establish possible connections between macular dynamics, various macular features, and visual acuity prognosis among patients with retinal vein occlusions. Materials and Methods: This study included 85 patients with central retinal vein occlusions (CRVO) and 26 with branch retinal vein occlusions (BRVO). We assessed macular features such as central macular thickness (CMT), foveal intraretinal hemorrhage (IRH), the presence and distribution of hyperreflective foci (HF), ellipsoid zone (EZ) disruption, inner retinal layer disorganization (DRIL), and posterior vitreous detachment (PVD), as well as their dynamics over one year of observation and their impact on final visual acuity prognosis, depending on the type of occlusion. Results: Best corrected visual acuity (BCVA) evolution is statistically significant regarding groups of age and type of occlusion and insignificant regarding gender. The best response to intravitreal treatment, quantified as a decrease in CMT, was registered after the first intravitreal injection. Connecting a decrease in CMT with BCVA improvement, we did not register a statistically significant correlation in the CRVO group, only in BRVO cases. The study results showed that complete PVD plays a significant positive role in decreasing CMT and BCVA improvement in cases of CRVO. Our study revealed that no matter the type of occlusion, the presence of foveal IRH will have a negative impact on the BCVA outcome. Statistically significant differences have been noted only for the evolution of visual acuity in non-ischemic CRVO cases, in correlation with the presence of EZ disruption. Outer retinal layer HF has proved to be a predictive factor for poor visual acuity outcomes. Conclusions: The most important non-imaging predicting factors regarding BCVA after retinal vein occlusions are age and baseline BCVA. CMT's dynamics still establish a weak connection with visual acuity fluctuations. The presence of foveal IRH, outer retinal layer HF, and foveal EZ disruption has a negative impact on visual acuity outcomes. Abbreviations: CRVO = central retinal vein occlusions, BRVO = branch retinal vein occlusions, CMT = central macular thickness, IRH = foveal intraretinal hemorrhage, HF = hyperreflective foci, EZ = ellipsoid zone disruption, DRIL = inner retinal layer disorganization, PVD = posterior vitreous detachment, BCVA = best corrected visual acuity, OCT = optical coherence tomography, BCVA Ti = best corrected visual acuity at first, BCVA Tf = best corrected visual acuity after one year, NR of IVI = number of intravitreal injections, SD = standard deviation, M = male, F = female, CMT Ti = central macular thickness at first, CMT T1 = central macular thickness after first injection, CMT T3 = central macular thickness after 3 injections, CMT Tf = central macular thickness after one year.
Collapse
Affiliation(s)
- Diana-Maria Dărăbuș
- Department of Ophthalmology, "Victor Babeş" University of Medicine and Pharmacy, Timişoara, Romania
| | - Cristina-Patricia Pac
- Department of Ophthalmology, "Victor Babeş" University of Medicine and Pharmacy, Timişoara, Romania
| | | | - Mihnea Munteanu
- Department of Ophthalmology, "Victor Babeş" University of Medicine and Pharmacy, Timişoara, Romania
| |
Collapse
|
52
|
Fan NW, Zhu Q, Wang S, Ortiz G, Huckfeldt RM, Chen Y. Long-lived autoreactive memory CD4 + T cells mediate the sustained retinopathy in chronic autoimmune uveitis. FASEB J 2023; 37:e22855. [PMID: 36906286 PMCID: PMC10478160 DOI: 10.1096/fj.202202164r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/07/2023] [Accepted: 02/21/2023] [Indexed: 03/13/2023]
Abstract
Chronic uveitis comprises heterogeneous clinical entities characterized by sustained and recurrent intraocular inflammation that is believed to be driven by autoimmune responses. The management of chronic uveitis is challenging with the limited availability of efficacious treatments, and the underlying mechanisms mediating disease chronicity remain poorly understood as the majority of experimental data are derived from the acute phase of the disease (the first 2-3 weeks post-induction). Herein, we investigated the key cellular mechanisms underlying chronic intraocular inflammation using our recently established murine model of chronic autoimmune uveitis. We demonstrate unique long-lived CD44hi IL-7R+ IL-15R+ CD4+ memory T cells in both retina and secondary lymphoid organs after 3 months postinduction of autoimmune uveitis. These memory T cells functionally exhibit antigen-specific proliferation and activation in response to retinal peptide stimulation in vitro. Critically, these effector-memory T cells are capable of effectively trafficking to the retina and accumulating in the local tissues secreting both IL-17 and IFN-γ upon adoptively transferred, leading to retinal structural and functional damage. Thus, our data reveal the critical uveitogenic functions of memory CD4+ T cells in sustaining chronic intraocular inflammation, suggesting that memory T cells can be a novel and promising therapeutic target for treating chronic uveitis in future translational studies.
Collapse
Affiliation(s)
- Nai-Wen Fan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
- Department of Ophthalmology, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Qiurong Zhu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Shudan Wang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Gustavo Ortiz
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Rachel M. Huckfeldt
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| | - Yihe Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114
| |
Collapse
|
53
|
Rispoli M, Cennamo G, Antonio LD, Lupidi M, Parravano M, Pellegrini M, Veritti D, Vujosevic S, Savastano MC. Practical guidance for imaging biomarkers in exudative age-related macular degeneration. Surv Ophthalmol 2023:S0039-6257(23)00039-5. [PMID: 36854371 DOI: 10.1016/j.survophthal.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023]
Abstract
We provide an overview of current macular imaging techniques and identify and describe biomarkers that may be of use in the routine management of macular diseases, particularly exudative age-related macular degeneration (n-AMD). This perspective includes sections on macular imaging techniques including optical coherence tomography (OCT) and OCT angiography (OCTA), classification of exudative AMD, and biomarkers in structural OCT and OCTA. Fluorescein angiography remains a vital tool for assessing the activity of neovascular lesion, while indocyanine green angiography is the preferred option for choroidal vessels imaging in neovascular AMD. OCT provides a non-invasive three-dimensional visualization of retinal architecture in vivo and is useful in the diagnosis of many imaging biomarkers of AMD-related neovascular lesions including lesion activity. OCTA is a recent advance in OCT technology that allows accurate visualization of retinal and choroidal vascular flow. OCT and OCTA have led to an updated classification of exudative AMD lesions and provide several biomarkers that help to establish a diagnosis and the disease activity status of neovascular lesions. Individualization of therapy guided by OCT and OCTA biomarkers has the potential to further improve visual outcomes in exudative AMD. Moving forwards, integration of technologically advanced imaging equipment with AI software will help ophthalmologists to provide patients with the best possible care.
Collapse
Affiliation(s)
| | - Gilda Cennamo
- Eye Clinic, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University; Public Health Department, University of Naples Federico II, Naples, Italy
| | - Luca Di Antonio
- UOC Ophthalmology and Surgery Department, ASL-1 Avezzano-Sulmona, L'Aquila, Italy
| | - Marco Lupidi
- Eye Clinic, Department of Experimental and Clinical Medicine, Polytechnic University of Marche, Ancona, Italy.
| | | | - Marco Pellegrini
- Department of Biomedical and Clinical Science "Luigi Sacco", Eye Clinic, Luigi Sacco Hospital, University of Milan, Milan, Italy
| | - Daniele Veritti
- Department of Medicine-Ophthalmology, University of Udine, Italy
| | - Stela Vujosevic
- University Eye Clinic, IRCCS Multimedica, Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Maria Cristina Savastano
- Ophthalmology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy; Catholic University "Sacro Cuore", Rome, Italy
| |
Collapse
|
54
|
Costanzo E, Giannini D, De Geronimo D, Fragiotta S, Varano M, Parravano M. Prognostic Imaging Biomarkers in Diabetic Macular Edema Eyes Treated with Intravitreal Dexamethasone Implant. J Clin Med 2023; 12:jcm12041303. [PMID: 36835839 PMCID: PMC9968175 DOI: 10.3390/jcm12041303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND The aim was to evaluate predictive value of baseline optical coherence tomography (OCT) and OCT angiography (OCTA) parameters in diabetic macular edema (DME) treated with dexamethasone implant (DEXi). METHODS OCT and OCTA parameters were collected: central macular thickness (CMT), vitreomacular abnormalities (VMIAs), intraretinal and subretinal fluid (mixed DME pattern), hyper-reflective foci (HRF), microaneurysms (MAs) reflectivity, ellipsoid zone disruption, suspended scattering particles in motion (SSPiM), perfusion density (PD), vessel length density, and foveal avascular zone. Responders' (RES) and non-responders' (n-RES) eyes were classified considering morphological (CMT reduction ≥ 10%) and functional (BCVA change ≥ 5 ETDRS letters) changes after DEXi. Binary logistic regression OCT, OCTA, and OCT/OCTA-based models were developed. RESULTS Thirty-four DME eyes were enrolled (18 treatment-naïve). OCT-based model combining DME mixed pattern + MAs + HRF and OCTA-based model combining SSPiM and PD showed the best performance to correctly classify the morphological RES eyes. In the treatment-naïve eyes, VMIAs were included with a perfect fit for n-RES eyes. CONCLUSION The presence of DME mixed pattern, a high number of parafoveal HRF, hyper-reflective MAs, SSPiM in the outer nuclear layers, and high PD represent baseline predictive biomarkers for DEXi treatment responsiveness. The application of these models to treatment-naïve patients allowed a good identification of n-RES eyes.
Collapse
Affiliation(s)
| | | | | | - Serena Fragiotta
- Ophthalmology Unit, Department NESMOS, Sant’ Andrea Hospital, University of Rome “La Sapienza”, Rome, Italy
| | | | | |
Collapse
|
55
|
Saßmannshausen M, Vaisband M, von der Emde L, Sloan KR, Hasenauer J, Holz FG, Ach T. Hyper-Reflective Foci in Intermediate Age-Related Macular Degeneration: Spatial Abundance and Impact on Retinal Morphology. Invest Ophthalmol Vis Sci 2023; 64:20. [PMID: 36705929 PMCID: PMC9896840 DOI: 10.1167/iovs.64.1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Purpose The purpose of this study was to analyze spatially resolved structural changes at retinal locations in presence (+) or absence (-) of hyper-reflective foci (HRF) in eyes with subretinal pigment epithelium (RPE) drusen in intermediate age-related macular degeneration (iAMD). Methods Patients with IAMD (n = 40; mean age = 69.7 ± 9.2 [SD] years) and healthy controls (n = 27; 64.2 ± 9.0) underwent spectral-domain optical-coherence-tomography imaging and fundus-controlled perimetry testing. After reviewing retinal layer segmentation, presence of HRF was annotated and retinal layer thicknesses (RLTs) extracted using ImageJ. Localized RLTs were compared between +HRF and -HRF positions. Univariate mixed linear models were used to investigate associations among RLT, HRF presence, and HRF size. Results In iAMD eyes, a mean of 11.1 ± 12.5 HRF were detected with a peak abundance at 0.5 to 1.5 mm eccentricity to the fovea. At +HRF positions, outer nuclear layer (ONL; P = 0.0013, average difference = -12.4 µm) and retinal pigment epithelium drusen complex (RPEDC; P < 0.0001, +45.6 µm) thicknesses differed significantly compared to -HRF positions, even after correcting for accompanying drusen-related RPEDC layer thickening (P = 0.01). Mixed linear models revealed a significant association between increasing HRF area and decreasing ONL (association score = -0.17, P < 0.0001; 95% confidence interval [CI] = -0.22 to -0.11), and inner photoreceptor segments (IS) layer thicknesses (-0.08, P = 0.005; 95% CI = -0.14 to -0.03). Spearman rank correlation analysis yielded a significant correlation between total HRF area and mesopic (P = 0.015), but not scotopic (P = 0.305) retinal sensitivity losses. Conclusions Descriptive analysis of this study demonstrated a predominant distribution of HRF at a foveal eccentricity of 0.5 to 1.5 mm, whereas further refined topographic analysis revealed a significant ONL layer thinning in presence of HRF even after correction for sub-RPE drusen presence compared to lesions in absence of HRF. Longitudinal studies are further needed to analyze the prognostic impact as well as the role of HRF presence in the context of iAMD.
Collapse
Affiliation(s)
- Marlene Saßmannshausen
- Department of Ophthalmology, University Hospital Bonn, Germany,Grade Reading Center, University of Bonn, Germany
| | - Marc Vaisband
- Life & Medical Sciences Institute, University of Bonn, Germany,Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center; Salzburg Cancer Research Institute - Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR); Paracelsus Medical University, Salzburg, Austria, Cancer Cluster Salzburg, Austria
| | | | - Kenneth R. Sloan
- Department of Computer Science, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jan Hasenauer
- Life & Medical Sciences Institute, University of Bonn, Germany,Helmholtz Center Munich – German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
| | - Frank G. Holz
- Department of Ophthalmology, University Hospital Bonn, Germany,Grade Reading Center, University of Bonn, Germany
| | - Thomas Ach
- Department of Ophthalmology, University Hospital Bonn, Germany,Grade Reading Center, University of Bonn, Germany
| |
Collapse
|
56
|
Differentiating drusen and drusenoid deposits subtypes on multimodal imaging and risk of advanced age-related macular degeneration. Jpn J Ophthalmol 2023; 67:1-13. [PMID: 36477878 DOI: 10.1007/s10384-022-00943-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/10/2022] [Indexed: 12/12/2022]
Abstract
Drusen are extracellular material considered a precursor lesion to advanced age-related macular degeneration (AMD), located either on the retinal pigment epithelium (RPE) or the sub-RPE; they contain various proteins associated with inflammation and lipids. Previous studies suggest that the lifecycle of drusen varies depending on drusen type and size. In general, conventional drusen grow and aggregate/coalesce in the first stage, and in the second stage, they regress with or without showing RPE atrophy. The risk of advanced AMD also varies depending on the drusen and drusenoid deposit types' along with their size and RPE abnormalities. In eyes with macular neovascularization (MNV), specific drusen/drusenoid deposits are closely associated with the MNV subtype. Recently, pachychoroid-associated drusen (pachydrusen) were proposed and clinical findings regarding this entity have been accumulating, as more attention is focused on drusen as well as pachychoroid diseases. With the advance in imaging modalities, various modalities can show specific characteristics depending on drusen types. To assess the risk of advanced AMD, it is essential for physicians to have accurate clinical knowledge about each druse/drusenoid lesion and correctly evaluate its imaging characteristics using multimodal imaging. This review summarizes the latest clinical knowledge about each druse/drusenoid lesions and documents their imaging characteristics on multimodal imaging, allowing clinicians to better manage patients and stratify the risk of developing advanced AMD. The most representative cases are illustrated, which can be helpful in the differential diagnosis of drusen and drusenoid deposits.
Collapse
|
57
|
Characteristics of intermediate age-related macular degeneration with hyperreflective foci. Sci Rep 2022; 12:18420. [PMID: 36319691 PMCID: PMC9626558 DOI: 10.1038/s41598-022-23380-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
Hyperreflective foci (HRF) are the findings observed in optical coherence tomography (OCT) in several retinal diseases and are believed to be associated with the increased risk of atrophy in eyes with age-related macular degeneration (AMD). In this study, we investigated the clinical and genetic characteristics of intermediate AMD with HRF. We reviewed the medical charts for 155 patients with intermediate AMD, in whom macular neovascularization (MNV) was observed in the contralateral eye. The presence or absence of an HRF was evaluated using a spectral-domain OCT volume scan spanning the macular region. Patients were followed longitudinally for at least 12 months, and the maximum follow-up period was 60 months. Genotyping of ARMS2 A69S and CFH I62V was performed in all participants. Of the 155 patients (mean age: 77.8 ± 7.6 years, male/female: 103/52), HRF was observed in 53 eyes (34.2%) and was significantly associated with type-3 MNV (p = 1.0 × 10-5) in the contralateral eye, pseudodrusen (p = 5.0 × 10-4), thinner subfoveal choroidal thickness (p = 0.013), and risk of ARMS2 A69S (p = 0.023). During follow-up (40.8 ± 17.5), 38 eyes (24.5%) developed advanced AMD. The mean time to the onset of advanced AMD was 29.8 ± 12.9 months in eyes with intermediate AMD. HRF was associated with MNV (p = 1.0 × 10-3), but not with atrophy.
Collapse
|
58
|
Siedlecki J, Hattenbach LO, Feltgen N, Priglinger SG. [Biomarkers in the treatment of retinal vein occlusion]. DIE OPHTHALMOLOGIE 2022; 119:1111-1120. [PMID: 36201041 DOI: 10.1007/s00347-022-01732-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Retinal vein occlusion, subdivided into central retinal and branch retinal vein occlusion, is one of the most frequent vascular diseases of the retina. Biomarkers of optical coherence tomography (OCT), OCT-angiography and (ultra-widefield) fluorescein angiography are of exceptional importance in the initial diagnosis and also in the treatment of complications associated with retinal vascular occlusion, particularly macular edema. METHODS A systematic literature review was carried out in PubMed with the keywords central retinal vein occlusion, branch retinal vein occlusion, biomarker, OCT, OCT angiography, ultra-widefield fluorescein angiography with prioritization of the most important aspects. RESULTS Relevant biomarkers in OCT include central retinal thickness (CRT), macular fluid, the integrity of the photoreceptor bands (external limiting membrane and ellipsoid zone), disorganization of retinal inner layers (DRIL), hyperreflective foci, choroidal thickness and signs of ischemia, such as a prominent middle limiting membrane (p-MLM), paracentral acute middle maculopathy (PAMM) as well as hyperreflectivity of inner retinal layers (HIRL). The importance of OCT-angiography lies particularly in the assessment of microvascular alterations, especially vessel density in the deep retinal vascular plexus, the foveal avascular zone and of areas with no capillary perfusion. Biomarkers of ultra-widefield angiography, such as peripheral ischemia (ischemic index) and neovascularízation are essential with respect to treatment decisions for retinal laser. CONCLUSION A multitude of simple and complex biomarkers currently enable an effective individualized evaluation of treatment and prognosis in retinal vein occlusion. A shift from invasive to noninvasive biomarkers can be observed.
Collapse
Affiliation(s)
- Jakob Siedlecki
- Augenklinik und Poliklinik, Klinikum der Ludwig-Maximilians-Universität München, Mathildenstr. 8, 80336, München, Deutschland.
| | | | - Nikolas Feltgen
- Augenklinik, Georg-August-Universität Göttingen Universitätsmedizin, Göttingen, Deutschland
| | | |
Collapse
|
59
|
OCT-Based Biomarkers are Associated with Systemic Inflammation in Patients with Treatment-Naïve Diabetic Macular Edema. Ophthalmol Ther 2022; 11:2153-2167. [PMID: 36166152 DOI: 10.1007/s40123-022-00576-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022] Open
Abstract
INTRODUCTION Diabetic macular edema (DME) is one of the major sight-threatening complications of diabetic retinopathy, which is associated with retinal inflammation. However, it is still unknown whether DME is associated with systemic inflammation. The study aimed to investigate the association between systemic inflammatory and optical coherence tomography (OCT) biomarkers in patients with treatment-naïve center-involving diabetic macular edema (DME) and to further explore the role of systemic inflammation in DME. METHODS Medical records including clinical characteristics and ophthalmic examinations were collected from patients with treatment-naïve center-involving DME. Systemic inflammation markers including systemic immune-inflammatory index (SII), neutrophil-lymphocyte ratio (NLR), and platelet-lymphocyte ratio (PLR) were calculated. OCT biomarkers, including intraretinal cyst (IRC) size, disorganization of retinal inner layers (DRIL), external limiting membrane (ELM)/ellipsoid zone (EZ) integrity, retinal hyperreflective foci (HRF), subretinal fluid (SRF) and vitreomacular (VM) status were evaluated manually. Correlation analysis and multivariable linear regression models were used to investigate the relationship between systemic inflammatory markers and OCT biomarkers. RESULTS A total of 82 patients with treatment-naïve center-involving DME were included. The number of HRF on OCT was correlated with SII, NLR, and PLR and positively associated with SII (p < 0.001) in both univariate and multivariate linear regression analyses. The differences remained largely the same during subgroup analysis controlling DM duration, SRF, and ELM/EZ integrity. No significant association was observed between other OCT biomarkers and blood inflammatory markers. CONCLUSION Retinal HRF in diabetic macular edema is associated with blood inflammatory markers, which supports the theory of HRF's inflammatory nature and emphasizes the important role of inflammation in DME. SII may be a potential marker for DME treatment decisions.
Collapse
|
60
|
Grant MB, Bernstein PS, Boesze-Battaglia K, Chew E, Curcio CA, Kenney MC, Klaver C, Philp NJ, Rowan S, Sparrow J, Spaide RF, Taylor A. Inside out: Relations between the microbiome, nutrition, and eye health. Exp Eye Res 2022; 224:109216. [PMID: 36041509 DOI: 10.1016/j.exer.2022.109216] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022]
Abstract
Age-related macular degeneration (AMD) is a complex disease with increasing numbers of individuals being afflicted and treatment modalities limited. There are strong interactions between diet, age, the metabolome, and gut microbiota, and all of these have roles in the pathogenesis of AMD. Communication axes exist between the gut microbiota and the eye, therefore, knowing how the microbiota influences the host metabolism during aging could guide a better understanding of AMD pathogenesis. While considerable experimental evidence exists for a diet-gut-eye axis from murine models of human ocular diseases, human diet-microbiome-metabolome studies are needed to elucidate changes in the gut microbiome at the taxonomic and functional levels that are functionally related to ocular pathology. Such studies will reveal new ways to diminish risk for progression of- or incidence of- AMD. Current data suggest that consuming diets rich in dark fish, fruits, vegetables, and low in glycemic index are most retina-healthful during aging.
Collapse
Affiliation(s)
- Maria B Grant
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Paul S Bernstein
- Department of Ophthalmology, Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | | | - Emily Chew
- Division of Epidemiology and Clinical Applications, National Eye Institute, Bethesda, MD, USA
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M Cristina Kenney
- Department of Ophthalmology, University of California at Irvine, Irvine, CA, USA
| | - Caroline Klaver
- Department of Ophthalmology, Department of Epidemiology, Erasmus Medical Center Rotterdam, the Netherlands; Department of Ophthalmology, Radboud University Medical Center, Nijmegen, the Netherlands; Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Nancy J Philp
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Sheldon Rowan
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Janet Sparrow
- Department of Ophthalmology, Columbia University, New York City, NY, USA
| | - Richard F Spaide
- Vitreous, Retina, Macula Consultants of New York, New York, NY, USA
| | - Allen Taylor
- JM-USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA.
| |
Collapse
|
61
|
Zhou H, Liu J, Laiginhas R, Zhang Q, Cheng Y, Zhang Y, Shi Y, Shen M, Gregori G, Rosenfeld PJ, Wang RK. Depth-resolved visualization and automated quantification of hyperreflective foci on OCT scans using optical attenuation coefficients. BIOMEDICAL OPTICS EXPRESS 2022; 13:4175-4189. [PMID: 36032584 PMCID: PMC9408241 DOI: 10.1364/boe.467623] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 05/11/2023]
Abstract
An automated depth-resolved algorithm using optical attenuation coefficients (OACs) was developed to visualize, localize, and quantify hyperreflective foci (HRF) seen on OCT imaging that are associated with macular hyperpigmentation and represent an increased risk of disease progression in age related macular degeneration. To achieve this, we first transformed the OCT scans to linear representation, which were then contrasted by OACs. HRF were visualized and localized within the entire scan by differentiating HRF within the retina from HRF along the retinal pigment epithelium (RPE). The total pigment burden was quantified using the en face sum projection of an OAC slab between the inner limiting membrane (ILM) to Bruch's membrane (BM). The manual total pigment burden measurements were also obtained by combining manual outlines of HRF in the B-scans with the total area of hypotransmission defects outlined on sub-RPE slabs, which was used as the reference to compare with those obtained from the automated algorithm. 6×6 mm swept-source OCT scans were collected from a total of 49 eyes from 42 patients with macular HRF. We demonstrate that the algorithm was able to automatically distinguish between HRF within the retina and HRF along the RPE. In 24 test eyes, the total pigment burden measurements by the automated algorithm were compared with measurements obtained from manual segmentations. A significant correlation was found between the total pigment area measurements from the automated and manual segmentations (P < 0.001). The proposed automated algorithm based on OACs should be useful in studying eye diseases involving HRF.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Jeremy Liu
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Rita Laiginhas
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Qinqin Zhang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Yuxuan Cheng
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Yi Zhang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Yingying Shi
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mengxi Shen
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Giovanni Gregori
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Philip J. Rosenfeld
- Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Ruikang K. Wang
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Karalis Johnson Retina Center, Department of Ophthalmology, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|