51
|
Vargas HA, Huang EP, Lakhman Y, Ippolito JE, Bhosale P, Mellnick V, Shinagare AB, Anello M, Kirby J, Fevrier-Sullivan B, Freymann J, Jaffe CC, Sala E. Radiogenomics of High-Grade Serous Ovarian Cancer: Multireader Multi-Institutional Study from the Cancer Genome Atlas Ovarian Cancer Imaging Research Group. Radiology 2017. [PMID: 28641043 DOI: 10.1148/radiol.2017161870] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Purpose To evaluate interradiologist agreement on assessments of computed tomography (CT) imaging features of high-grade serous ovarian cancer (HGSOC), to assess their associations with time-to-disease progression (TTP) and HGSOC transcriptomic profiles (Classification of Ovarian Cancer [CLOVAR]), and to develop an imaging-based risk score system to predict TTP and CLOVAR profiles. Materials and Methods This study was a multireader, multi-institutional, institutional review board-approved, HIPAA-compliant retrospective analysis of 92 patients with HGSOC (median age, 61 years) with abdominopelvic CT before primary cytoreductive surgery available through the Cancer Imaging Archive. Eight radiologists from the Cancer Genome Atlas Ovarian Cancer Imaging Research Group developed and independently recorded the following CT features: characteristics of primary ovarian mass(es), presence of definable mesenteric implants and infiltration, presence of other implants, presence and distribution of peritoneal spread, presence and size of pleural effusions and ascites, lymphadenopathy, and distant metastases. Interobserver agreement for CT features was assessed, as were univariate and multivariate associations with TTP and CLOVAR mesenchymal profile (worst prognosis). Results Interobserver agreement for some features was strong (eg, α = .78 for pleural effusion and ascites) but was lower for others (eg, α = .08 for intraparenchymal splenic metastases). Presence of peritoneal disease in the right upper quadrant (P = .0003), supradiaphragmatic lymphadenopathy (P = .0004), more peritoneal disease sites (P = .0006), and nonvisualization of a discrete ovarian mass (P = .0037) were associated with shorter TTP. More peritoneal disease sites (P = .0025) and presence of pouch of Douglas implants (P = .0045) were associated with CLOVAR mesenchymal profile. Combinations of imaging features contained predictive signal for TTP (concordance index = 0.658; P = .0006) and CLOVAR profile (mean squared deviation = 1.776; P = .0043). Conclusion These results provide some evidence of the clinical and biologic validity of these image features. Interobserver agreement is strong for some features, but could be improved for others. © RSNA, 2017 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Hebert Alberto Vargas
- From the Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room C278, New York, NY 10065 (H.A.V., Y.L., E.S.); Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Md (E.P.H.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (J.E.I., V.M.); Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (P.B.); Department of Imaging, Dana Farber Cancer Institute, Harvard Medical School, Boston, Mass (A.S.); Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.S.); Department of Radiology, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, Pa (M.A.); Leidos Biomedical Research, National Cancer Institute, National Institutes of Health, Frederick, Md (J.K., B.F.S., J.F.); and Department of Radiology, Boston University School of Medicine, Boston, Mass (C.C.J.)
| | - Erich P Huang
- From the Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room C278, New York, NY 10065 (H.A.V., Y.L., E.S.); Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Md (E.P.H.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (J.E.I., V.M.); Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (P.B.); Department of Imaging, Dana Farber Cancer Institute, Harvard Medical School, Boston, Mass (A.S.); Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.S.); Department of Radiology, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, Pa (M.A.); Leidos Biomedical Research, National Cancer Institute, National Institutes of Health, Frederick, Md (J.K., B.F.S., J.F.); and Department of Radiology, Boston University School of Medicine, Boston, Mass (C.C.J.)
| | - Yulia Lakhman
- From the Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room C278, New York, NY 10065 (H.A.V., Y.L., E.S.); Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Md (E.P.H.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (J.E.I., V.M.); Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (P.B.); Department of Imaging, Dana Farber Cancer Institute, Harvard Medical School, Boston, Mass (A.S.); Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.S.); Department of Radiology, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, Pa (M.A.); Leidos Biomedical Research, National Cancer Institute, National Institutes of Health, Frederick, Md (J.K., B.F.S., J.F.); and Department of Radiology, Boston University School of Medicine, Boston, Mass (C.C.J.)
| | - Joseph E Ippolito
- From the Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room C278, New York, NY 10065 (H.A.V., Y.L., E.S.); Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Md (E.P.H.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (J.E.I., V.M.); Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (P.B.); Department of Imaging, Dana Farber Cancer Institute, Harvard Medical School, Boston, Mass (A.S.); Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.S.); Department of Radiology, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, Pa (M.A.); Leidos Biomedical Research, National Cancer Institute, National Institutes of Health, Frederick, Md (J.K., B.F.S., J.F.); and Department of Radiology, Boston University School of Medicine, Boston, Mass (C.C.J.)
| | - Priya Bhosale
- From the Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room C278, New York, NY 10065 (H.A.V., Y.L., E.S.); Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Md (E.P.H.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (J.E.I., V.M.); Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (P.B.); Department of Imaging, Dana Farber Cancer Institute, Harvard Medical School, Boston, Mass (A.S.); Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.S.); Department of Radiology, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, Pa (M.A.); Leidos Biomedical Research, National Cancer Institute, National Institutes of Health, Frederick, Md (J.K., B.F.S., J.F.); and Department of Radiology, Boston University School of Medicine, Boston, Mass (C.C.J.)
| | - Vincent Mellnick
- From the Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room C278, New York, NY 10065 (H.A.V., Y.L., E.S.); Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Md (E.P.H.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (J.E.I., V.M.); Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (P.B.); Department of Imaging, Dana Farber Cancer Institute, Harvard Medical School, Boston, Mass (A.S.); Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.S.); Department of Radiology, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, Pa (M.A.); Leidos Biomedical Research, National Cancer Institute, National Institutes of Health, Frederick, Md (J.K., B.F.S., J.F.); and Department of Radiology, Boston University School of Medicine, Boston, Mass (C.C.J.)
| | - Atul B Shinagare
- From the Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room C278, New York, NY 10065 (H.A.V., Y.L., E.S.); Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Md (E.P.H.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (J.E.I., V.M.); Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (P.B.); Department of Imaging, Dana Farber Cancer Institute, Harvard Medical School, Boston, Mass (A.S.); Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.S.); Department of Radiology, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, Pa (M.A.); Leidos Biomedical Research, National Cancer Institute, National Institutes of Health, Frederick, Md (J.K., B.F.S., J.F.); and Department of Radiology, Boston University School of Medicine, Boston, Mass (C.C.J.)
| | - Maria Anello
- From the Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room C278, New York, NY 10065 (H.A.V., Y.L., E.S.); Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Md (E.P.H.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (J.E.I., V.M.); Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (P.B.); Department of Imaging, Dana Farber Cancer Institute, Harvard Medical School, Boston, Mass (A.S.); Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.S.); Department of Radiology, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, Pa (M.A.); Leidos Biomedical Research, National Cancer Institute, National Institutes of Health, Frederick, Md (J.K., B.F.S., J.F.); and Department of Radiology, Boston University School of Medicine, Boston, Mass (C.C.J.)
| | - Justin Kirby
- From the Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room C278, New York, NY 10065 (H.A.V., Y.L., E.S.); Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Md (E.P.H.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (J.E.I., V.M.); Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (P.B.); Department of Imaging, Dana Farber Cancer Institute, Harvard Medical School, Boston, Mass (A.S.); Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.S.); Department of Radiology, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, Pa (M.A.); Leidos Biomedical Research, National Cancer Institute, National Institutes of Health, Frederick, Md (J.K., B.F.S., J.F.); and Department of Radiology, Boston University School of Medicine, Boston, Mass (C.C.J.)
| | - Brenda Fevrier-Sullivan
- From the Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room C278, New York, NY 10065 (H.A.V., Y.L., E.S.); Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Md (E.P.H.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (J.E.I., V.M.); Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (P.B.); Department of Imaging, Dana Farber Cancer Institute, Harvard Medical School, Boston, Mass (A.S.); Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.S.); Department of Radiology, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, Pa (M.A.); Leidos Biomedical Research, National Cancer Institute, National Institutes of Health, Frederick, Md (J.K., B.F.S., J.F.); and Department of Radiology, Boston University School of Medicine, Boston, Mass (C.C.J.)
| | - John Freymann
- From the Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room C278, New York, NY 10065 (H.A.V., Y.L., E.S.); Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Md (E.P.H.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (J.E.I., V.M.); Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (P.B.); Department of Imaging, Dana Farber Cancer Institute, Harvard Medical School, Boston, Mass (A.S.); Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.S.); Department of Radiology, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, Pa (M.A.); Leidos Biomedical Research, National Cancer Institute, National Institutes of Health, Frederick, Md (J.K., B.F.S., J.F.); and Department of Radiology, Boston University School of Medicine, Boston, Mass (C.C.J.)
| | - C Carl Jaffe
- From the Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room C278, New York, NY 10065 (H.A.V., Y.L., E.S.); Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Md (E.P.H.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (J.E.I., V.M.); Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (P.B.); Department of Imaging, Dana Farber Cancer Institute, Harvard Medical School, Boston, Mass (A.S.); Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.S.); Department of Radiology, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, Pa (M.A.); Leidos Biomedical Research, National Cancer Institute, National Institutes of Health, Frederick, Md (J.K., B.F.S., J.F.); and Department of Radiology, Boston University School of Medicine, Boston, Mass (C.C.J.)
| | - Evis Sala
- From the Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, Room C278, New York, NY 10065 (H.A.V., Y.L., E.S.); Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, Md (E.P.H.); Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (J.E.I., V.M.); Department of Diagnostic Radiology, University of Texas MD Anderson Cancer Center, Houston, Tex (P.B.); Department of Imaging, Dana Farber Cancer Institute, Harvard Medical School, Boston, Mass (A.S.); Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass (A.S.); Department of Radiology, Magee-Womens Hospital of the University of Pittsburgh Medical Center, Pittsburgh, Pa (M.A.); Leidos Biomedical Research, National Cancer Institute, National Institutes of Health, Frederick, Md (J.K., B.F.S., J.F.); and Department of Radiology, Boston University School of Medicine, Boston, Mass (C.C.J.)
| |
Collapse
|
52
|
Ali SM, Yao M, Yao J, Wang J, Cheng Y, Schrock AB, Chirn GW, Chen H, Mu S, Gay L, Elvin JA, Suh J, Miller VA, Stephens PJ, Ross JS, Wang K. Comprehensive genomic profiling of different subtypes of nasopharyngeal carcinoma reveals similarities and differences to guide targeted therapy. Cancer 2017; 123:3628-3637. [PMID: 28581676 DOI: 10.1002/cncr.30781] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/31/2017] [Accepted: 04/19/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND To date, no targeted therapy has been approved for nasopharyngeal carcinoma (NPC), and this underscores the need for an in-depth understanding of clinically relevant genomic alterations (CRGAs). METHODS Comprehensive genomic profiling was performed for 190 NPC patients, including 20 patients with nasopharyngeal adenocarcinoma (NPAC), 62 patients with nasopharyngeal squamous cell carcinoma (NPSCC), and 108 patients with nasopharyngeal undifferentiated carcinoma (NPUC). The associations of genes and pathways with subtypes, Epstein-Barr virus (EBV) infections, and the tumor mutation burden (TMB) were statistically evaluated. RESULTS Although the overall rates of genomic alterations were similar, the 3 NPC subtypes exhibited different mutational landscapes. Notably, mutations in a proven-treatable target gene, isocitrate dehydrogenase 2 (IDH2), were significantly associated with NPUC but not with NPAC or NPSCC. The top 5 ranked CRGAs included CDKN2A (29%), IDH2 (16%), SMARCB1 (7%), PIK3CA (6%), and NF1 (5%) in NPUC; CDKN2A (27%), PIK3CA (23%), FBXW7 (11%), PTEN (11%), and EGFR (8%) in NPSCC; and CDKN2A (20%), KRAS (15%), CCND1 (10%), MAP3K1 (10%), and NOTCH1 (10%) in NPAC. The incidence of EBV infections significantly correlated with the subtypes and with TP53, CDKN2A, and CDKN2B. The TMB status correlated with the subtypes and with LRP1B, FBXW7, and PIK3CA mutations as well as DNA repair, phosphoinositide 3-kinase/mammalian target of rapamycin, and mitogen-activated protein kinase pathways. CONCLUSIONS These results indicate that different NPC subtypes harbor different CRGAs. Both EBV infections and the TMB are associated with the NPC subtypes as well as the alterations of individual genes and pathways. The high frequency of IDH2 mutations in NPUC may facilitate potential targeted therapy and will ultimately point to new therapeutic strategies. Cancer 2017;123:3628-37. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Siraj M Ali
- Foundation Medicine, Inc, Cambridge, Massachusetts
| | | | | | | | | | | | | | | | | | - Laurie Gay
- Foundation Medicine, Inc, Cambridge, Massachusetts
| | | | - James Suh
- Foundation Medicine, Inc, Cambridge, Massachusetts
| | | | | | - Jeffrey S Ross
- Foundation Medicine, Inc, Cambridge, Massachusetts.,Albany Medical College, Albany, New York
| | - Kai Wang
- OrigiMed, Shanghai, China.,Zhejiang University International Hospital, Hangzhou, China
| |
Collapse
|
53
|
Graim K, Liu TT, Achrol AS, Paull EO, Newton Y, Chang SD, Harsh GR, Cordero SP, Rubin DL, Stuart JM. Revealing cancer subtypes with higher-order correlations applied to imaging and omics data. BMC Med Genomics 2017; 10:20. [PMID: 28359308 PMCID: PMC5374737 DOI: 10.1186/s12920-017-0256-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 03/15/2017] [Indexed: 12/14/2022] Open
Abstract
Background Patient stratification to identify subtypes with different disease manifestations, severity, and expected survival time is a critical task in cancer diagnosis and treatment. While stratification approaches using various biomarkers (including high-throughput gene expression measurements) for patient-to-patient comparisons have been successful in elucidating previously unseen subtypes, there remains an untapped potential of incorporating various genotypic and phenotypic data to discover novel or improved groupings. Methods Here, we present HOCUS, a unified analytical framework for patient stratification that uses a community detection technique to extract subtypes out of sparse patient measurements. HOCUS constructs a patient-to-patient network from similarities in the data and iteratively groups and reconstructs the network into higher order clusters. We investigate the merits of using higher-order correlations to cluster samples of cancer patients in terms of their associations with survival outcomes. Results In an initial test of the method, the approach identifies cancer subtypes in mutation data of glioblastoma, ovarian, breast, prostate, and bladder cancers. In several cases, HOCUS provides an improvement over using the molecular features directly to compare samples. Application of HOCUS to glioblastoma images reveals a size and location classification of tumors that improves over human expert-based stratification. Conclusions Subtypes based on higher order features can reveal comparable or distinct groupings. The distinct solutions can provide biologically- and treatment-relevant solutions that are just as significant as solutions based on the original data. Electronic supplementary material The online version of this article (doi:10.1186/s12920-017-0256-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kiley Graim
- Biomedical Engineering, University of California, Santa Cruz, USA.,UC Santa Cruz Genomics Institute, University of California, Santa Cruz, USA
| | - Tiffany Ting Liu
- Stanford Center for Biomedical Informatics Research and Biomedical Informatics Training Program, Stanford University School of Medicine, Stanford, USA.,Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford University School of Medicine, Stanford, USA
| | - Achal S Achrol
- Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford University School of Medicine, Stanford, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, USA.,Departments of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Evan O Paull
- Biomedical Engineering, University of California, Santa Cruz, USA.,UC Santa Cruz Genomics Institute, University of California, Santa Cruz, USA
| | - Yulia Newton
- Biomedical Engineering, University of California, Santa Cruz, USA.,UC Santa Cruz Genomics Institute, University of California, Santa Cruz, USA
| | - Steven D Chang
- Departments of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Griffith R Harsh
- Departments of Neurosurgery, Stanford University School of Medicine, Stanford, USA
| | - Sergio P Cordero
- Biomedical Engineering, University of California, Santa Cruz, USA.,UC Santa Cruz Genomics Institute, University of California, Santa Cruz, USA
| | - Daniel L Rubin
- Stanford Center for Biomedical Informatics Research and Biomedical Informatics Training Program, Stanford University School of Medicine, Stanford, USA.,Stanford Institute for Neuro-Innovation and Translational Neurosciences, Stanford University School of Medicine, Stanford, USA
| | - Joshua M Stuart
- Biomedical Engineering, University of California, Santa Cruz, USA. .,UC Santa Cruz Genomics Institute, University of California, Santa Cruz, USA.
| |
Collapse
|
54
|
Christie EL, Fereday S, Doig K, Pattnaik S, Dawson SJ, Bowtell DDL. Reversion of BRCA1/2 Germline Mutations Detected in Circulating Tumor DNA From Patients With High-Grade Serous Ovarian Cancer. J Clin Oncol 2017; 35:1274-1280. [PMID: 28414925 DOI: 10.1200/jco.2016.70.4627] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purpose Germline BRCA1 or BRCA2 mutations in patients with high-grade serous ovarian cancer (HGSC) are associated with favorable responses to chemotherapy. However, secondary intragenic (reversion) mutations that restore protein function lead to clinically significant rates of acquired resistance. The goal of this study was to determine whether reversion mutations could be found in an unbiased manner in circulating cell-free DNA (cfDNA) to predict treatment response in HGSC. Patients and Methods Plasma and tumor samples were obtained from 30 patients with HGSC with either BRCA1 or BRCA2 germline mutation. Two cohorts were ascertained: patients with a malignancy before undergoing primary HGSC debulking surgery (n = 14) or patients at disease recurrence (n = 16). Paired tumor and plasma samples were available for most patients (24 of 30). Targeted amplicon, next-generation sequencing was performed using primers that flanked germline mutations, whose design did not rely on prior knowledge of reversion sequences. Results Five patients were identified with intragenic mutations predicted to restore BRCA1/2 open reading frames, including two patients with multiple independent reversion alleles. Reversion mutations were only detected in tumor samples from patients with recurrent disease (five of 16) and only in cfDNA from patients with a tumor-detected reversion (three of five). Findings from a rapid autopsy of a patient with multiple independent reversions indicated that reversion-allele frequency in metastatic sites is an important determinant of assay sensitivity. Abundance of tumor-derived DNA in total cell-free DNA, as measured by TP53 mutant allele frequency, also affected assay sensitivity. All patients with reversions detected in tumor-derived DNA were resistant to platin- or poly ADP ribose polymerase inhibitor-based chemotherapy. Conclusion Reversion mutations can be detected in an unbiased analysis of cfDNA, suggesting clinical utility for predicting chemotherapy response in recurrent HGSC.
Collapse
Affiliation(s)
- Elizabeth L Christie
- Elizabeth L. Christie, Sian Fereday, Ken Doig, Sarah-Jane Dawson, and David D.L. Bowtell, Peter MacCallum Cancer Centre, Melbourne; Elizabeth L. Christe, Ken Doig, Sarah-Jane Dawson, David D.L. Bowtell, University of Melbourne, Melbourne, Victoria; and Swetansu Pattnaik and David D.L. Bowtell, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Sian Fereday
- Elizabeth L. Christie, Sian Fereday, Ken Doig, Sarah-Jane Dawson, and David D.L. Bowtell, Peter MacCallum Cancer Centre, Melbourne; Elizabeth L. Christe, Ken Doig, Sarah-Jane Dawson, David D.L. Bowtell, University of Melbourne, Melbourne, Victoria; and Swetansu Pattnaik and David D.L. Bowtell, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ken Doig
- Elizabeth L. Christie, Sian Fereday, Ken Doig, Sarah-Jane Dawson, and David D.L. Bowtell, Peter MacCallum Cancer Centre, Melbourne; Elizabeth L. Christe, Ken Doig, Sarah-Jane Dawson, David D.L. Bowtell, University of Melbourne, Melbourne, Victoria; and Swetansu Pattnaik and David D.L. Bowtell, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Swetansu Pattnaik
- Elizabeth L. Christie, Sian Fereday, Ken Doig, Sarah-Jane Dawson, and David D.L. Bowtell, Peter MacCallum Cancer Centre, Melbourne; Elizabeth L. Christe, Ken Doig, Sarah-Jane Dawson, David D.L. Bowtell, University of Melbourne, Melbourne, Victoria; and Swetansu Pattnaik and David D.L. Bowtell, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Sarah-Jane Dawson
- Elizabeth L. Christie, Sian Fereday, Ken Doig, Sarah-Jane Dawson, and David D.L. Bowtell, Peter MacCallum Cancer Centre, Melbourne; Elizabeth L. Christe, Ken Doig, Sarah-Jane Dawson, David D.L. Bowtell, University of Melbourne, Melbourne, Victoria; and Swetansu Pattnaik and David D.L. Bowtell, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - David D L Bowtell
- Elizabeth L. Christie, Sian Fereday, Ken Doig, Sarah-Jane Dawson, and David D.L. Bowtell, Peter MacCallum Cancer Centre, Melbourne; Elizabeth L. Christe, Ken Doig, Sarah-Jane Dawson, David D.L. Bowtell, University of Melbourne, Melbourne, Victoria; and Swetansu Pattnaik and David D.L. Bowtell, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| |
Collapse
|
55
|
Molecular characterization of endometrial cancer and therapeutic implications. Curr Opin Obstet Gynecol 2017; 29:35-39. [DOI: 10.1097/gco.0000000000000342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
56
|
Rojas V, Hirshfield KM, Ganesan S, Rodriguez-Rodriguez L. Molecular Characterization of Epithelial Ovarian Cancer: Implications for Diagnosis and Treatment. Int J Mol Sci 2016; 17:E2113. [PMID: 27983698 PMCID: PMC5187913 DOI: 10.3390/ijms17122113] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 11/30/2016] [Accepted: 12/06/2016] [Indexed: 12/27/2022] Open
Abstract
Epithelial ovarian cancer is a highly heterogeneous disease characterized by multiple histological subtypes. Molecular diversity has been shown to occur within specific histological subtypes of epithelial ovarian cancer, between different tumors of an individual patient, as well as within individual tumors. Recent advances in the molecular characterization of epithelial ovarian cancer tumors have provided the basis for a simplified classification scheme in which these cancers are classified as either type I or type II tumors, and these two categories have implications regarding disease pathogenesis and prognosis. Molecular analyses, primarily based on next-generation sequencing, otherwise known as high-throughput sequencing, are allowing for further refinement of ovarian cancer classification, facilitating the elucidation of the site(s) of precursor lesions of high-grade serous ovarian cancer, and providing insight into the processes of clonal selection and evolution that may be associated with development of chemoresistance. Potential therapeutic targets have been identified from recent molecular profiling studies of these tumors, and the effectiveness and safety of a number of specific targeted therapies have been evaluated or are currently being studied for the treatment of women with this disease.
Collapse
Affiliation(s)
- Veronica Rojas
- Department Obstetrics/Gynecology and Reproductive Sciences, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, New Brunswick, NJ 08901, USA.
| | - Kim M Hirshfield
- Department of Medicine, Division of Medical Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
- Precision Medicine Oncology, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| | - Shridar Ganesan
- Department of Medicine, Division of Medical Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
- Precision Medicine Oncology, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| | - Lorna Rodriguez-Rodriguez
- Precision Medicine Oncology, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
- Department Obstetrics/Gynecology and Reproductive Sciences, Division of Gynecologic Oncology, Rutgers Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA.
| |
Collapse
|
57
|
Shi E, Chmielecki J, Tang CM, Wang K, Heinrich MC, Kang G, Corless CL, Hong D, Fero KE, Murphy JD, Fanta PT, Ali SM, De Siena M, Burgoyne AM, Movva S, Madlensky L, Heestand GM, Trent JC, Kurzrock R, Morosini D, Ross JS, Harismendy O, Sicklick JK. FGFR1 and NTRK3 actionable alterations in "Wild-Type" gastrointestinal stromal tumors. J Transl Med 2016; 14:339. [PMID: 27974047 PMCID: PMC5157084 DOI: 10.1186/s12967-016-1075-6] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/08/2016] [Indexed: 12/22/2022] Open
Abstract
Background About 10–15% of adult, and most pediatric, gastrointestinal stromal tumors (GIST) lack mutations in KIT, PDGFRA, SDHx, or RAS pathway components (KRAS, BRAF, NF1). The identification of additional mutated genes in this rare subset of tumors can have important clinical benefit to identify altered biological pathways and select targeted therapies. Methods We performed comprehensive genomic profiling (CGP) for coding regions in more than 300 cancer-related genes of 186 GISTs to assess for their somatic alterations. Results We identified 24 GIST lacking alterations in the canonical KIT/PDGFRA/RAS pathways, including 12 without SDHx alterations. These 24 patients were mostly adults (96%). The tumors had a 46% rate of nodal metastases. These 24 GIST were more commonly mutated at 7 genes: ARID1B, ATR, FGFR1, LTK, SUFU, PARK2 and ZNF217. Two tumors harbored FGFR1 gene fusions (FGFR1–HOOK3, FGFR1–TACC1) and one harbored an ETV6–NTRK3 fusion that responded to TRK inhibition. In an independent sample set, we identified 5 GIST cases lacking alterations in the KIT/PDGFRA/SDHx/RAS pathways, including two additional cases with FGFR1–TACC1 and ETV6–NTRK3 fusions. Conclusions Using patient demographics, tumor characteristics, and CGP, we show that GIST lacking alterations in canonical genes occur in younger patients, frequently metastasize to lymph nodes, and most contain deleterious genomic alterations, including gene fusions involving FGFR1 and NTRK3. If confirmed in larger series, routine testing for these translocations may be indicated for this subset of GIST. Moreover, these findings can be used to guide personalized treatments for patients with GIST. Trial registration NCT 02576431. Registered October 12, 2015 Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-1075-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eileen Shi
- School of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Chih-Min Tang
- Division of Surgical Oncology, Department of Surgery, Moores UCSD Cancer Center, UC San Diego Health Sciences, University of California San Diego, 3855 Health Sciences Drive, Room 2313, Mail Code 0987, La Jolla, CA, 92093-0987, USA
| | - Kai Wang
- Foundation Medicine, Inc., Cambridge, MA, USA
| | - Michael C Heinrich
- Portland VA Health Care System, Portland, OR, USA.,Knight Cancer Institute, Oregon Health Sciences University, Portland, OR, USA
| | - Guhyun Kang
- Knight Cancer Institute, Oregon Health Sciences University, Portland, OR, USA.,Department of Pathology, Sanggye Paik Hospital, Inje University, Seoul, Korea
| | | | - David Hong
- Division of Cancer Medicine, Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Katherine E Fero
- School of Medicine, University of California San Diego, La Jolla, CA, USA.,UCSD Department of Radiation Medicine and Applied Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - James D Murphy
- School of Medicine, University of California San Diego, La Jolla, CA, USA.,UCSD Department of Radiation Medicine and Applied Sciences, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Paul T Fanta
- School of Medicine, University of California San Diego, La Jolla, CA, USA.,Division of Medical Oncology, Department of Medicine, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Siraj M Ali
- Foundation Medicine, Inc., Cambridge, MA, USA
| | - Martina De Siena
- Division of Surgical Oncology, Department of Surgery, Moores UCSD Cancer Center, UC San Diego Health Sciences, University of California San Diego, 3855 Health Sciences Drive, Room 2313, Mail Code 0987, La Jolla, CA, 92093-0987, USA
| | - Adam M Burgoyne
- School of Medicine, University of California San Diego, La Jolla, CA, USA.,Division of Medical Oncology, Department of Medicine, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Sujana Movva
- Department of Medical Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lisa Madlensky
- School of Medicine, University of California San Diego, La Jolla, CA, USA.,UCSD Department of Family and Preventive Medicine, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Gregory M Heestand
- School of Medicine, University of California San Diego, La Jolla, CA, USA.,Division of Medical Oncology, Department of Medicine, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Jonathan C Trent
- Sarcoma Medical Oncology Program, University of Miami Sylvester Cancer Center, Miami, FL, USA
| | - Razelle Kurzrock
- School of Medicine, University of California San Diego, La Jolla, CA, USA.,Division of Medical Oncology, Department of Medicine, Moores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA
| | | | | | - Olivier Harismendy
- School of Medicine, University of California San Diego, La Jolla, CA, USA. .,Oncogenomics Laboratory, Division of Biomedical Informatics, Moores UCSD Cancer Center, UC San Diego Health Sciences, University of California San Diego, 3855 Health Sciences Drive, Room 4335, Mail Code 0820, La Jolla, CA, 92093-0820, USA.
| | - Jason K Sicklick
- School of Medicine, University of California San Diego, La Jolla, CA, USA. .,Division of Surgical Oncology, Department of Surgery, Moores UCSD Cancer Center, UC San Diego Health Sciences, University of California San Diego, 3855 Health Sciences Drive, Room 2313, Mail Code 0987, La Jolla, CA, 92093-0987, USA.
| |
Collapse
|
58
|
Gao G, Johnson SH, Vasmatzis G, Pauley CE, Tombers NM, Kasperbauer JL, Smith DI. Common fragile sites (CFS) and extremely large CFS genes are targets for human papillomavirus integrations and chromosome rearrangements in oropharyngeal squamous cell carcinoma. Genes Chromosomes Cancer 2016; 56:59-74. [PMID: 27636103 DOI: 10.1002/gcc.22415] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 01/04/2023] Open
Abstract
Common fragile sites (CFS) are chromosome regions that are prone to form gaps or breaks in response to DNA replication stress. They are often found as hotspots for sister chromatid exchanges, deletions, and amplifications in different cancers. Many of the CFS regions are found to span genes whose genomic sequence is greater than 1 Mb, some of which have been demonstrated to function as important tumor suppressors. CFS regions are also hotspots for human papillomavirus (HPV) integrations in cervical cancer. We used mate-pair sequencing to examine HPV integration events and chromosomal structural variations in 34 oropharyngeal squamous cell carcinoma (OPSCC). We used endpoint PCR and Sanger sequencing to validate each HPV integration event and found HPV integrations preferentially occurred within CFS regions similar to what is observed in cervical cancer. We also found that many of the chromosomal alterations detected also occurred at or near the cytogenetic location of CFSs. Several large genes were also found to be recurrent targets of rearrangements, independent of HPV integrations, including CSMD1 (2.1Mb), LRP1B (1.9Mb), and LARGE1 (0.7Mb). Sanger sequencing revealed that the nucleotide sequences near to identified junction sites contained repetitive and AT-rich sequences that were shown to have the potential to form stem-loop DNA secondary structures that might stall DNA replication fork progression during replication stress. This could then cause increased instability in these regions which could lead to cancer development in human cells. Our findings suggest that CFSs and some specific large genes appear to play important roles in OPSCC. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ge Gao
- Division of Experimental Pathology, Mayo Clinic, Rochester, MN
| | - Sarah H Johnson
- Biomarker Discovery Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - George Vasmatzis
- Biomarker Discovery Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | | | | | | | - David I Smith
- Division of Experimental Pathology, Mayo Clinic, Rochester, MN
| |
Collapse
|
59
|
Bai H, Cao D, Yang J, Li M, Zhang Z, Shen K. Genetic and epigenetic heterogeneity of epithelial ovarian cancer and the clinical implications for molecular targeted therapy. J Cell Mol Med 2016; 20:581-93. [PMID: 26800494 PMCID: PMC5125785 DOI: 10.1111/jcmm.12771] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/26/2015] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal gynaecological malignancy, and tumoural heterogeneity (TH) has been blamed for treatment failure. The genomic and epigenomic atlas of EOC varies significantly with tumour histotype, grade, stage, sensitivity to chemotherapy and prognosis. Rapidly accumulating knowledge about the genetic and epigenetic events that control TH in EOC has facilitated the development of molecular-targeted therapy. Poly (ADP-ribose) polymerase (PARP) inhibitors, designed to target homologous recombination, are poised to change how breast cancer susceptibility gene (BRCA)-related ovarian cancer is treated. Epigenetic treatment regimens being tested in clinical or preclinical studies could provide promising novel treatment approaches and hope for improving patient survival.
Collapse
Affiliation(s)
- Huimin Bai
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Dongyan Cao
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaxin Yang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Menghui Li
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
60
|
Abstract
Ovarian cancer, consisting mainly of ovarian carcinoma, is the most lethal gynecologic malignancy. Improvements in outcome for patients with advanced-stage disease are limited by intrinsic and acquired chemoresistance and by tumor heterogeneity at different anatomic sites and along disease progression. Molecules and cellular pathways mediating chemoresistance appear to be different for the different histological types of ovarian carcinoma, with most recent research focusing on serous and clear cell carcinoma. This review discusses recent data implicating various biomarkers in chemoresistance in this cancer, with focus on studies in which clinical specimens have been central.
Collapse
Affiliation(s)
- Ben Davidson
- a Department of Pathology , Oslo University Hospital, Norwegian Radium Hospital , Oslo , Norway.,b Faculty of Medicine , Institute of Clinical Medicine, University of Oslo , Oslo , Norway
| |
Collapse
|
61
|
Ye P, Xing H, Lou F, Wang K, Pan Q, Zhou X, Gong L, Li D. Histone deacetylase 2 regulates doxorubicin (Dox) sensitivity of colorectal cancer cells by targeting ABCB1 transcription. Cancer Chemother Pharmacol 2016; 77:613-21. [DOI: 10.1007/s00280-016-2979-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 01/26/2016] [Indexed: 02/07/2023]
|
62
|
Bowtell DD, Böhm S, Ahmed AA, Aspuria PJ, Bast RC, Beral V, Berek JS, Birrer MJ, Blagden S, Bookman MA, Brenton JD, Chiappinelli KB, Martins FC, Coukos G, Drapkin R, Edmondson R, Fotopoulou C, Gabra H, Galon J, Gourley C, Heong V, Huntsman DG, Iwanicki M, Karlan BY, Kaye A, Lengyel E, Levine DA, Lu KH, McNeish IA, Menon U, Narod SA, Nelson BH, Nephew KP, Pharoah P, Powell DJ, Ramos P, Romero IL, Scott CL, Sood AK, Stronach EA, Balkwill FR. Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. Nat Rev Cancer 2015; 15:668-79. [PMID: 26493647 PMCID: PMC4892184 DOI: 10.1038/nrc4019] [Citation(s) in RCA: 857] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) accounts for 70-80% of ovarian cancer deaths, and overall survival has not changed significantly for several decades. In this Opinion article, we outline a set of research priorities that we believe will reduce incidence and improve outcomes for women with this disease. This 'roadmap' for HGSOC was determined after extensive discussions at an Ovarian Cancer Action meeting in January 2015.
Collapse
Affiliation(s)
- David D Bowtell
- Cancer Genomics and Genetics Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 8006, Australia; and the Kinghorn Cancer Centre, Garvan Institute for Medical Research, Darlinghurst, Sydney, 2010 New South Wales, Australia
| | - Steffen Böhm
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M6BQ, UK
| | - Ahmed A Ahmed
- Nuffield Department of Obstetrics and Gynaecology and the Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Paul-Joseph Aspuria
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | - Robert C Bast
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA
| | - Valerie Beral
- University of Oxford, Headington, Oxford, OX3 7LF, UK
| | | | | | - Sarah Blagden
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | | | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | | | - Filipe Correia Martins
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - George Coukos
- University Hospital of Lausanne, Lausanne, Switzerland
| | - Ronny Drapkin
- University of Pennsylvania, Penn Ovarian Cancer Research Center, Philadelphia, Pennsylvania 19104, USA
| | | | - Christina Fotopoulou
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Hani Gabra
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Jérôme Galon
- Institut National de la Santé et de la Recherche Médicale, UMRS1138, Laboratory of Integrative Cancer Immunology, Cordeliers Research Center, Université Paris Descartes, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ Paris 06, 75006 Paris, France
| | - Charlie Gourley
- Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Valerie Heong
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia
| | - David G Huntsman
- University of British Columbia, Departments of Pathology and Laboratory Medicine and Obstetrics and Gynecology, Faculty of Medicine, Vancouver, British Columbia V6T 2B5, Canada
| | | | - Beth Y Karlan
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | | | | | - Douglas A Levine
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Karen H Lu
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA
| | | | - Usha Menon
- Women's Cancer, Institute for Women's Health, University College London, London WC1E 6BT, UK
| | - Steven A Narod
- Women's College Research Institute, Toronto, Ontario M5G 1N8, Canada
| | - Brad H Nelson
- British Columbia Cancer Agency, Victoria, British Columbia V8R 6V5, Canada
| | - Kenneth P Nephew
- Indiana University School of Medicine &Simon Cancer Center, Bloomington, IN 47405-4401, USA
| | - Paul Pharoah
- University of Cambridge, Strangeways Research Laboratory, Cambridge CB1 8RN, UK
| | - Daniel J Powell
- University of Pennsylvania, Philadelphia, PA 19104-5156, USA
| | - Pilar Ramos
- Translational Genomics Research Institute (Tgen), Phoenix, Arizona 85004, USA
| | | | - Clare L Scott
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia
| | - Anil K Sood
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA
| | - Euan A Stronach
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Frances R Balkwill
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M6BQ, UK
| |
Collapse
|
63
|
Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. NATURE REVIEWS. CANCER 2015. [PMID: 26493647 DOI: 10.1038/nrc4019]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) accounts for 70-80% of ovarian cancer deaths, and overall survival has not changed significantly for several decades. In this Opinion article, we outline a set of research priorities that we believe will reduce incidence and improve outcomes for women with this disease. This 'roadmap' for HGSOC was determined after extensive discussions at an Ovarian Cancer Action meeting in January 2015.
Collapse
|
64
|
Bowtell DD, Böhm S, Ahmed AA, Aspuria PJ, Bast RC, Beral V, Berek JS, Birrer MJ, Blagden S, Bookman MA, Brenton JD, Chiappinelli KB, Martins FC, Coukos G, Drapkin R, Edmondson R, Fotopoulou C, Gabra H, Galon J, Gourley C, Heong V, Huntsman DG, Iwanicki M, Karlan BY, Kaye A, Lengyel E, Levine DA, Lu KH, McNeish IA, Menon U, Narod SA, Nelson BH, Nephew KP, Pharoah P, Powell DJ, Ramos P, Romero IL, Scott CL, Sood AK, Stronach EA, Balkwill FR. Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. NATURE REVIEWS. CANCER 2015. [PMID: 26493647 DOI: 10.1038/nrc4019] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High-grade serous ovarian cancer (HGSOC) accounts for 70-80% of ovarian cancer deaths, and overall survival has not changed significantly for several decades. In this Opinion article, we outline a set of research priorities that we believe will reduce incidence and improve outcomes for women with this disease. This 'roadmap' for HGSOC was determined after extensive discussions at an Ovarian Cancer Action meeting in January 2015.
Collapse
Affiliation(s)
- David D Bowtell
- Cancer Genomics and Genetics Program, Peter MacCallum Cancer Centre, Melbourne, Victoria 8006, Australia; and the Kinghorn Cancer Centre, Garvan Institute for Medical Research, Darlinghurst, Sydney, 2010 New South Wales, Australia
| | - Steffen Böhm
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M6BQ, UK
| | - Ahmed A Ahmed
- Nuffield Department of Obstetrics and Gynaecology and the Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK
| | - Paul-Joseph Aspuria
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | - Robert C Bast
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA
| | - Valerie Beral
- University of Oxford, Headington, Oxford, OX3 7LF, UK
| | | | | | - Sarah Blagden
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | | | - James D Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | | | - Filipe Correia Martins
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge CB2 0RE, UK
| | - George Coukos
- University Hospital of Lausanne, Lausanne, Switzerland
| | - Ronny Drapkin
- University of Pennsylvania, Penn Ovarian Cancer Research Center, Philadelphia, Pennsylvania 19104, USA
| | | | - Christina Fotopoulou
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Hani Gabra
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Jérôme Galon
- Institut National de la Santé et de la Recherche Médicale, UMRS1138, Laboratory of Integrative Cancer Immunology, Cordeliers Research Center, Université Paris Descartes, Sorbonne Paris Cité, Sorbonne Universités, UPMC Univ Paris 06, 75006 Paris, France
| | - Charlie Gourley
- Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XR, UK
| | - Valerie Heong
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia
| | - David G Huntsman
- University of British Columbia, Departments of Pathology and Laboratory Medicine and Obstetrics and Gynecology, Faculty of Medicine, Vancouver, British Columbia V6T 2B5, Canada
| | | | - Beth Y Karlan
- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, California 90048, USA
| | | | | | - Douglas A Levine
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Karen H Lu
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA
| | | | - Usha Menon
- Women's Cancer, Institute for Women's Health, University College London, London WC1E 6BT, UK
| | - Steven A Narod
- Women's College Research Institute, Toronto, Ontario M5G 1N8, Canada
| | - Brad H Nelson
- British Columbia Cancer Agency, Victoria, British Columbia V8R 6V5, Canada
| | - Kenneth P Nephew
- Indiana University School of Medicine &Simon Cancer Center, Bloomington, IN 47405-4401, USA
| | - Paul Pharoah
- University of Cambridge, Strangeways Research Laboratory, Cambridge CB1 8RN, UK
| | - Daniel J Powell
- University of Pennsylvania, Philadelphia, PA 19104-5156, USA
| | - Pilar Ramos
- Translational Genomics Research Institute (Tgen), Phoenix, Arizona 85004, USA
| | | | - Clare L Scott
- Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia
| | - Anil K Sood
- MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030-4009, USA
| | - Euan A Stronach
- Ovarian Cancer Action Research Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK
| | - Frances R Balkwill
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M6BQ, UK
| |
Collapse
|
65
|
Tabouret E, Labussière M, Alentorn A, Schmitt Y, Marie Y, Sanson M. LRP1B deletion is associated with poor outcome for glioblastoma patients. J Neurol Sci 2015; 358:440-3. [PMID: 26428308 DOI: 10.1016/j.jns.2015.09.345] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 08/14/2015] [Accepted: 09/10/2015] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Deletion of the tumor suppressor gene LRP1B has been reported in glioblastoma, the most aggressive primary brain tumor in adults. Our objective was to analyze frequency and prognostic impact of LRP1B deletion and expression levels. METHODS We retrospectively included all the primary IDH1/2 wild-type GBM patients with available clinical follow-up, DNA and RNA from our database. Deletions were analyzed by SNP-array. LRP1B mRNA expression was analyzed by reverse transcription quantitative polymerase chain reaction. RESULTS 178 patients were included with a median age of 62.36 years. LRP1B deletions were observed for 10.1% of patients (complete: 2.8%, partial: 7.3%). LRP1B deletions were associated with poor progression-free survival (PFS) (p=0.004) and overall survival (OS) (p=0.001). By multivariate analysis, LRP1B deletions remained significant for both PFS (p=0.003, hazard ratio (HR): 2.261) and OS (p=0.001, HR: 2.609). LRP1B was down expressed with a mean relative expression of 46% comparatively to normal tissue. No association between LRP1B mRNA and patient outcome was observed. No correlation was found between the deletions and the mRNA down-expression. These results were validated using GBM TCGA data. CONCLUSION LRP1B presents with frequent molecular alterations which impact patient outcome, highlighting the potential interest of this gene for glioblastoma patients.
Collapse
Affiliation(s)
- E Tabouret
- Sorbonne Universités, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR 7225, UPMC Paris 06, Paris 75013, France; AP-HP, Service de Neurologie 2, Groupe Hospitalier Pitié-Salpêtrière, Paris 75013, France
| | - M Labussière
- Sorbonne Universités, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR 7225, UPMC Paris 06, Paris 75013, France
| | - A Alentorn
- Sorbonne Universités, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR 7225, UPMC Paris 06, Paris 75013, France; AP-HP, Service de Neurologie 2, Groupe Hospitalier Pitié-Salpêtrière, Paris 75013, France
| | - Y Schmitt
- Sorbonne Universités, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR 7225, UPMC Paris 06, Paris 75013, France
| | - Y Marie
- Institut du Cerveau et de la Moelle épinière (ICM), Plateforme de Génotypage Séquençage, Paris 75013, France; OncoNeuroTek, Paris 75013, France
| | - M Sanson
- Sorbonne Universités, Centre de Recherche de l'Institut du Cerveau et de la Moelle épinière, INSERM U1127, CNRS UMR 7225, UPMC Paris 06, Paris 75013, France; AP-HP, Service de Neurologie 2, Groupe Hospitalier Pitié-Salpêtrière, Paris 75013, France; OncoNeuroTek, Paris 75013, France.
| |
Collapse
|
66
|
Patch AM, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday S, Nones K, Cowin P, Alsop K, Bailey PJ, Kassahn KS, Newell F, Quinn MCJ, Kazakoff S, Quek K, Wilhelm-Benartzi C, Curry E, Leong HS, Hamilton A, Mileshkin L, Au-Yeung G, Kennedy C, Hung J, Chiew YE, Harnett P, Friedlander M, Quinn M, Pyman J, Cordner S, O'Brien P, Leditschke J, Young G, Strachan K, Waring P, Azar W, Mitchell C, Traficante N, Hendley J, Thorne H, Shackleton M, Miller DK, Arnau GM, Tothill RW, Holloway TP, Semple T, Harliwong I, Nourse C, Nourbakhsh E, Manning S, Idrisoglu S, Bruxner TJC, Christ AN, Poudel B, Holmes O, Anderson M, Leonard C, Lonie A, Hall N, Wood S, Taylor DF, Xu Q, Fink JL, Waddell N, Drapkin R, Stronach E, Gabra H, Brown R, Jewell A, Nagaraj SH, Markham E, Wilson PJ, Ellul J, McNally O, Doyle MA, Vedururu R, Stewart C, Lengyel E, Pearson JV, Waddell N, deFazio A, Grimmond SM, Bowtell DDL. Whole-genome characterization of chemoresistant ovarian cancer. Nature 2015; 521:489-94. [PMID: 26017449 DOI: 10.1038/nature14410] [Citation(s) in RCA: 1147] [Impact Index Per Article: 114.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 03/16/2015] [Indexed: 12/12/2022]
Abstract
Patients with high-grade serous ovarian cancer (HGSC) have experienced little improvement in overall survival, and standard treatment has not advanced beyond platinum-based combination chemotherapy, during the past 30 years. To understand the drivers of clinical phenotypes better, here we use whole-genome sequencing of tumour and germline DNA samples from 92 patients with primary refractory, resistant, sensitive and matched acquired resistant disease. We show that gene breakage commonly inactivates the tumour suppressors RB1, NF1, RAD51B and PTEN in HGSC, and contributes to acquired chemotherapy resistance. CCNE1 amplification was common in primary resistant and refractory disease. We observed several molecular events associated with acquired resistance, including multiple independent reversions of germline BRCA1 or BRCA2 mutations in individual patients, loss of BRCA1 promoter methylation, an alteration in molecular subtype, and recurrent promoter fusion associated with overexpression of the drug efflux pump MDR1.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- Cohort Studies
- Cyclin E/genetics
- Cystadenocarcinoma, Serous/drug therapy
- Cystadenocarcinoma, Serous/genetics
- DNA Methylation
- DNA Mutational Analysis
- DNA-Binding Proteins/genetics
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Female
- Genes, BRCA1
- Genes, BRCA2
- Genes, Neurofibromatosis 1
- Genome, Human/genetics
- Germ-Line Mutation/genetics
- Humans
- Mutagenesis/genetics
- Oncogene Proteins/genetics
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- PTEN Phosphohydrolase/genetics
- Promoter Regions, Genetic/genetics
- Retinoblastoma Protein/genetics
Collapse
Affiliation(s)
- Ann-Marie Patch
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia [2] QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | | | - Dariush Etemadmoghadam
- 1] Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia [2] Department of Pathology, University of Melbourne, Parkville, Victoria 3052, Australia [3] Sir Peter MacCallum Cancer Centre Department of Oncology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Dale W Garsed
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06030, USA
| | - Sian Fereday
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Katia Nones
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia [2] QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Prue Cowin
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Kathryn Alsop
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Peter J Bailey
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia [2] WolfsonWohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Karin S Kassahn
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia [2] Technology Advancement Unit, Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia 5000, Australia
| | - Felicity Newell
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Michael C J Quinn
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia [2] QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Stephen Kazakoff
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia [2] QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Kelly Quek
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Charlotte Wilhelm-Benartzi
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
| | - Ed Curry
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
| | - Huei San Leong
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Anne Hamilton
- 1] Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia [2] Department of Medicine, University of Melbourne, Parkville, Victoria 3052, Australia [3] The Royal Women's Hospital, Parkville, Victoria 3052, Australia
| | - Linda Mileshkin
- 1] Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia [2] Sir Peter MacCallum Cancer Centre Department of Oncology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - George Au-Yeung
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Catherine Kennedy
- Centre for Cancer Research, University of Sydney at Westmead Millennium Institute, and Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales 2145, Australia
| | - Jillian Hung
- Centre for Cancer Research, University of Sydney at Westmead Millennium Institute, and Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales 2145, Australia
| | - Yoke-Eng Chiew
- Centre for Cancer Research, University of Sydney at Westmead Millennium Institute, and Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales 2145, Australia
| | - Paul Harnett
- Crown Princess Mary Cancer Centre and University of Sydney at Westmead Hospital, Westmead, Sydney, New South Wales 2145, Australia
| | - Michael Friedlander
- Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2031, Australia
| | - Michael Quinn
- The Royal Women's Hospital, Parkville, Victoria 3052, Australia
| | - Jan Pyman
- The Royal Women's Hospital, Parkville, Victoria 3052, Australia
| | - Stephen Cordner
- Victorian Institute of Forensic Medicine, Southbank, Victoria 3006, Australia
| | - Patricia O'Brien
- Victorian Institute of Forensic Medicine, Southbank, Victoria 3006, Australia
| | - Jodie Leditschke
- Victorian Institute of Forensic Medicine, Southbank, Victoria 3006, Australia
| | - Greg Young
- Victorian Institute of Forensic Medicine, Southbank, Victoria 3006, Australia
| | - Kate Strachan
- Victorian Institute of Forensic Medicine, Southbank, Victoria 3006, Australia
| | - Paul Waring
- Department of Pathology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Walid Azar
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Chris Mitchell
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Nadia Traficante
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Joy Hendley
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Heather Thorne
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Mark Shackleton
- 1] Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia [2] Sir Peter MacCallum Cancer Centre Department of Oncology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - David K Miller
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Gisela Mir Arnau
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Richard W Tothill
- 1] Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia [2] Sir Peter MacCallum Cancer Centre Department of Oncology, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | - Timothy Semple
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Ivon Harliwong
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Craig Nourse
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Ehsan Nourbakhsh
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Suzanne Manning
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Senel Idrisoglu
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Timothy J C Bruxner
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Angelika N Christ
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Barsha Poudel
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Oliver Holmes
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia [2] QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Matthew Anderson
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Conrad Leonard
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia [2] QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Andrew Lonie
- Victorian Life Sciences Computation Initiative, Carlton, Victoria 3053, Australia
| | - Nathan Hall
- La Trobe Institute for Molecular Science, Bundoora, Victoria 3083, Australia
| | - Scott Wood
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia [2] QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Darrin F Taylor
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Qinying Xu
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia [2] QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - J Lynn Fink
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Nick Waddell
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Ronny Drapkin
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115-5450, USA
| | - Euan Stronach
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
| | - Hani Gabra
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
| | - Robert Brown
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
| | | | - Shivashankar H Nagaraj
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Emma Markham
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Peter J Wilson
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Jason Ellul
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Orla McNally
- Centre for Cancer Research, University of Sydney at Westmead Millennium Institute, and Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales 2145, Australia
| | - Maria A Doyle
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | | | - Collin Stewart
- The University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | - John V Pearson
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia [2] QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Nicola Waddell
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia [2] QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Anna deFazio
- Centre for Cancer Research, University of Sydney at Westmead Millennium Institute, and Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales 2145, Australia
| | - Sean M Grimmond
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia [2] WolfsonWohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - David D L Bowtell
- 1] Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia [2] Department of Pathology, University of Melbourne, Parkville, Victoria 3052, Australia [3] Sir Peter MacCallum Cancer Centre Department of Oncology, University of Melbourne, Parkville, Victoria 3052, Australia [4] Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK [5] Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
67
|
Patch AM, Christie EL, Etemadmoghadam D, Garsed DW, George J, Fereday S, Nones K, Cowin P, Alsop K, Bailey PJ, Kassahn KS, Newell F, Quinn MCJ, Kazakoff S, Quek K, Wilhelm-Benartzi C, Curry E, Leong HS, Hamilton A, Mileshkin L, Au-Yeung G, Kennedy C, Hung J, Chiew YE, Harnett P, Friedlander M, Quinn M, Pyman J, Cordner S, O'Brien P, Leditschke J, Young G, Strachan K, Waring P, Azar W, Mitchell C, Traficante N, Hendley J, Thorne H, Shackleton M, Miller DK, Arnau GM, Tothill RW, Holloway TP, Semple T, Harliwong I, Nourse C, Nourbakhsh E, Manning S, Idrisoglu S, Bruxner TJC, Christ AN, Poudel B, Holmes O, Anderson M, Leonard C, Lonie A, Hall N, Wood S, Taylor DF, Xu Q, Fink JL, Waddell N, Drapkin R, Stronach E, Gabra H, Brown R, Jewell A, Nagaraj SH, Markham E, Wilson PJ, Ellul J, McNally O, Doyle MA, Vedururu R, Stewart C, Lengyel E, Pearson JV, Waddell N, deFazio A, Grimmond SM, Bowtell DDL. Whole-genome characterization of chemoresistant ovarian cancer. Nature 2015. [PMID: 26017449 DOI: 10.1038/nature14410] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Patients with high-grade serous ovarian cancer (HGSC) have experienced little improvement in overall survival, and standard treatment has not advanced beyond platinum-based combination chemotherapy, during the past 30 years. To understand the drivers of clinical phenotypes better, here we use whole-genome sequencing of tumour and germline DNA samples from 92 patients with primary refractory, resistant, sensitive and matched acquired resistant disease. We show that gene breakage commonly inactivates the tumour suppressors RB1, NF1, RAD51B and PTEN in HGSC, and contributes to acquired chemotherapy resistance. CCNE1 amplification was common in primary resistant and refractory disease. We observed several molecular events associated with acquired resistance, including multiple independent reversions of germline BRCA1 or BRCA2 mutations in individual patients, loss of BRCA1 promoter methylation, an alteration in molecular subtype, and recurrent promoter fusion associated with overexpression of the drug efflux pump MDR1.
Collapse
Affiliation(s)
- Ann-Marie Patch
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia [2] QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | | | - Dariush Etemadmoghadam
- 1] Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia [2] Department of Pathology, University of Melbourne, Parkville, Victoria 3052, Australia [3] Sir Peter MacCallum Cancer Centre Department of Oncology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Dale W Garsed
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut 06030, USA
| | - Sian Fereday
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Katia Nones
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia [2] QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Prue Cowin
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Kathryn Alsop
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Peter J Bailey
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia [2] WolfsonWohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Karin S Kassahn
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia [2] Technology Advancement Unit, Genetics and Molecular Pathology, SA Pathology, Adelaide, South Australia 5000, Australia
| | - Felicity Newell
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Michael C J Quinn
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia [2] QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Stephen Kazakoff
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia [2] QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Kelly Quek
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Charlotte Wilhelm-Benartzi
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
| | - Ed Curry
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
| | - Huei San Leong
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | | | - Anne Hamilton
- 1] Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia [2] Department of Medicine, University of Melbourne, Parkville, Victoria 3052, Australia [3] The Royal Women's Hospital, Parkville, Victoria 3052, Australia
| | - Linda Mileshkin
- 1] Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia [2] Sir Peter MacCallum Cancer Centre Department of Oncology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - George Au-Yeung
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Catherine Kennedy
- Centre for Cancer Research, University of Sydney at Westmead Millennium Institute, and Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales 2145, Australia
| | - Jillian Hung
- Centre for Cancer Research, University of Sydney at Westmead Millennium Institute, and Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales 2145, Australia
| | - Yoke-Eng Chiew
- Centre for Cancer Research, University of Sydney at Westmead Millennium Institute, and Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales 2145, Australia
| | - Paul Harnett
- Crown Princess Mary Cancer Centre and University of Sydney at Westmead Hospital, Westmead, Sydney, New South Wales 2145, Australia
| | - Michael Friedlander
- Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2031, Australia
| | - Michael Quinn
- The Royal Women's Hospital, Parkville, Victoria 3052, Australia
| | - Jan Pyman
- The Royal Women's Hospital, Parkville, Victoria 3052, Australia
| | - Stephen Cordner
- Victorian Institute of Forensic Medicine, Southbank, Victoria 3006, Australia
| | - Patricia O'Brien
- Victorian Institute of Forensic Medicine, Southbank, Victoria 3006, Australia
| | - Jodie Leditschke
- Victorian Institute of Forensic Medicine, Southbank, Victoria 3006, Australia
| | - Greg Young
- Victorian Institute of Forensic Medicine, Southbank, Victoria 3006, Australia
| | - Kate Strachan
- Victorian Institute of Forensic Medicine, Southbank, Victoria 3006, Australia
| | - Paul Waring
- Department of Pathology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Walid Azar
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Chris Mitchell
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Nadia Traficante
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Joy Hendley
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Heather Thorne
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Mark Shackleton
- 1] Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia [2] Sir Peter MacCallum Cancer Centre Department of Oncology, University of Melbourne, Parkville, Victoria 3052, Australia
| | - David K Miller
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Gisela Mir Arnau
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Richard W Tothill
- 1] Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia [2] Sir Peter MacCallum Cancer Centre Department of Oncology, University of Melbourne, Parkville, Victoria 3052, Australia
| | | | - Timothy Semple
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Ivon Harliwong
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Craig Nourse
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Ehsan Nourbakhsh
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Suzanne Manning
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Senel Idrisoglu
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Timothy J C Bruxner
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Angelika N Christ
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Barsha Poudel
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Oliver Holmes
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia [2] QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Matthew Anderson
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Conrad Leonard
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia [2] QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Andrew Lonie
- Victorian Life Sciences Computation Initiative, Carlton, Victoria 3053, Australia
| | - Nathan Hall
- La Trobe Institute for Molecular Science, Bundoora, Victoria 3083, Australia
| | - Scott Wood
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia [2] QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Darrin F Taylor
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Qinying Xu
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia [2] QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - J Lynn Fink
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Nick Waddell
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Ronny Drapkin
- Dana-Farber Cancer Institute, Boston, Massachusetts 02115-5450, USA
| | - Euan Stronach
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
| | - Hani Gabra
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
| | - Robert Brown
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK
| | | | - Shivashankar H Nagaraj
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Emma Markham
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Peter J Wilson
- Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia
| | - Jason Ellul
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | - Orla McNally
- Centre for Cancer Research, University of Sydney at Westmead Millennium Institute, and Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales 2145, Australia
| | - Maria A Doyle
- Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia
| | | | - Collin Stewart
- The University of Western Australia, Crawley, Western Australia 6009, Australia
| | | | - John V Pearson
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia [2] QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Nicola Waddell
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia [2] QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Anna deFazio
- Centre for Cancer Research, University of Sydney at Westmead Millennium Institute, and Department of Gynaecological Oncology, Westmead Hospital, Sydney, New South Wales 2145, Australia
| | - Sean M Grimmond
- 1] Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4067, Australia [2] WolfsonWohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - David D L Bowtell
- 1] Peter MacCallum Cancer Centre, East Melbourne, Victoria 3002, Australia [2] Department of Pathology, University of Melbourne, Parkville, Victoria 3052, Australia [3] Sir Peter MacCallum Cancer Centre Department of Oncology, University of Melbourne, Parkville, Victoria 3052, Australia [4] Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London W12 0HS, UK [5] Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3052, Australia
| |
Collapse
|
68
|
Whole-genome characterization of chemoresistant ovarian cancer. Nature 2015. [PMID: 26017449 DOI: 10.1038/nature14410]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Patients with high-grade serous ovarian cancer (HGSC) have experienced little improvement in overall survival, and standard treatment has not advanced beyond platinum-based combination chemotherapy, during the past 30 years. To understand the drivers of clinical phenotypes better, here we use whole-genome sequencing of tumour and germline DNA samples from 92 patients with primary refractory, resistant, sensitive and matched acquired resistant disease. We show that gene breakage commonly inactivates the tumour suppressors RB1, NF1, RAD51B and PTEN in HGSC, and contributes to acquired chemotherapy resistance. CCNE1 amplification was common in primary resistant and refractory disease. We observed several molecular events associated with acquired resistance, including multiple independent reversions of germline BRCA1 or BRCA2 mutations in individual patients, loss of BRCA1 promoter methylation, an alteration in molecular subtype, and recurrent promoter fusion associated with overexpression of the drug efflux pump MDR1.
Collapse
|
69
|
Schwarz RF, Ng CKY, Cooke SL, Newman S, Temple J, Piskorz AM, Gale D, Sayal K, Murtaza M, Baldwin PJ, Rosenfeld N, Earl HM, Sala E, Jimenez-Linan M, Parkinson CA, Markowetz F, Brenton JD. Spatial and temporal heterogeneity in high-grade serous ovarian cancer: a phylogenetic analysis. PLoS Med 2015; 12:e1001789. [PMID: 25710373 PMCID: PMC4339382 DOI: 10.1371/journal.pmed.1001789] [Citation(s) in RCA: 297] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 01/08/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The major clinical challenge in the treatment of high-grade serous ovarian cancer (HGSOC) is the development of progressive resistance to platinum-based chemotherapy. The objective of this study was to determine whether intra-tumour genetic heterogeneity resulting from clonal evolution and the emergence of subclonal tumour populations in HGSOC was associated with the development of resistant disease. METHODS AND FINDINGS Evolutionary inference and phylogenetic quantification of heterogeneity was performed using the MEDICC algorithm on high-resolution whole genome copy number profiles and selected genome-wide sequencing of 135 spatially and temporally separated samples from 14 patients with HGSOC who received platinum-based chemotherapy. Samples were obtained from the clinical CTCR-OV03/04 studies, and patients were enrolled between 20 July 2007 and 22 October 2009. Median follow-up of the cohort was 31 mo (interquartile range 22-46 mo), censored after 26 October 2013. Outcome measures were overall survival (OS) and progression-free survival (PFS). There were marked differences in the degree of clonal expansion (CE) between patients (median 0.74, interquartile range 0.66-1.15), and dichotimization by median CE showed worse survival in CE-high cases (PFS 12.7 versus 10.1 mo, p = 0.009; OS 42.6 versus 23.5 mo, p = 0.003). Bootstrap analysis with resampling showed that the 95% confidence intervals for the hazard ratios for PFS and OS in the CE-high group were greater than 1.0. These data support a relationship between heterogeneity and survival but do not precisely determine its effect size. Relapsed tissue was available for two patients in the CE-high group, and phylogenetic analysis showed that the prevalent clonal population at clinical recurrence arose from early divergence events. A subclonal population marked by a NF1 deletion showed a progressive increase in tumour allele fraction during chemotherapy. CONCLUSIONS This study demonstrates that quantitative measures of intra-tumour heterogeneity may have predictive value for survival after chemotherapy treatment in HGSOC. Subclonal tumour populations are present in pre-treatment biopsies in HGSOC and can undergo expansion during chemotherapy, causing clinical relapse.
Collapse
Affiliation(s)
- Roland F. Schwarz
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Charlotte K. Y. Ng
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Susanna L. Cooke
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Scott Newman
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Jillian Temple
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Anna M. Piskorz
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Davina Gale
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Karen Sayal
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Muhammed Murtaza
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Peter J. Baldwin
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Nitzan Rosenfeld
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Helena M. Earl
- Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge, United Kingdom
| | - Evis Sala
- University Department of Radiology, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | | | - Christine A. Parkinson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Florian Markowetz
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
70
|
Abstract
WWOX is a gene that spans an extremely large chromosomal region. It is derived from within chromosomal band 16q23.2 which is a region with frequent deletions and other alterations in a variety of different cancers. This chromosomal band also contains the FRA16D common fragile site (CFS). CFSs are chromosomal regions found in all individuals which are highly unstable. WWOX has also been demonstrated to function as a tumor suppressor that is involved in the development of many cancers. Two other highly unstable CFSs, FRA3B (3p14.2) and FRA6E (6q26), also span extremely large genes, FHIT and PARK2, respectively, and these two genes are also found to be important tumor suppressors. There are a number of interesting similarities between these three large CFS genes. In spite of the fact that they are derived from some of the most unstable chromosomal regions in the genome, they are found to be highly evolutionarily conserved and the chromosomal region spanning the mouse homologs of both WWOX and FHIT are also CFSs in mice. Many of the other CFSs also span extremely large genes and many of these are very attractive tumor suppressor candidates. WWOX is therefore a member of a very interesting family of very large CFS genes.
Collapse
Affiliation(s)
- Ge Gao
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - David I Smith
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
71
|
Takeda H, Wei Z, Koso H, Rust AG, Yew CCK, Mann MB, Ward JM, Adams DJ, Copeland NG, Jenkins NA. Transposon mutagenesis identifies genes and evolutionary forces driving gastrointestinal tract tumor progression. Nat Genet 2015; 47:142-50. [PMID: 25559195 DOI: 10.1038/ng.3175] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 12/04/2014] [Indexed: 12/14/2022]
Abstract
To provide a more comprehensive understanding of the genes and evolutionary forces driving colorectal cancer (CRC) progression, we performed Sleeping Beauty (SB) transposon mutagenesis screens in mice carrying sensitizing mutations in genes that act at different stages of tumor progression. This approach allowed us to identify a set of genes that appear to be highly relevant for CRC and to provide a better understanding of the evolutionary forces and systems properties of CRC. We also identified six genes driving malignant tumor progression and a new human CRC tumor-suppressor gene, ZNF292, that might also function in other types of cancer. Our comprehensive CRC data set provides a resource with which to develop new therapies for treating CRC.
Collapse
Affiliation(s)
- Haruna Takeda
- 1] Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore. [2] Department of Oncologic Pathology, School of Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Zhubo Wei
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Hideto Koso
- 1] Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore. [2] Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Alistair G Rust
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Christopher Chin Kuan Yew
- Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Michael B Mann
- 1] Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore. [2] Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Jerrold M Ward
- Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Neal G Copeland
- 1] Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore. [2] Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Nancy A Jenkins
- 1] Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore. [2] Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
72
|
Gao G, Smith DI. Very large common fragile site genes and their potential role in cancer development. Cell Mol Life Sci 2014; 71:4601-15. [PMID: 25300511 PMCID: PMC11113612 DOI: 10.1007/s00018-014-1753-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 10/24/2022]
Abstract
Common fragile sites (CFSs) are large chromosomal regions that are hot-spots for alterations especially within cancer cells. The three most frequently expressed CFS regions (FRA3B, FRA16D and FRA6E) contain genes that span extremely large genomic regions (FHIT, WWOX and PARK2, respectively), and these genes were found to function as important tumor suppressors. Many other CFS regions contain extremely large genes that are also targets of alterations in multiple cancers, but none have yet been demonstrated to function as tumor suppressors. The loss of expression of just FHIT or WWOX has been found to be associated with a worse overall clinical outcome. Studies in different cancers have revealed that some cancers have decreased expression of multiple large CFS genes. This loss of expression could have a profound phenotypic effect on these cells. In this review, we will summarize the known large common fragile site genes and discuss their potential relationship to cancer development.
Collapse
Affiliation(s)
- Ge Gao
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905 USA
| | - David I. Smith
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
73
|
Leung AWY, Kalra J, Santos ND, Bally MB, Anglesio MS. Harnessing the potential of lipid-based nanomedicines for type-specific ovarian cancer treatments. Nanomedicine (Lond) 2014; 9:501-22. [PMID: 24746193 DOI: 10.2217/nnm.13.220] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Epithelial ovarian cancers are a group of at least five histologically and clinically distinct diseases, yet at this time patients with these different diseases are all treated with the same platinum and taxane-based chemotherapeutic regimen. With increased knowledge of histotype-specific differences that correlate with treatment responses and resistance, novel treatment strategies will be developed for each distinct disease. Type-specific or resistance-driven molecularly targeted agents will provide some specificity over traditional chemotherapies and it is argued here that nanoscaled drug delivery systems, in particular lipid-based formulations, have the potential to improve the delivery and specificity of pathway-specific drugs and broad-spectrum cytotoxic chemotherapeutics. An overview of the current understanding of ovarian cancers and the evolving clinical management of these diseases is provided. This overview is needed as it provides the context for understanding the current role of drug delivery systems in the treatment of ovarian cancer and the need to design formulations for treatment of clinically distinct forms of ovarian cancer.
Collapse
Affiliation(s)
- Ada W Y Leung
- Experimental Therapeutics, British Columbia Cancer Agency Cancer Research Centre, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
74
|
NCI Workshop Report: Clinical and Computational Requirements for Correlating Imaging Phenotypes with Genomics Signatures. Transl Oncol 2014; 7:556-69. [PMID: 25389451 PMCID: PMC4225695 DOI: 10.1016/j.tranon.2014.07.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 07/25/2014] [Accepted: 07/29/2014] [Indexed: 12/21/2022] Open
Abstract
The National Cancer Institute (NCI) Cancer Imaging Program organized two related workshops on June 26–27, 2013, entitled “Correlating Imaging Phenotypes with Genomics Signatures Research” and “Scalable Computational Resources as Required for Imaging-Genomics Decision Support Systems.” The first workshop focused on clinical and scientific requirements, exploring our knowledge of phenotypic characteristics of cancer biological properties to determine whether the field is sufficiently advanced to correlate with imaging phenotypes that underpin genomics and clinical outcomes, and exploring new scientific methods to extract phenotypic features from medical images and relate them to genomics analyses. The second workshop focused on computational methods that explore informatics and computational requirements to extract phenotypic features from medical images and relate them to genomics analyses and improve the accessibility and speed of dissemination of existing NIH resources. These workshops linked clinical and scientific requirements of currently known phenotypic and genotypic cancer biology characteristics with imaging phenotypes that underpin genomics and clinical outcomes. The group generated a set of recommendations to NCI leadership and the research community that encourage and support development of the emerging radiogenomics research field to address short-and longer-term goals in cancer research.
Collapse
|
75
|
Despierre E, Moisse M, Yesilyurt B, Sehouli J, Braicu I, Mahner S, Castillo-Tong DC, Zeillinger R, Lambrechts S, Leunen K, Amant F, Moerman P, Lambrechts D, Vergote I. Somatic copy number alterations predict response to platinum therapy in epithelial ovarian cancer. Gynecol Oncol 2014; 135:415-22. [PMID: 25281495 DOI: 10.1016/j.ygyno.2014.09.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 09/22/2014] [Accepted: 09/24/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Platinum resistance remains an obstacle in the treatment of epithelial ovarian cancer (EOC). The goal of this study was to profile EOCs for somatic copy number alterations (SCNAs) as predictive markers of platinum response. METHODS SCNAs were assessed in a discovery (n=86) and validation cohort (n=115) of high risk stage I or stage II-IV EOCs using high-resolution SNP arrays. ASCAT and GISTIC identified all significantly overrepresented amplified or deleted chromosomal regions. Cox regression and univariate analysis assessed which SCNAs correlated with overall survival (OS), progression-free survival (PFS), platinum-free interval (PFI) and platinum response. Relevant SCNAs were also assessed in a pooled analysis involving both cohorts and published SCNA data from The Cancer Genome Atlas (TCGA; n=227). RESULTS We identified 53 regions to be significantly overrepresented in EOC. Of these, 6 were associated with OS, PFS or PFI in the discovery cohort at P<0.05. In the validation cohort, amplifications of chromosomal region 14q32.33, which contains AKT1 as a potential driver gene, also correlated with OS (OR=1.670; P=0.018). In a pooled analysis of 428 tumors, involving the discovery, validation and TCGA cohorts, 14q32.33 amplifications significantly reduced OS, PFS and PFI (HR=2.69, P=1.7×10(-4); HR=1.82, P=1.9×10(-2) and HR=1.80, P=2.2×10(-2) respectively). Moreover, AKT1 mRNA expression correlated with the number of chromosomal copies of the 14q32.33 region (P=2.8×10(-11);R(2)=0.26). CONCLUSIONS We established that amplifications in 14q32.33 were associated with reduced OS, PFS, PFI and platinum resistance in three independent cohorts, suggesting that AKT1 amplifications act as a potentially predictive marker for EOC treated with platinum-based chemotherapy.
Collapse
Affiliation(s)
- Evelyn Despierre
- Gynecologic Oncology, University Hospitals Leuven, Leuven, Belgium; Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Matthieu Moisse
- Laboratory for Translational Genetics, Department of Oncology, KU Leuven, Leuven, Belgium; Vesalius Research Center, VIB, Leuven, Belgium
| | - Betül Yesilyurt
- Laboratory for Translational Genetics, Department of Oncology, KU Leuven, Leuven, Belgium; Vesalius Research Center, VIB, Leuven, Belgium
| | - Jalid Sehouli
- Department of Gynecology, Campus Virchow-Klinikum, Charité University Hospital, European Competence Center for Ovarian Cancer Berlin, Germany
| | - Ioana Braicu
- Department of Gynecology, Campus Virchow-Klinikum, Charité University Hospital, European Competence Center for Ovarian Cancer Berlin, Germany
| | - Sven Mahner
- Department of Gynecology, Hamburg-Eppendorf University Medical Center, University Cancer Center Hamburg-Eppendorf (UCCH), Germany
| | - Dan Cacsire Castillo-Tong
- Department of Obstetrics and Gynecology, Molecular Oncology Group, Comprehensive Cancer Center, Gynecologic Cancer Unit, Medical University of Vienna, Austria
| | - Robert Zeillinger
- Department of Obstetrics and Gynecology, Molecular Oncology Group, Comprehensive Cancer Center, Gynecologic Cancer Unit, Medical University of Vienna, Austria
| | - Sandrina Lambrechts
- Gynecologic Oncology, University Hospitals Leuven, Leuven, Belgium; Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Karin Leunen
- Gynecologic Oncology, University Hospitals Leuven, Leuven, Belgium; Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Frédéric Amant
- Gynecologic Oncology, University Hospitals Leuven, Leuven, Belgium; Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Philippe Moerman
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Oncology, KU Leuven, Leuven, Belgium; Vesalius Research Center, VIB, Leuven, Belgium.
| | - Ignace Vergote
- Gynecologic Oncology, University Hospitals Leuven, Leuven, Belgium; Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
76
|
Tothill RW, Li J, Mileshkin L, Doig K, Siganakis T, Cowin P, Fellowes A, Semple T, Fox S, Byron K, Kowalczyk A, Thomas D, Schofield P, Bowtell DD. Massively-parallel sequencing assists the diagnosis and guided treatment of cancers of unknown primary. J Pathol 2014; 231:413-23. [PMID: 24037760 DOI: 10.1002/path.4251] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 08/22/2013] [Accepted: 08/28/2013] [Indexed: 12/30/2022]
Abstract
The clinical management of patients with cancer of unknown primary (CUP) is hampered by the absence of a definitive site of origin. We explored the utility of massively-parallel (next-generation) sequencing for the diagnosis of a primary site of origin and for the identification of novel treatment options. DNA enrichment by hybridization capture of 701 genes of clinical and/or biological importance, followed by massively-parallel sequencing, was performed on 16 CUP patients who had defied attempts to identify a likely site of origin. We obtained high quality data from both fresh-frozen and formalin-fixed, paraffin-embedded samples, demonstrating accessibility to routine diagnostic material. DNA copy-number obtained by massively-parallel sequencing was comparable to that obtained using oligonucleotide microarrays or quantitatively hybridized fluorescently tagged oligonucleotides. Sequencing to an average depth of 458-fold enabled detection of somatically acquired single nucleotide mutations, insertions, deletions and copy-number changes, and measurement of allelic frequency. Common cancer-causing mutations were found in all cancers. Mutation profiling revealed therapeutic gene targets and pathways in 12/16 cases, providing novel treatment options. The presence of driver mutations that are enriched in certain known tumour types, together with mutational signatures indicative of exposure to sunlight or smoking, added to clinical, pathological, and molecular indicators of likely tissue of origin. Massively-parallel DNA sequencing can therefore provide comprehensive mutation, DNA copy-number, and mutational signature data that are of significant clinical value for a majority of CUP patients, providing both cumulative evidence for the diagnosis of primary site and options for future treatment.
Collapse
Affiliation(s)
- Richard W Tothill
- The Peter MacCallum Cancer Centre, East Melbourne, VIC, Australia; The Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Schwarz RF, Trinh A, Sipos B, Brenton JD, Goldman N, Markowetz F. Phylogenetic quantification of intra-tumour heterogeneity. PLoS Comput Biol 2014; 10:e1003535. [PMID: 24743184 PMCID: PMC3990475 DOI: 10.1371/journal.pcbi.1003535] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 02/05/2014] [Indexed: 02/07/2023] Open
Abstract
Intra-tumour genetic heterogeneity is the result of ongoing evolutionary change within each cancer. The expansion of genetically distinct sub-clonal populations may explain the emergence of drug resistance, and if so, would have prognostic and predictive utility. However, methods for objectively quantifying tumour heterogeneity have been missing and are particularly difficult to establish in cancers where predominant copy number variation prevents accurate phylogenetic reconstruction owing to horizontal dependencies caused by long and cascading genomic rearrangements. To address these challenges, we present MEDICC, a method for phylogenetic reconstruction and heterogeneity quantification based on a Minimum Event Distance for Intra-tumour Copy-number Comparisons. Using a transducer-based pairwise comparison function, we determine optimal phasing of major and minor alleles, as well as evolutionary distances between samples, and are able to reconstruct ancestral genomes. Rigorous simulations and an extensive clinical study show the power of our method, which outperforms state-of-the-art competitors in reconstruction accuracy, and additionally allows unbiased numerical quantification of tumour heterogeneity. Accurate quantification and evolutionary inference are essential to understand the functional consequences of tumour heterogeneity. The MEDICC algorithms are independent of the experimental techniques used and are applicable to both next-generation sequencing and array CGH data.
Collapse
Affiliation(s)
- Roland F. Schwarz
- University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Anne Trinh
- University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| | - Botond Sipos
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - James D. Brenton
- University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Nick Goldman
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, United Kingdom
| | - Florian Markowetz
- University of Cambridge, Cambridge, United Kingdom
- Cancer Research UK Cambridge Institute, Cambridge, United Kingdom
| |
Collapse
|
78
|
Etemadmoghadam D, Au-Yeung G, Wall M, Mitchell C, Kansara M, Loehrer E, Batzios C, George J, Ftouni S, Weir BA, Carter S, Gresshoff I, Mileshkin L, Rischin D, Hahn WC, Waring PM, Getz G, Cullinane C, Campbell LJ, Bowtell DD. Resistance to CDK2 inhibitors is associated with selection of polyploid cells in CCNE1-amplified ovarian cancer. Clin Cancer Res 2013; 19:5960-71. [PMID: 24004674 DOI: 10.1158/1078-0432.ccr-13-1337] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Amplification of cyclin E1 (CCNE1) is associated with poor outcome in breast, lung, and other solid cancers, and is the most prominent structural variant associated with primary treatment failure in high-grade serous ovarian cancer (HGSC). We have previously shown that CCNE1-amplified tumors show amplicon-dependent sensitivity to CCNE1 suppression. Here, we explore targeting CDK2 as a novel therapeutic strategy in CCNE1-amplified cancers and mechanisms of resistance. EXPERIMENTAL DESIGN We examined the effect of CDK2 suppression using RNA interference and small-molecule inhibitors in SK-OV-3, OVCAR-4, and OVCAR-3 ovarian cancer cell lines. To identify mechanisms of resistance, we derived multiple, independent resistant sublines of OVCAR-3 to CDK2 inhibitors. Resistant cells were extensively characterized by gene expression and copy number analysis, fluorescence-activated cell sorting profiling and conventional karyotyping. In addition, we explored the relationship between CCNE1 amplification and polyploidy using data from primary tumors. RESULTS We validate CDK2 as a therapeutic target in CCNE1-amplified cells by showing selective sensitivity to suppression, either by gene knockdown or using small-molecule inhibitors. In addition, we identified two resistance mechanisms, one involving upregulation of CDK2 and another novel mechanism involving selection of polyploid cells from the pretreatment tumor population. Our analysis of genomic data shows that polyploidy is a feature of cancer genomes with CCNE1 amplification. CONCLUSIONS These findings suggest that cyclinE1/CDK2 is an important therapeutic target in HGSC, but that resistance to CDK2 inhibitors may emerge due to upregulation of CDK2 target protein and through preexisting cellular polyploidy.
Collapse
Affiliation(s)
- Dariush Etemadmoghadam
- Authors' Affiliations: Peter MacCallum Cancer Centre, East Melbourne; Victorian Cancer Cytogenetics Service, St Vincent's Hospital, Melbourne; Sir Peter MacCallum Department of Oncology; Departments of Pathology, Biochemistry and Molecular Biology, and Medicine; Centre for Translational Pathology, University of Melbourne, Parkville, Victoria, Australia; Dana-Farber Cancer Institute, Boston; and The Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Bashashati A, Ha G, Tone A, Ding J, Prentice LM, Roth A, Rosner J, Shumansky K, Kalloger S, Senz J, Yang W, McConechy M, Melnyk N, Anglesio M, Luk MTY, Tse K, Zeng T, Moore R, Zhao Y, Marra MA, Gilks B, Yip S, Huntsman DG, McAlpine JN, Shah SP. Distinct evolutionary trajectories of primary high-grade serous ovarian cancers revealed through spatial mutational profiling. J Pathol 2013; 231:21-34. [PMID: 23780408 PMCID: PMC3864404 DOI: 10.1002/path.4230] [Citation(s) in RCA: 327] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/04/2013] [Accepted: 06/07/2013] [Indexed: 12/24/2022]
Abstract
High-grade serous ovarian cancer (HGSC) is characterized by poor outcome, often attributed to the emergence of treatment-resistant subclones. We sought to measure the degree of genomic diversity within primary, untreated HGSCs to examine the natural state of tumour evolution prior to therapy. We performed exome sequencing, copy number analysis, targeted amplicon deep sequencing and gene expression profiling on 31 spatially and temporally separated HGSC tumour specimens (six patients), including ovarian masses, distant metastases and fallopian tube lesions. We found widespread intratumoural variation in mutation, copy number and gene expression profiles, with key driver alterations in genes present in only a subset of samples (eg PIK3CA, CTNNB1, NF1). On average, only 51.5% of mutations were present in every sample of a given case (range 10.2-91.4%), with TP53 as the only somatic mutation consistently present in all samples. Complex segmental aneuploidies, such as whole-genome doubling, were present in a subset of samples from the same individual, with divergent copy number changes segregating independently of point mutation acquisition. Reconstruction of evolutionary histories showed one patient with mixed HGSC and endometrioid histology, with common aetiologic origin in the fallopian tube and subsequent selection of different driver mutations in the histologically distinct samples. In this patient, we observed mixed cell populations in the early fallopian tube lesion, indicating that diversity arises at early stages of tumourigenesis. Our results revealed that HGSCs exhibit highly individual evolutionary trajectories and diverse genomic tapestries prior to therapy, exposing an essential biological characteristic to inform future design of personalized therapeutic solutions and investigation of drug-resistance mechanisms.
Collapse
Affiliation(s)
- Ali Bashashati
- Department of Molecular Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Frattini V, Trifonov V, Chan JM, Castano A, Lia M, Abate F, Keir ST, Ji AX, Zoppoli P, Niola F, Danussi C, Dolgalev I, Porrati P, Pellegatta S, Heguy A, Gupta G, Pisapia DJ, Canoll P, Bruce JN, McLendon RE, Yan H, Aldape K, Finocchiaro G, Mikkelsen T, Privé GG, Bigner DD, Lasorella A, Rabadan R, Iavarone A. The integrated landscape of driver genomic alterations in glioblastoma. Nat Genet 2013; 45:1141-9. [PMID: 23917401 PMCID: PMC3799953 DOI: 10.1038/ng.2734] [Citation(s) in RCA: 427] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/29/2013] [Indexed: 12/12/2022]
Abstract
Glioblastoma is one of the most challenging forms of cancer to treat. Here we describe a computational platform that integrates the analysis of copy number variations and somatic mutations and unravels the landscape of in-frame gene fusions in glioblastoma. We found mutations with loss of heterozygosity in LZTR1, encoding an adaptor of CUL3-containing E3 ligase complexes. Mutations and deletions disrupt LZTR1 function, which restrains the self renewal and growth of glioma spheres that retain stem cell features. Loss-of-function mutations in CTNND2 target a neural-specific gene and are associated with the transformation of glioma cells along the very aggressive mesenchymal phenotype. We also report recurrent translocations that fuse the coding sequence of EGFR to several partners, with EGFR-SEPT14 being the most frequent functional gene fusion in human glioblastoma. EGFR-SEPT14 fusions activate STAT3 signaling and confer mitogen independence and sensitivity to EGFR inhibition. These results provide insights into the pathogenesis of glioblastoma and highlight new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Veronique Frattini
- 1] Institute for Cancer Genetics, Columbia University Medical Center, New York, New York, USA. [2]
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Andersen OM, Dagil R, Kragelund BB. New horizons for lipoprotein receptors: communication by β-propellers. J Lipid Res 2013; 54:2763-74. [PMID: 23881912 DOI: 10.1194/jlr.m039545] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The lipoprotein receptor (LR) family constitutes a large group of structurally closely related receptors with broad ligand-binding specificity. Traditionally, ligand binding to LRs has been anticipated to involve merely the complement type repeat (CR)-domains omnipresent in the family. Recently, this dogma has transformed with the observation that β-propellers of some LRs actively engage in complex formation too. Based on an in-depth decomposition of current structures and sequences, we suggest that exploitation of the β-propellers as binding targets depends on receptor subgroups. In particular, we highlight the shutter mechanism of β-propellers as a general recognition motif for NxI-containing ligands, and we present indications that the generalized β-propeller-induced ligand release mechanism is not applicable for the larger LRs. For the giant LR members, we present evidence that their β-propellers may also actively engage in ligand binding. We therefore advocate for an increased focus on solving the structure-function relationship of this group of important biological receptors.
Collapse
Affiliation(s)
- Olav M Andersen
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark; and
| | | | | |
Collapse
|
82
|
Integrated genomic characterization of endometrial carcinoma. Nature 2013; 497:67-73. [PMID: 23636398 PMCID: PMC3704730 DOI: 10.1038/nature12113] [Citation(s) in RCA: 3956] [Impact Index Per Article: 329.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 03/21/2013] [Indexed: 11/20/2022]
Abstract
We performed an integrated genomic, transcriptomic and proteomic characterization of 373 endometrial carcinomas using array- and sequencing-based technologies. Uterine serous tumours and ∼25% of high-grade endometrioid tumours had extensive copy number alterations, few DNA methylation changes, low oestrogen receptor/progesterone receptor levels, and frequent TP53 mutations. Most endometrioid tumours had few copy number alterations or TP53 mutations, but frequent mutations in PTEN, CTNNB1, PIK3CA, ARID1A and KRAS and novel mutations in the SWI/SNF chromatin remodelling complex gene ARID5B. A subset of endometrioid tumours that we identified had a markedly increased transversion mutation frequency and newly identified hotspot mutations in POLE. Our results classified endometrial cancers into four categories: POLE ultramutated, microsatellite instability hypermutated, copy-number low, and copy-number high. Uterine serous carcinomas share genomic features with ovarian serous and basal-like breast carcinomas. We demonstrated that the genomic features of endometrial carcinomas permit a reclassification that may affect post-surgical adjuvant treatment for women with aggressive tumours. An integrative genomic analysis of several hundred endometrial carcinomas shows that a minority of tumour samples carry copy number alterations or TP53 mutations and many contain key cancer-related gene mutations, such as those involved in canonical pathways and chromatin remodelling; a reclassification of endometrial tumours into four distinct types is proposed, which may have an effect on patient treatment regimes. This paper from The Cancer Genome Atlas Research Network presents an in-depth genome-wide analysis of endometrial (uterine) carcinomas from more than 350 patients. Based on a series of genomic features including newly identified hotspot mutations in the DNA polymerase gene POLE, and novel mutations in the ARID5B DNA-binding protein, the authors propose a reclassification of endometrial tumours into four distinct types. This might have clinical relevance for post-surgical adjuvant treatment of women with aggressive tumours.
Collapse
|
83
|
Craig DW, O'Shaughnessy JA, Kiefer JA, Aldrich J, Sinari S, Moses TM, Wong S, Dinh J, Christoforides A, Blum JL, Aitelli CL, Osborne CR, Izatt T, Kurdoglu A, Baker A, Koeman J, Barbacioru C, Sakarya O, De La Vega FM, Siddiqui A, Hoang L, Billings PR, Salhia B, Tolcher AW, Trent JM, Mousses S, Von Hoff D, Carpten JD. Genome and transcriptome sequencing in prospective metastatic triple-negative breast cancer uncovers therapeutic vulnerabilities. Mol Cancer Ther 2012; 12:104-16. [PMID: 23171949 DOI: 10.1158/1535-7163.mct-12-0781] [Citation(s) in RCA: 176] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is characterized by the absence of expression of estrogen receptor, progesterone receptor, and HER-2. Thirty percent of patients recur after first-line treatment, and metastatic TNBC (mTNBC) has a poor prognosis with median survival of one year. Here, we present initial analyses of whole genome and transcriptome sequencing data from 14 prospective mTNBC. We have cataloged the collection of somatic genomic alterations in these advanced tumors, particularly those that may inform targeted therapies. Genes mutated in multiple tumors included TP53, LRP1B, HERC1, CDH5, RB1, and NF1. Notable genes involved in focal structural events were CTNNA1, PTEN, FBXW7, BRCA2, WT1, FGFR1, KRAS, HRAS, ARAF, BRAF, and PGCP. Homozygous deletion of CTNNA1 was detected in 2 of 6 African Americans. RNA sequencing revealed consistent overexpression of the FOXM1 gene when tumor gene expression was compared with nonmalignant breast samples. Using an outlier analysis of gene expression comparing one cancer with all the others, we detected expression patterns unique to each patient's tumor. Integrative DNA/RNA analysis provided evidence for deregulation of mutated genes, including the monoallelic expression of TP53 mutations. Finally, molecular alterations in several cancers supported targeted therapeutic intervention on clinical trials with known inhibitors, particularly for alterations in the RAS/RAF/MEK/ERK and PI3K/AKT/mTOR pathways. In conclusion, whole genome and transcriptome profiling of mTNBC have provided insights into somatic events occurring in this difficult to treat cancer. These genomic data have guided patients to investigational treatment trials and provide hypotheses for future trials in this irremediable cancer.
Collapse
Affiliation(s)
- David W Craig
- Translational Genomics Research Institute, Phoenix, AZ 85004, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|