51
|
Mladenov E, Iliakis G. Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mutat Res 2011; 711:61-72. [PMID: 21329706 DOI: 10.1016/j.mrfmmm.2011.02.005] [Citation(s) in RCA: 290] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/31/2011] [Accepted: 02/06/2011] [Indexed: 04/13/2023]
Abstract
A defining characteristic of damage induced in the DNA by ionizing radiation (IR) is its clustered character that leads to the formation of complex lesions challenging the cellular repair mechanisms. The most widely investigated such complex lesion is the DNA double strand break (DSB). DSBs undermine chromatin stability and challenge the repair machinery because an intact template strand is lacking to assist restoration of integrity and sequence in the DNA molecule. Therefore, cells have evolved a sophisticated machinery to detect DSBs and coordinate a response on the basis of inputs from various sources. A central function of cellular responses to DSBs is the coordination of DSB repair. Two conceptually different mechanisms can in principle remove DSBs from the genome of cells of higher eukaryotes. Homologous recombination repair (HRR) uses as template a homologous DNA molecule and is therefore error-free; it functions preferentially in the S and G2 phases. Non-homologous end joining (NHEJ), on the other hand, simply restores DNA integrity by joining the two ends, is error prone as sequence is only fortuitously preserved and active throughout the cell cycle. The basis of DSB repair pathway choice remains unknown, but cells of higher eukaryotes appear programmed to utilize preferentially NHEJ. Recent work suggests that when the canonical DNA-PK dependent pathway of NHEJ (D-NHEJ), becomes compromised an alternative NHEJ pathway and not HRR substitutes in a quasi-backup function (B-NHEJ). Here, we outline aspects of DSB induction by IR and review the mechanisms of their processing in cells of higher eukaryotes. We place particular emphasis on backup pathways of NHEJ and summarize their increasing significance in various cellular processes, as well as their potential contribution to carcinogenesis.
Collapse
Affiliation(s)
- Emil Mladenov
- Institute of Medical Radiation Biology, University of Duisburg-Essen Medical School, Hufelandstr. 55, 45122 Essen, Germany
| | | |
Collapse
|
52
|
Li W, Li F, Huang Q, Shen J, Wolf F, He Y, Liu X, Hu YA, Bedford JS, Li CY. Quantitative, noninvasive imaging of radiation-induced DNA double-strand breaks in vivo. Cancer Res 2011; 71:4130-7. [PMID: 21527553 DOI: 10.1158/0008-5472.can-10-2540] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
DNA double-strand breaks (DSB) are a major form of DNA damage and a key mechanism through which radiotherapy and some chemotherapeutic agents kill cancer cells. Despite its importance, measuring DNA DSBs is still a tedious task that is normally carried out by gel electrophoresis or immunofluorescence staining. Here, we report a novel approach to image and quantify DSBs in live mammalian cells through bifragment luciferase reconstitution. N- and C-terminal fragments of firefly luciferase genes were fused with H2AX and MDC1 genes, respectively. Our strategy was based on the established fact that at the sites of DSBs, H2AX protein is phosphoryated and physically associates with the MDC1 protein, thus bringing together N- and C-luciferase fragments and reconstituting luciferase activity. Our strategy allowed serial, noninvasive quantification of DSBs in cells irradiated with X-rays and (56)Fe ions. Furthermore, it allowed for the evaluation of DSBs noninvasively in vivo in irradiated tumors over 2 weeks. Surprisingly, we detected a second wave of DSB induction in irradiated tumor cells days after radiation exposure in addition to the initial rapid induction of DSBs. We conclude that our new split-luciferase-based method for imaging γ-H2AX-MDC1 interaction is a powerful new tool to study DSB repair kinetics in vivo with considerable advantage for experiments requiring observations over an extended period of time.
Collapse
Affiliation(s)
- Wenrong Li
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Dregalla RC, Zhou J, Idate RR, Battaglia CLR, Liber HL, Bailey SM. Regulatory roles of tankyrase 1 at telomeres and in DNA repair: suppression of T-SCE and stabilization of DNA-PKcs. Aging (Albany NY) 2011; 2:691-708. [PMID: 21037379 PMCID: PMC2993799 DOI: 10.18632/aging.100210] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Intrigued by the dynamics of the seemingly contradictory yet integrated cellular responses to the requisites of preserving telomere integrity while also efficiently repairing damaged DNA, we investigated roles of the telomere associated poly(adenosine diphosphate [ADP]-ribose) polymerase (PARP) tankyrase 1 in both telomere function and the DNA damage response following exposure to ionizing radiation. Tankyrase 1 siRNA knockdown in human cells significantly elevated recombination specifically within telomeres, a phenotype with the potential of accelerating cellular senescence. Additionally, depletion of tankyrase 1 resulted in concomitant and rapid reduction of the nonhomologous end-joining protein DNA-PKcs, while Ku86 and ATM protein levels remained unchanged; DNA-PKcs mRNA levels were also unaffected. We found that the requirement of tankyrase 1 for DNA-PKcs protein stability reflects the necessity of its PARP enzymatic activity. We also demonstrated that depletion of tankyrase 1 resulted in proteasome-mediated DNA-PKcs degradation, explaining the associated defective damage response observed; i.e., increased sensitivity to ionizing radiation-induced cell killing, mutagenesis, chromosome aberration and telomere fusion. We provide the first evidence for regulation of DNA-PKcs by tankyrase 1 PARP activity and taken together, identify roles of tankyrase 1 with implications not only for DNA repair and telomere biology, but also for cancer and aging.
Collapse
Affiliation(s)
- Ryan C Dregalla
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, 80523-1618, USA
| | | | | | | | | | | |
Collapse
|
54
|
Rodgers CC. Dental X-ray exposure and Alzheimer's disease: a hypothetical etiological association. Med Hypotheses 2011; 77:29-34. [PMID: 21458164 DOI: 10.1016/j.mehy.2011.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 02/23/2011] [Accepted: 03/07/2011] [Indexed: 11/17/2022]
Abstract
Despite the fact that Alzheimer's disease was identified more than 100 years ago, its cause remains elusive. Although the chance of developing Alzheimer's disease increases with age, it is not a natural consequence of aging. This article proposes that dental X-rays can damage microglia telomeres - the structures at the end of chromosomes that determine how many times cells divide before they die - causing them to age prematurely. Degenerated microglia lose their neuroprotective properties, resulting in the formation of neurofibrillary tau tangles and consequently, the neuronal death that causes Alzheimer's dementia. The hypothesis that Alzheimer's is caused specifically by microglia telomere damage would explain the delay of one decade or longer between the presence of Alzheimer's brain pathology and symptoms; telomere damage would not cause any change in microglial function, it would just reset the countdown clock so that senescence and apoptosis occurred earlier than they would have without the environmental insult. Once microglia telomere damage causes premature aging and death, the adjacent neurons are deprived of the physical support, maintenance and nourishment they require to survive. This sequence of events would explain why therapies and vaccines that eliminate amyloid plaques have been unsuccessful in stopping dementia. Regardless of whether clearing plaques is beneficial or harmful - which remains a subject of debate - it does not address the failing microglia population. If microglia telomere damage is causing Alzheimer's disease, self-donated bone marrow or dental pulp stem cell transplants could give rise to new microglia populations that would maintain neuronal health while the original resident microglia population died.
Collapse
|
55
|
Different DNA-PKcs functions in the repair of radiation-induced and spontaneous DSBs within interstitial telomeric sequences. Chromosoma 2011; 120:309-19. [PMID: 21359527 DOI: 10.1007/s00412-011-0313-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/03/2011] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
Abstract
Interstitial telomeric sequences (ITSs) in hamster cells are hot spots for spontaneous and induced chromosome aberrations (CAs). Most data on ITS instability to date have been obtained in DNA repair-proficient cells. The classical non-homologous end joining repair pathway (C-NHEJ), which is the principal double strand break (DSB) repair mechanism in mammalian cells, is thought to restore the morphologically correct chromosome structure. The production of CAs thus involves DNA-PKcs-independent repair pathways. In our current study, we investigated the participation of DNA-PKcs from the C-NHEJ pathway in the repair of spontaneous or radiation-induced DSBs in ITSs using wild-type and DNA-PKcs mutant Chinese hamster ovary cells. Our data demonstrate that DNA-PKcs stabilizes spontaneous DSBs within ITSs from the chromosome 9 long arm, leading to the formation of terminal deletions. In addition, we show that DNA-PKcs-dependent C-NHEJ is employed following radiation-induced DSBs in other ITSs and restores morphologically correct chromosomes, whereas DNA-PKcs independent mechanisms co-exist in DNA-PKcs proficient cells leading to an excess of CAs within ITSs.
Collapse
|
56
|
Fabre KM, Ramaiah L, Dregalla RC, Desaintes C, Weil MM, Bailey SM, Ullrich RL. Murine Prkdc polymorphisms impact DNA-PKcs function. Radiat Res 2011; 175:493-500. [PMID: 21265624 DOI: 10.1667/rr2431.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polymorphic variants of DNA repair genes can increase the carcinogenic potential of exposure to ionizing radiation. Two single nucleotide polymorphisms (SNPs) in Prkdc, the gene encoding the DNA-dependent protein kinase catalytic subunit (DNA-PKcs), have been identified in BALB/c mice and linked to reduced DNA-PKcs activity and mammary cancer susceptibility. We examined three additional mouse strains to better define the roles of the BALB/c Prkdc SNPs (R2140C and M3844V). One is a congenic strain (C.B6) that has the C57BL/6 Prkdc allele on a BALB/c background, and the other is a congenic strain (B6.C) that has the BALB/c variant Prkdc allele on a C57BL/6 background. We also examined the LEWES mouse strain, which possesses only one of the BALB/c Prkdc SNPs (M3844V). Our results demonstrate that both Prkdc SNPs are responsible for deficient DNA-PKcs protein expression, DNA repair and telomere function, while the LEWES SNP affects only DNA-PKcs expression and repair capacity. These studies provide insight into the separation of function between the two BALB/c SNPs as well as direct evidence that SNPs positioned within Prkdc can significantly influence DNA-PKcs function involving DNA repair capacity, telomere end-capping, and potentially cancer susceptibility.
Collapse
Affiliation(s)
- Kristin M Fabre
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | | | |
Collapse
|
57
|
Shao L, Goronzy JJ, Weyand CM. DNA-dependent protein kinase catalytic subunit mediates T-cell loss in rheumatoid arthritis. EMBO Mol Med 2011; 2:415-27. [PMID: 20878914 PMCID: PMC3017722 DOI: 10.1002/emmm.201000096] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In the autoimmune syndrome rheumatoid arthritis (RA), T cells and T-cell precursors have age-inappropriate shortening of telomeres and accumulate deoxyribonucleic acid (DNA) double strand breaks. Whether damaged DNA elicits DNA repair activity and how this affects T-cell function and survival is unknown. Here, we report that naïve and resting T cells from RA patients are susceptible to undergo apoptosis. In such T cells, unrepaired DNA stimulates a p53-ataxia telangiectasia mutated-independent pathway involving the non-homologous-end-joining protein DNA-protein kinase catalytic subunit (DNA-PKcs). Upregulation of DNA-PKcs transcription, protein expression and phosphorylation in RA T cells co-occurs with diminished expression of the Ku70/80 heterodimer, limiting DNA repair capacity. Inhibition of DNA-PKcs kinase activity or gene silencing of DNA-PKcs protects RA T cells from apoptosis. DNA-PKcs induces T-cell death by activating the JNK pathway and upregulating the apoptogenic BH3-only proteins Bim and Bmf. In essence, in RA, the DNA-PKcs-JNK-Bim/Bmf axis transmits genotoxic stress into shortened survival of naïve resting T cells, imposing chronic proliferative turnover of the immune system and premature immunosenescence. Therapeutic blockade of the DNA-PK-dependent cell-death machinery may rejuvenate the immune system in RA.
Collapse
Affiliation(s)
- Lan Shao
- Department of Medicine, Immunology and Rheumatology, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
58
|
Abstract
Fluorescence in situ hybridization (FISH) has become a powerful tool for exploring genomes at the level of chromosomes. The procedure can be used to identify individual chromosomes, rearrangements between chromosomes, and the location within a chromosome of specific DNA sequences such as centromeres, telomeres, and even individual genes. Chromosome orientation FISH (CO-FISH) extends the information obtainable from standard FISH to include the relative orientation of two or more DNA sequences within a chromosome (Goodwin and Meyne, Cytogenet Cell Genet 63:126-127, 1993). In combination with a suitable reference probe, CO-FISH can also determine the absolute 5'-3' direction of a DNA sequence relative to the short arm (pter) to long arm (qter) axis of the chromosome. This variation of CO-FISH was originally termed "COD-FISH" (Chromosome orientation and direction FISH) to reflect this fact (Meyne and Goodwin, Chromosome Research 3:375-378, 1995). Telomeric DNA serves as a convenient and absolute reference probe for this purpose, since all G-rich 5'-(TTAGGG)( n )-3' telomeric sequences are terminally located and oriented away from the centromere.In the beginning, CO-FISH was used to detect obligate chromosomal inversions associated with isochromosome formation (Bailey et al., Mutagenesis 11:139-144, 1996), various pericentric inversions (Bailey et al., Cytogenetics and Cell Genetics 75:248-253, 1996), and to confirm the origin of centromeric lateral asymmetry (Goodwin et al., Chromosoma 104:345-347, 1996). More recent and sophisticated applications of CO-FISH include distinction between telomeres produced via leading- vs. lagging-strand DNA synthesis (Bailey et al., Science 293:2462-2465, 2001), identification of interstitial blocks of telomere sequence that result from inappropriate fusion to double-strand breaks (telomere-DSB fusion) (Bailey et al., DNA Repair (Amst) 3:349-357, 2004), discovery of elevated rates of mitotic recombination at chromosomal termini (Cornforth and Eberle, Mutagenesis, 16:85-89, 2001) and sister chromatid exchange within telomeric DNA (T-SCE) (Bailey et al., Nucleic Acids Res 32:3743-3751, 2004), establishing replication timing of mammalian telomeres throughout S-phase (ReD-FISH) (Cornforth et al., In: Cold Spring Harbor Symposium: Telomeres and Telomerase, Cold Spring Harbor, NY, 2003; Zou et al., Proc Natl Acad Sci USA 101:12928-12933, 2004) and in combination with -spectral karyotyping (SKY-CO-FISH) (Williams et al., Cancer Res 69:2100-2107, 2009). For more information, the reader is referred to several reviews (Bailey et al., Cytogenet Genome Res 107, 14-17, 2004; Bailey and Cornforth, Cell Mol Life Sci 64:2956-2964, 2007; Bailey, Telomeres and Double-Strand Breaks - All's Well that "Ends" Well, Radiat Res 169:1-7, 2008).
Collapse
Affiliation(s)
- Eli S Williams
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | | | | | | |
Collapse
|
59
|
Kusumoto-Matsuo R, Opresko PL, Ramsden D, Tahara H, Bohr VA. Cooperation of DNA-PKcs and WRN helicase in the maintenance of telomeric D-loops. Aging (Albany NY) 2010; 2:274-84. [PMID: 20519774 PMCID: PMC2898018 DOI: 10.18632/aging.100141] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Werner syndrome
is an inherited human progeriod syndrome caused by mutations in the gene
encoding the Werner Syndrome protein, WRN. It has both 3'-5' DNA
helicase and exonuclease activities, and is
suggested to have roles in many aspects of DNA metabolism, including DNA
repair and telomere maintenance. The DNA-PK complex also functions in both
DNA double strand break repair and telomere maintenance. Interaction
between WRN and the DNA-PK complex has been reported in DNA double strand
break repair, but their possible cooperation at telomeres has not been
reported. This study analyzes thein vitro and in vivo
interaction at the telomere between WRN and DNA-PKcs, the catalytic subunit
of DNA-PK. The results show that DNA-PKcs selectively stimulates WRN
helicase but not WRN exonuclease in vitro, affecting that WRN
helicase unwinds and promotes the release of the full-length invading strand
of a telomere D-loop model substrate. In addition, the length of telomeric
G-tails decreases in DNA-PKcs knockdown cells, and this phenotype is
reversed by overexpression of WRN helicase. These results suggest that WRN
and DNA-PKcs may cooperatively prevent G-tail shortening in vivo.
Collapse
Affiliation(s)
- Rika Kusumoto-Matsuo
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
60
|
Gurung RL, Lim SN, Khaw AK, Soon JFF, Shenoy K, Mohamed Ali S, Jayapal M, Sethu S, Baskar R, Hande MP. Thymoquinone induces telomere shortening, DNA damage and apoptosis in human glioblastoma cells. PLoS One 2010; 5:e12124. [PMID: 20711342 PMCID: PMC2920825 DOI: 10.1371/journal.pone.0012124] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 06/22/2010] [Indexed: 12/15/2022] Open
Abstract
Background A major concern of cancer chemotherapy is the side effects caused by the non-specific targeting of both normal and cancerous cells by therapeutic drugs. Much emphasis has been placed on discovering new compounds that target tumour cells more efficiently and selectively with minimal toxic effects on normal cells. Methodology/Principal Findings The cytotoxic effect of thymoquinone, a component derived from the plant Nigella sativa, was tested on human glioblastoma and normal cells. Our findings demonstrated that glioblastoma cells were more sensitive to thymoquinone-induced antiproliferative effects. Thymoquinone induced DNA damage, cell cycle arrest and apoptosis in the glioblastoma cells. It was also observed that thymoquinone facilitated telomere attrition by inhibiting the activity of telomerase. In addition to these, we investigated the role of DNA-PKcs on thymoquinone mediated changes in telomere length. Telomeres in glioblastoma cells with DNA-PKcs were more sensitive to thymoquinone mediated effects as compared to those cells deficient in DNA-PKcs. Conclusions/Significance Our results indicate that thymoquinone induces DNA damage, telomere attrition by inhibiting telomerase and cell death in glioblastoma cells. Telomere shortening was found to be dependent on the status of DNA-PKcs. Collectively, these data suggest that thymoquinone could be useful as a potential chemotherapeutic agent in the management for brain tumours.
Collapse
Affiliation(s)
- Resham Lal Gurung
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Shi Ni Lim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Aik Kia Khaw
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jasmine Fen Fen Soon
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kirthan Shenoy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Safiyya Mohamed Ali
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Manikandan Jayapal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Swaminathan Sethu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Rajamanickam Baskar
- Division of Cellular and Molecular Research, Department of Radiation Oncology, National Cancer Centre, Singapore, Singapore
| | - M. Prakash Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
61
|
Williams ES, Bailey SM. Chromosome orientation fluorescence in situ hybridization (CO-FISH). Cold Spring Harb Protoc 2010; 2009:pdb.prot5269. [PMID: 20147245 DOI: 10.1101/pdb.prot5269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Eli S Williams
- Drug Discovery Department, Moffitt Cancer Center, Tampa, FL 33612, USA.
| | | |
Collapse
|
62
|
Perry JJP, Asaithamby A, Barnebey A, Kiamanesch F, Chen DJ, Han S, Tainer JA, Yannone SM. Identification of a coiled coil in werner syndrome protein that facilitates multimerization and promotes exonuclease processivity. J Biol Chem 2010; 285:25699-707. [PMID: 20516064 DOI: 10.1074/jbc.m110.124941] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Werner syndrome (WS) is a rare progeroid disorder characterized by genomic instability, increased cancer incidence, and early onset of a variety of aging pathologies. WS is unique among early aging syndromes in that affected individuals are developmentally normal, and phenotypic onset is in early adulthood. The protein defective in WS (WRN) is a member of the large RecQ family of helicases but is unique among this family in having an exonuclease. RecQ helicases form multimers, but the mechanism and consequence of multimerization remain incompletely defined. Here, we identify a novel heptad repeat coiled coil region between the WRN nuclease and helicase domains that facilitates multimerization of WRN. We mapped a novel and unique DNA-dependent protein kinase phosphorylation site proximal to the WRN multimerization region. However, phosphorylation at this site affected neither exonuclease activity nor multimeric state. We found that WRN nuclease is stimulated by DNA-dependent protein kinase independently of kinase activity or WRN nuclease multimeric status. In addition, WRN nuclease multimerization significantly increased nuclease processivity. We found that the novel WRN coiled coil domain is necessary for multimerization of the nuclease domain and sufficient to multimerize with full-length WRN in human cells. Importantly, correct homomultimerization is required for WRN function in vivo as overexpression of this multimerization domain caused increased sensitivity to camptothecin and 4-nitroquinoline 1-oxide similar to that in cells lacking functional WRN protein.
Collapse
Affiliation(s)
- J Jefferson P Perry
- Division of Molecular Radiation Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Abstract
Background Repair of DNA double strand breaks by non-homologous end joining (NHEJ) requires several proteins including Ku, DNA-PKcs, Artemis, XRCC4, Ligase IV and XLF. Two of these proteins, namely Ku and DNA-PKcs, are also involved in maintenance of telomeres, chromosome end-structures. In contrast, cells defective in Ligase IV and XRCC4 do not show changes in telomere length or function suggesting that these proteins are not involved in telomere maintenance. Since a mouse study indicated that defective Artemis may cause telomere dysfunction we investigated the effects of defective Artemis on telomere maintenance in human cells. Results We observed significantly elevated frequencies of telomeric fusions in two primary fibroblast cell lines established from Artemis defective patients relative to the control cell line. The frequencies of telomeric fusions increased after exposure of Artemis defective cells to ionizing radiation. Furthermore, we observed increased incidence of DNA damage at telomeres in Artemis defective cells that underwent more than 32 population doublings using the TIF (Telomere dysfunction Induced Foci) assay. We have also inhibited the expression levels of DNA-PKcs in Artemis defective cell lines by either using synthetic inhibitor (IC86621) or RNAi and observed their greater sensitivity to telomere dysfunction relative to control cells. Conclusion These results suggest that defective Artemis causes a mild telomere dysfunction phenotype in human cell lines.
Collapse
|
64
|
Peddi P, Loftin CW, Dickey JS, Hair JM, Burns KJ, Aziz K, Francisco DC, Panayiotidis MI, Sedelnikova OA, Bonner WM, Winters TA, Georgakilas AG. DNA-PKcs deficiency leads to persistence of oxidatively induced clustered DNA lesions in human tumor cells. Free Radic Biol Med 2010; 48:1435-43. [PMID: 20193758 PMCID: PMC2901171 DOI: 10.1016/j.freeradbiomed.2010.02.033] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/22/2010] [Accepted: 02/23/2010] [Indexed: 02/07/2023]
Abstract
DNA-dependent protein kinase (DNA-PK) is a key non-homologous-end-joining (NHEJ) nuclear serine/threonine protein kinase involved in various DNA metabolic and damage signaling pathways contributing to the maintenance of genomic stability and prevention of cancer. To examine the role of DNA-PK in processing of non-DSB clustered DNA damage, we have used three models of DNA-PK deficiency, i.e., chemical inactivation of its kinase activity by the novel inhibitors IC86621 and NU7026, knockdown and complete absence of the protein in human breast cancer (MCF-7) and glioblastoma cell lines (MO59-J/K). A compromised DNA-PK repair pathway led to the accumulation of clustered DNA lesions induced by gamma-rays. Tumor cells lacking protein expression or with inhibited kinase activity showed a marked decrease in their ability to process oxidatively induced non-DSB clustered DNA lesions measured using a modified version of pulsed-field gel electrophoresis or single-cell gel electrophoresis (comet assay). In all cases, DNA-PK inactivation led to a higher level of lesion persistence even after 24-72h of repair. We suggest a model in which DNA-PK deficiency affects the processing of these clusters first by compromising base excision repair and second by the presence of catalytically inactive DNA-PK inhibiting the efficient processing of these lesions owing to the failure of DNA-PK to disassociate from the DNA ends. The information rendered will be important for understanding not only cancer etiology in the presence of an NHEJ deficiency but also cancer treatments based on the induction of oxidative stress and inhibition of cluster repair.
Collapse
Affiliation(s)
- Prakash Peddi
- Department of Biology, Thomas Harriot College of Arts and Sciences, East Carolina University, Greenville, NC 27858, USA
| | - Charles W. Loftin
- Department of Biology, Thomas Harriot College of Arts and Sciences, East Carolina University, Greenville, NC 27858, USA
| | - Jennifer S. Dickey
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20895, USA
| | - Jessica M. Hair
- Department of Biology, Thomas Harriot College of Arts and Sciences, East Carolina University, Greenville, NC 27858, USA
| | - Kara J. Burns
- Department of Biology, Thomas Harriot College of Arts and Sciences, East Carolina University, Greenville, NC 27858, USA
| | - Khaled Aziz
- Department of Biology, Thomas Harriot College of Arts and Sciences, East Carolina University, Greenville, NC 27858, USA
| | - Dave C. Francisco
- Department of Biology, Thomas Harriot College of Arts and Sciences, East Carolina University, Greenville, NC 27858, USA
| | - Mihalis I. Panayiotidis
- Department of Pathology, Medical School, University of Ioannina, University Campus, 45110, Ioannina, Greece
| | - Olga A. Sedelnikova
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20895, USA
| | - William M. Bonner
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20895, USA
| | - Thomas A. Winters
- Nuclear Medicine Department, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexandros G. Georgakilas
- Department of Biology, Thomas Harriot College of Arts and Sciences, East Carolina University, Greenville, NC 27858, USA
- Corresponding author: Alexandros G. Georgakilas, Address: Biology Department, Thomas Harriot College of Arts and Sciences, Howell Science Complex N418, East Carolina University, Greenville, NC 27858. Tel: 252-328-5446, Fax: 252-328-4178,
| |
Collapse
|
65
|
Bombarde O, Boby C, Gomez D, Frit P, Giraud-Panis MJ, Gilson E, Salles B, Calsou P. TRF2/RAP1 and DNA-PK mediate a double protection against joining at telomeric ends. EMBO J 2010; 29:1573-84. [PMID: 20407424 DOI: 10.1038/emboj.2010.49] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 03/04/2010] [Indexed: 11/09/2022] Open
Abstract
DNA-dependent protein kinase (DNA-PK) is a double-strand breaks repair complex, the subunits of which (KU and DNA-PKcs) are paradoxically present at mammalian telomeres. Telomere fusion has been reported in cells lacking these proteins, raising two questions: how is DNA-PK prevented from initiating classical ligase IV (LIG4)-dependent non-homologous end-joining (C-NHEJ) at telomeres and how is the backup end-joining (EJ) activity (B-NHEJ) that operates at telomeres under conditions of C-NHEJ deficiency controlled? To address these questions, we have investigated EJ using plasmid substrates bearing double-stranded telomeric tracks and human cell extracts with variable C-NHEJ or B-NHEJ activity. We found that (1) TRF2/RAP1 prevents C-NHEJ-mediated end fusion at the initial DNA-PK end binding and activation step and (2) DNA-PK counteracts a potent LIG4-independent EJ mechanism. Thus, telomeres are protected against EJ by a lock with two bolts. These results account for observations with mammalian models and underline the importance of alternative non-classical EJ pathways for telomere fusions in cells.
Collapse
Affiliation(s)
- Oriane Bombarde
- Institut de Pharmacologie et de Biologie Structurale, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Bailey SM, Williams ES, Cornforth MN, Goodwin EH. Chromosome Orientation fluorescence in situ hybridization or strand-specific FISH. Methods Mol Biol 2010; 659:173-83. [PMID: 20809311 DOI: 10.1007/978-1-60761-789-1_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chromosome Orientation FISH (CO-FISH) is a technique that can be used to extend the information obtainable from standard FISH to include the relative orientation of two or more DNA sequences within a chromosome. CO-FISH can determine the absolute 5'-to-3' direction of a DNA sequence relative to the short arm-to-long arm axis of the chromosome, and so was originally termed "COD-FISH" (Chromosome Orientation and Direction FISH). CO-FISH has been employed to detect chromosomal inversions associated with isochromosome formation, various pericentric inversions, and to confirm the origin of lateral asymmetry. More recent and sophisticated applications of CO-FISH include distinction between telomeres produced via leading- vs. lagging-strand DNA synthesis, identification of interstitial blocks of telomere sequence that result from inappropriate fusion to double-strand breaks (telomere-DSB fusion), discovery of elevated rates of mitotic recombination at chromosomal termini and sister chromatid exchange within telomeric DNA (T-SCE), establishing replication timing of mammalian telomeres throughout S-phase (ReD-FISH) and to identify chromosomes, in combination with spectral karyotyping (SKY-CO-FISH).
Collapse
Affiliation(s)
- Susan M Bailey
- Department of Environmental & Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| | | | | | | |
Collapse
|
67
|
Andrews NP, Fujii H, Goronzy JJ, Weyand CM. Telomeres and immunological diseases of aging. Gerontology 2009; 56:390-403. [PMID: 20016137 DOI: 10.1159/000268620] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 09/07/2009] [Indexed: 12/14/2022] Open
Abstract
A defining feature of the eukaryotic genome is the presence of linear chromosomes. This arrangement, however, poses several challenges with regard to chromosomal replication and maintenance. To prevent the loss of coding sequences and to suppress gross chromosomal rearrangements, linear chromosomes are capped by repetitive nucleoprotein structures, called telomeres. Each cell division results in a progressive shortening of telomeres that, below a certain threshold, promotes genome instability, senescence, and apoptosis. Telomeric erosion, maintenance, and repair take center stage in determining cell fate. Cells of the immune system are under enormous proliferative demand, stressing telomeric intactness. Lymphocytes are capable of upregulating telomerase, an enzyme that can elongate telomeric sequences and, thus, prolong cellular lifespan. Therefore, telomere dynamics are critical in preserving immune function and have become a focus for studies of immunosenescence and autoimmunity. In this review, we describe the role of telomeric nucleoproteins in shaping telomere architecture and in suppressing DNA damage responses. We summarize new insights into the regulation of telomerase activity, hereditary disorders associated with telomere dysfunction, the role of telomere loss in immune aging, and the impact of telomere dysfunction in chronic inflammatory disease.
Collapse
Affiliation(s)
- Nicolas P Andrews
- Lowance Center for Human Immunology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
68
|
Mullenders L, Atkinson M, Paretzke H, Sabatier L, Bouffler S. Assessing cancer risks of low-dose radiation. Nat Rev Cancer 2009; 9:596-604. [PMID: 19629073 DOI: 10.1038/nrc2677] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ionizing radiation is considered a non-threshold carcinogen. However, quantifying the risk of the more commonly encountered low and/or protracted radiation exposures remains problematic and subject to uncertainty. Therefore, a major challenge lies in providing a sound mechanistic understanding of low-dose radiation carcinogenesis. This Perspective article considers whether differences exist between the effects mediated by high- and low-dose radiation exposure and how this affects the assessment of low-dose cancer risk.
Collapse
Affiliation(s)
- Leon Mullenders
- Department of Toxicogenetics, Leiden University Medical Centre, Leiden 2300RC, The Netherlands.
| | | | | | | | | |
Collapse
|