51
|
Myc and Omomyc functionally associate with the Protein Arginine Methyltransferase 5 (PRMT5) in glioblastoma cells. Sci Rep 2015; 5:15494. [PMID: 26563484 PMCID: PMC4643314 DOI: 10.1038/srep15494] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 09/09/2015] [Indexed: 12/22/2022] Open
Abstract
The c-Myc protein is dysregulated in many human cancers and its function has not been fully elucitated yet. The c-Myc inhibitor Omomyc displays potent anticancer properties in animal models. It perturbs the c-Myc protein network, impairs c-Myc binding to the E-boxes, retaining transrepressive properties and inducing histone deacetylation. Here we have employed Omomyc to further analyse c-Myc activity at the epigenetic level. We show that both Myc and Omomyc stimulate histone H4 symmetric dimethylation of arginine (R) 3 (H4R3me2s), in human glioblastoma and HEK293T cells. Consistently, both associated with protein Arginine Methyltransferase 5 (PRMT5)—the catalyst of the reaction—and its co-factor Methylosome Protein 50 (MEP50). Confocal experiments showed that Omomyc co-localized with c-Myc, PRMT5 and H4R3me2s-enriched chromatin domains. Finally, interfering with PRMT5 activity impaired target gene activation by Myc whereas it restrained Omomyc-dependent repression. The identification of a histone-modifying complex associated with Omomyc represents the first demonstration of an active role of this miniprotein in modifying chromatin structure and adds new information regarding its action on c-Myc targets. More importantly, the observation that c-Myc may recruit PRMT5-MEP50, inducing H4R3 symmetric di-methylation, suggests previously unpredictable roles for c-Myc in gene expression regulation and new potential targets for therapy.
Collapse
|
52
|
EZH2 in Bladder Cancer, a Promising Therapeutic Target. Int J Mol Sci 2015; 16:27107-32. [PMID: 26580594 PMCID: PMC4661858 DOI: 10.3390/ijms161126000] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 01/17/2023] Open
Abstract
Bladder Cancer (BC) represents a current clinical and social challenge. The recent studies aimed to describe the genomic landscape of BC have underscored the relevance of epigenetic alterations in the pathogenesis of these tumors. Among the epigenetic alterations, histone modifications occupied a central role not only in cancer, but also in normal organism homeostasis and development. EZH2 (Enhancer of Zeste Homolog 2) belongs to the Polycomb repressive complex 2 as its catalytic subunit, which through the trimethylation of H3 (Histone 3) on K27 (Lysine 27), produces gene silencing. EZH2 is frequently overexpressed in multiple tumor types, including BC, and plays multiple roles besides the well-recognized histone mark generation. In this review, we summarize the present knowledge on the oncogenic roles of EZH2 and its potential use as a therapeutic target, with special emphasis on BC pathogenesis and management.
Collapse
|
53
|
Abstract
Two opposing models have been proposed to describe the function of the MYC oncoprotein in shaping cellular transcriptomes: one posits that MYC amplifies transcription at all active loci; the other that MYC differentially controls discrete sets of genes, the products of which affect global transcript levels. Here, we argue that differential gene regulation by MYC is the sole unifying model that is consistent with all available data. Among other effects, MYC endows cells with physiological and metabolic changes that have the potential to feed back on global RNA production, processing and turnover. The field is progressing steadily towards a full characterization of the MYC-regulated genes and pathways that mediate these biological effects and - by the same token - endow MYC with its pervasive oncogenic potential.
Collapse
Affiliation(s)
- Theresia R Kress
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT) and Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, 20139 Milan, Italy
| | - Arianna Sabò
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT) and Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, 20139 Milan, Italy
| | - Bruno Amati
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia (IIT) and Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, 20139 Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology (IEO), Via Adamello 16, 20139 Milan, Italy
| |
Collapse
|
54
|
Stine ZE, Walton ZE, Altman BJ, Hsieh AL, Dang CV. MYC, Metabolism, and Cancer. Cancer Discov 2015; 5:1024-39. [PMID: 26382145 DOI: 10.1158/2159-8290.cd-15-0507] [Citation(s) in RCA: 926] [Impact Index Per Article: 92.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/10/2015] [Indexed: 02/07/2023]
Abstract
UNLABELLED The MYC oncogene encodes a transcription factor, MYC, whose broad effects make its precise oncogenic role enigmatically elusive. The evidence to date suggests that MYC triggers selective gene expression amplification to promote cell growth and proliferation. Through its targets, MYC coordinates nutrient acquisition to produce ATP and key cellular building blocks that increase cell mass and trigger DNA replication and cell division. In cancer, genetic and epigenetic derangements silence checkpoints and unleash MYC's cell growth- and proliferation-promoting metabolic activities. Unbridled growth in response to deregulated MYC expression creates dependence on MYC-driven metabolic pathways, such that reliance on specific metabolic enzymes provides novel targets for cancer therapy. SIGNIFICANCE MYC's expression and activity are tightly regulated in normal cells by multiple mechanisms, including a dependence upon growth factor stimulation and replete nutrient status. In cancer, genetic deregulation of MYC expression and loss of checkpoint components, such as TP53, permit MYC to drive malignant transformation. However, because of the reliance of MYC-driven cancers on specific metabolic pathways, synthetic lethal interactions between MYC overexpression and specific enzyme inhibitors provide novel cancer therapeutic opportunities.
Collapse
Affiliation(s)
- Zachary E Stine
- Abramson Family Cancer Research Institute, Abramson Cancer Center of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zandra E Walton
- Abramson Family Cancer Research Institute, Abramson Cancer Center of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brian J Altman
- Abramson Family Cancer Research Institute, Abramson Cancer Center of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Annie L Hsieh
- Abramson Family Cancer Research Institute, Abramson Cancer Center of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chi V Dang
- Abramson Family Cancer Research Institute, Abramson Cancer Center of the University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
55
|
The role of the polycomb repressive complex pathway in T and NK cell lymphoma: biological and prognostic implications. Tumour Biol 2015; 37:2037-47. [PMID: 26337274 DOI: 10.1007/s13277-015-3977-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 08/24/2015] [Indexed: 01/16/2023] Open
Abstract
Polycomb repressive complex 2 (PRC2; formed by EZH2, SUZ12, and EED protein subunits) and PRC1 (BMI1 protein) induce gene silencing through histone modification, primarily H3K27me3, and deregulation of PRC pathways leads to tumorigenesis. In the present study, activation of PRC2, H3K27me3, and BMI1 was investigated by immunohistochemistry in 175 cases of T and natural killer (NK) cell lymphoma. Activation of PRC proteins was analyzed according to c-MYC activation, Epstein-Barr virus (EBV) infection, CD30 activation, and survival. Among all T and NK cell lymphomas, high expression rates of 54.7 % for EZH2, 33.3 % for SUZ12, 85.7 % for EED, 40.5 % for H3K27me3, and 30.9 % for BMI1 were discovered. Activation of PRC2, H3K27me3, and BMI1 showed positive correlations (P < 0.05). Activation of c-MYC was associated with activation of SUZ12 and triple coactivation of all PRC2 protein subunits (EZH2(high)/SUZ12(high)/EED(high)) (P < 0.05). In EBV-positive tumors, activation of EZH2 and H3K27me3 showed greater association (P < 0.05). H3K27me3 and BMI1 showed a negative association in tumors expressing CD30 (P < 0.05). With respect to survival, BMI1 activation was independently associated with poor prognosis in T and NK cell lymphomas (P = 0.002). In conclusion, T and NK cell lymphomas were associated with activation of PRC pathway markers, for which c-MYC activation and EBV infection could be suggested as possible causes. PRC pathway markers may be potential therapeutic targets and prognostic markers in T and NK cell lymphoma.
Collapse
|
56
|
A Transition Zone Showing Highly Discontinuous or Alternating Levels of Stem Cell and Proliferation Markers Characterizes the Development of PTEN-Haploinsufficient Colorectal Cancer. PLoS One 2015; 10:e0131108. [PMID: 26098881 PMCID: PMC4476594 DOI: 10.1371/journal.pone.0131108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/28/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Stepwise acquisition of oncogene mutations and deletion/inactivation of tumor suppressor genes characterize the development of colorectal cancer (CRC). These genetic events interact with discrete morphologic transitions from hyperplastic mucosa to adenomatous areas, followed by in situ malignant transformation and finally invasive carcinoma. The goal of this study was to identify tissue markers of the adenoma-carcinoma morphogenetic transitions in CRC. METHODS AND FINDINGS We analyzed the patterns of expression of growth regulatory and stem cell markers across these distinct morphologic transition zones in 735 primary CRC tumors. In 202 cases with preserved adenoma-adenocarcinoma transition, we identified, in 37.1% of cases, a zone of adenomatous epithelium, located immediately adjacent to the invasive component, that showed rapidly alternating intraglandular stretches of PTEN+ and PTEN- epithelium. This zone exactly overlapped with similar alternating expression of Ki-67 and inversely with the transforming growth factor-beta (TGF-β) growth regulator SMAD4. These zones also show parallel alternating levels and/or subcellular localization of multiple cancer stem/progenitor cell (CSC) markers, including β-catenin/CTNNB1, ALDH1, and CD44. PTEN was always re-expressed in the invasive tumor in these cases, unlike those with complete loss of PTEN expression. Genomic microarray analysis of CRC with prominent CSC-like expansions demonstrated a high frequency of PTEN genomic deletion/haploinsufficiency in tumors with CSC-like transition zones (62.5%) but not in tumors with downregulated but non-alternating PTEN expression (14.3%). There were no significant differences in the levels of KRAS mutation or CTNNB1 mutation in CSC-like tumors as compared to unselected CRC cases. CONCLUSIONS In conclusion, we have identified a distinctive CSC-like pre-invasive transition zone in PTEN-haploinsufficient CRC that shows convergent on-off regulation of the PTEN/AKT, TGF-β/SMAD and Wnt/β-catenin pathways. This bottleneck-like zone is usually followed by the emergence of invasive tumors with intact PTEN expression but dysregulated TP53 and uniformly high proliferation rates.
Collapse
|
57
|
Wolf E, Lin CY, Eilers M, Levens DL. Taming of the beast: shaping Myc-dependent amplification. Trends Cell Biol 2014; 25:241-8. [PMID: 25475704 DOI: 10.1016/j.tcb.2014.10.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 10/24/2022]
Abstract
Myc deregulation is a hallmark oncogenic event where overexpression of the transcription factor gives rise to numerous tumorigenic phenotypes. The complex consequences of Myc deregulation have prevented clear mechanistic interpretations of its function. A synthesis of recent experimental observations offers a consensus on the direct transcriptional function of Myc: when overexpressed, Myc broadly engages the established euchromatic cis-regulatory landscape of the cell, where the factor generally amplifies transcription. The level of Myc binding at target genes and the transcriptional output are differentially modulated by additional regulators, including Miz1. Targeting Myc oncogenic activity will require an understanding of whether amplification promotes tumorigenesis and the consequences of amplification in tumors adapted to oncogenic Myc.
Collapse
Affiliation(s)
- Elmar Wolf
- Theodor Boveri Institute, Biocenter, and Comprehensive Cancer Center, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Charles Y Lin
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Martin Eilers
- Theodor Boveri Institute, Biocenter, and Comprehensive Cancer Center, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - David L Levens
- Laboratory of Pathology, 10 Center Drive, Bethesda, MD 20892-1500, USA.
| |
Collapse
|
58
|
Wang Y, Xiang W, Wang M, Huang T, Xiao X, Wang L, Tao D, Dong L, Zeng F, Jiang G. Methyl jasmonate sensitizes human bladder cancer cells to gambogic acid-induced apoptosis through down-regulation of EZH2 expression by miR-101. Br J Pharmacol 2014; 171:618-35. [PMID: 24490857 DOI: 10.1111/bph.12501] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 08/08/2013] [Accepted: 08/23/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Gambogic acid (GA) and methyl jasmonate (MJ) are increasingly being recognized as novel natural anticancer compounds. Here, we investigated the antitumour effects of GA in combination with MJ on human bladder cancer cells. EXPERIMENTAL APPROACH Cell viability was detected by cell counting kit-8 assay. Cell apoptosis was assessed by Hoechst 33258 staining and flow cytometry. Protein levels were determined by immunoblotting and expressions of mRNA and miRNAs by RT-PCR. Differential expressions of a group of downstream genes were identified using microarray analysis. KEY RESULTS MJ significantly sensitized bladder cancer cells to GA-induced growth inhibition and apoptosis while sparing normal fibroblasts. MJ enhanced GA-induced activation of caspase-3 and caspase-9, and down-regulated the expression of XIAP. Furthermore, treatment of bladder cancer cells with a combination of GA and MJ induced synergistic inhibition of the enhancer of zeste homologue 2 (EZH2) expression, whereas miR-101 expression was up-regulated. Conversely, knockdown of miR-101 restored this decreased expression of EZH2 and suppressed the inhibitory effect of GA and MJ on the growth of bladder cancer cells. Microarray analysis showed that genes closely associated with bladder cancer development were significantly down-regulated by GA and MJ. In a s.c. xenograft mouse model of human bladder carcinoma, the combination of GA and MJ exerted an increased antitumour effect compared with GA alone. CONCLUSION AND IMPLICATIONS MJ sensitizes bladder cancer cells to GA-induced apoptosis by down-regulating the expression of EZH2 induced by miR-101. Thus, the combination of selective anti-cancer agents MJ and GA could provide a novel strategy for treating human bladder cancer.
Collapse
Affiliation(s)
- Yongjun Wang
- Department of Urology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Diffuse large B-cell lymphoma with histone H3 trimethylation at lysine 27: another poor prognostic phenotype independent of c-Myc/Bcl2 coexpression. Hum Pathol 2014; 45:2043-50. [DOI: 10.1016/j.humpath.2014.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 01/25/2023]
|
60
|
Wee ZN, Li Z, Lee PL, Lee ST, Lim YP, Yu Q. EZH2-mediated inactivation of IFN-γ-JAK-STAT1 signaling is an effective therapeutic target in MYC-driven prostate cancer. Cell Rep 2014; 8:204-16. [PMID: 24953652 DOI: 10.1016/j.celrep.2014.05.045] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 03/04/2014] [Accepted: 05/22/2014] [Indexed: 12/16/2022] Open
Abstract
Although small-molecule targeting of EZH2 appears to be effective in lymphomas carrying EZH2 activating mutations, finding similar approaches to target EZH2-overexpressing epithelial tumors remains challenging. In MYC-driven, but not PI3K-driven prostate cancer, we show that interferon-γ receptor 1 (IFNGR1) is directly repressed by EZH2 in a MYC-dependent manner and is downregulated in a subset of metastatic prostate cancers. EZH2 knockdown restored the expression of IFNGR1 and, when combined with IFN-γ treatment, led to strong activation of IFN-JAK-STAT1 tumor-suppressor signaling and robust apoptosis. Pharmacologic depletion of EZH2 by the histone-methylation inhibitor DZNep mimicked the effects of EZH2 knockdown on IFNGR1 induction and delivered a remarkable synergistic antitumor effect with IFN-γ. In contrast, although they efficiently depleted histone Lysine 27 trimethylation, EZH2 catalytic inhibitors failed to mimic EZH2 depletion. Thus, EZH2-inactivated IFN signaling may represent a therapeutic target, and patients with advanced prostate cancer driven by MYC may benefit from the combination of EZH2 and IFN-γ-targeted therapy.
Collapse
Affiliation(s)
- Zhen Ning Wee
- Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology, and Research (A(∗)STAR), Biopolis, Singapore 138672, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| | - Zhimei Li
- Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology, and Research (A(∗)STAR), Biopolis, Singapore 138672, Singapore
| | - Puay Leng Lee
- Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology, and Research (A(∗)STAR), Biopolis, Singapore 138672, Singapore
| | - Shuet Theng Lee
- Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology, and Research (A(∗)STAR), Biopolis, Singapore 138672, Singapore
| | - Yoon Pin Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| | - Qiang Yu
- Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology, and Research (A(∗)STAR), Biopolis, Singapore 138672, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Cancer and Stem Cell Biology, DUKE-NUS Graduate Medical School of Singapore, Singapore 169857, Singapore.
| |
Collapse
|
61
|
Cole MD. MYC association with cancer risk and a new model of MYC-mediated repression. Cold Spring Harb Perspect Med 2014; 4:a014316. [PMID: 24985129 DOI: 10.1101/cshperspect.a014316] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
MYC is one of the most frequently mutated and overexpressed genes in human cancer but the regulation of MYC expression and the ability of MYC protein to repress cellular genes (including itself) have remained mysterious. Recent genome-wide association studies show that many genetic polymorphisms associated with disease risk map to distal regulatory elements that regulate the MYC promoter through large chromatin loops. Cancer risk-associated single-nucleotide polymorphisms (SNPs) contain more potent enhancer activity, promoting higher MYC levels and a greater risk of disease. The MYC promoter is also subject to complex regulatory circuits and limits its own expression by a feedback loop. A model for MYC autoregulation is discussed which involves a signaling pathway between the PTEN (phosphatase and tensin homolog) tumor suppressor and repressive histone modifications laid down by the EZH2 methyltransferase.
Collapse
Affiliation(s)
- Michael D Cole
- Departments of Pharmacology and Genetics, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756
| |
Collapse
|
62
|
Hann SR. MYC cofactors: molecular switches controlling diverse biological outcomes. Cold Spring Harb Perspect Med 2014; 4:a014399. [PMID: 24939054 DOI: 10.1101/cshperspect.a014399] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The transcription factor MYC has fundamental roles in proliferation, apoptosis, tumorigenesis, and stem cell pluripotency. Over the last 30 years extensive information has been gathered on the numerous cofactors that interact with MYC and the target genes that are regulated by MYC as a means of understanding the molecular mechanisms controlling its diverse roles. Despite significant advances and perhaps because the amount of information learned about MYC is overwhelming, there has been little consensus on the molecular functions of MYC that mediate its critical biological roles. In this perspective, the major MYC cofactors that regulate the various transcriptional activities of MYC, including canonical and noncanonical transactivation and transcriptional repression, will be reviewed and a model of how these transcriptional mechanisms control MYC-mediated proliferation, apoptosis, and tumorigenesis will be presented. The basis of the model is that a variety of cofactors form dynamic MYC transcriptional complexes that can switch the molecular and biological functions of MYC to yield a diverse range of outcomes in a cell-type- and context-dependent fashion.
Collapse
Affiliation(s)
- Stephen R Hann
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2175
| |
Collapse
|
63
|
Myc and its interactors take shape. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:469-83. [PMID: 24933113 DOI: 10.1016/j.bbagrm.2014.06.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 12/11/2022]
Abstract
The Myc oncoprotein is a key contributor to the development of many human cancers. As such, understanding its molecular activities and biological functions has been a field of active research since its discovery more than three decades ago. Genome-wide studies have revealed Myc to be a global regulator of gene expression. The identification of its DNA-binding partner protein, Max, launched an area of extensive research into both the protein-protein interactions and protein structure of Myc. In this review, we highlight key insights with respect to Myc interactors and protein structure that contribute to the understanding of Myc's roles in transcriptional regulation and cancer. Structural analyses of Myc show many critical regions with transient structures that mediate protein interactions and biological functions. Interactors, such as Max, TRRAP, and PTEF-b, provide mechanistic insight into Myc's transcriptional activities, while others, such as ubiquitin ligases, regulate the Myc protein itself. It is appreciated that Myc possesses a large interactome, yet the functional relevance of many interactors remains unknown. Here, we discuss future research trends that embrace advances in genome-wide and proteome-wide approaches to systematically elucidate mechanisms of Myc action. This article is part of a Special Issue entitled: Myc proteins in cell biology and pathology.
Collapse
|
64
|
Kuser-Abali G, Alptekin A, Cinar B. Overexpression of MYC and EZH2 cooperates to epigenetically silence MST1 expression. Epigenetics 2014; 9:634-43. [PMID: 24499724 DOI: 10.4161/epi.27957] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hippo-like MST1 protein kinase regulates cell growth, organ size, and carcinogenesis. Reduction or loss of MST1 expression is implicated in poor cancer prognosis. However, the mechanism leading to MST1 silencing remains elusive. Here, we report that both MYC and EZH2 function as potent suppressors of MST1 expression in human prostate cancer cells. We demonstrated that concurrent overexpression of MYC and EZH2 correlated with the reduction or loss of MST1 expression, as shown by RT-qPCR and immunoblotting. Methylation sensitive PCR and bisulfite genomic DNA sequencing showed that DNA methylation caused MST1 silencing. Pharmacologic and RNAi experiments revealed that MYC and EZH2 silenced MST1 expression by inhibiting its promoter activity, and that EZH2 was a mediator of the MYC-induced silencing of MST1. In addition, MYC contributed to MST1 silencing by partly inhibiting the expression of microRNA-26a/b, a negative regulator of EZH2. As shown by ChIP assays, EZH2-induced DNA methylation and H3K27me3 modification, which was accompanied by a reduced H3K4me3 mark and RNA polymerase II occupancy on the MST1 promoter CpG region, were the underlying cause of MST1 silencing. Moreover, potent pharmacologic inhibitors of MYC or EZH2 suppressed prostate cancer cell growth in vitro, and the knockdown of MST1 caused cells' resistance to MYC and EZH2 inhibitor-induced growth retardation. These findings indicate that MYC, in concert with EZH2, epigenetically attenuates MST1 expression and suggest that the loss of MST1/Hippo functions is critical for the MYC or EZH2 mediation of cancer cell survival.
Collapse
Affiliation(s)
- Gamze Kuser-Abali
- Department of Medicine, Division of Hematology and Oncology; Biomedical Sciences, Division of Cancer Biology and Therapeutics; The Uro-Oncology Program; Samuel Oschin Comprehensive Cancer Institute; Cedars-Sinai Medical Center; Los Angeles, CA USA
| | - Ahmet Alptekin
- Department of Medicine, Division of Hematology and Oncology; Biomedical Sciences, Division of Cancer Biology and Therapeutics; The Uro-Oncology Program; Samuel Oschin Comprehensive Cancer Institute; Cedars-Sinai Medical Center; Los Angeles, CA USA
| | - Bekir Cinar
- Department of Medicine, Division of Hematology and Oncology; Biomedical Sciences, Division of Cancer Biology and Therapeutics; The Uro-Oncology Program; Samuel Oschin Comprehensive Cancer Institute; Cedars-Sinai Medical Center; Los Angeles, CA USA; Department of Medicine; David Geffen School of Medicine; University of California Los Angeles; Los Angeles, CA USA
| |
Collapse
|
65
|
Omelchenko DO, Rzhaninova AA, Goldshtein DV. Comparative transcriptome pairwise analysis of spontaneously transformed multipotent stromal cells from human adipose tissue. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414010098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
66
|
Conacci-Sorrell M, McFerrin L, Eisenman RN. An overview of MYC and its interactome. Cold Spring Harb Perspect Med 2014; 4:a014357. [PMID: 24384812 DOI: 10.1101/cshperspect.a014357] [Citation(s) in RCA: 322] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This review is intended to provide a broad outline of the biological and molecular functions of MYC as well as of the larger protein network within which MYC operates. We present a view of MYC as a sensor that integrates multiple cellular signals to mediate a broad transcriptional response controlling many aspects of cell behavior. We also describe the larger transcriptional network linked to MYC with emphasis on the MXD family of MYC antagonists. Last, we discuss evidence that the network has evolved for millions of years, dating back to the emergence of animals.
Collapse
|
67
|
Lund K, Adams PD, Copland M. EZH2 in normal and malignant hematopoiesis. Leukemia 2014; 28:44-9. [PMID: 24097338 DOI: 10.1038/leu.2013.288] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 09/01/2013] [Accepted: 09/20/2013] [Indexed: 01/29/2023]
Abstract
The histone methyltransferase Enhancer of Zeste Homologue 2 (EZH2), a component of the polycomb group complex, is vital for stem cell development, including hematopoiesis. Its primary function, to deposit the histone mark H3K27me3, promotes transcriptional repression. The activity of EZH2 influences cell fate regulation, namely the balance between self-renewal and differentiation. The contribution of aberrant EZH2 expression to tumorigenesis by directing cells toward a cancer stem cell (CSC) state is increasingly recognized. However, its role in hematological malignancies is complex. Point mutations, resulting in gain-of-function, and inactivating mutations, reported in lymphoma and leukemia, respectively, suggest that EZH2 may serve a dual purpose as an oncogene and tumor-suppressor gene. The reduction of CSC self-renewal via EZH2 inhibition offers a potentially attractive therapeutic approach to counter the aberrant activation found in lymphoma and leukemia. The discovery of small molecules that specifically inhibit EZH2 raises the exciting possibility of exploiting the oncogenic addiction of tumor cells toward this protein. However, interference with the tumor-suppressor role of wild-type EZH2 must be avoided. This review examines the role of EZH2 in normal and malignant hematopoiesis and recent developments in harnessing the therapeutic potential of EZH2 inhibition.
Collapse
Affiliation(s)
- K Lund
- Department of Epigenetics of Cancer and Aging, Institute of Cancer Sciences, University of Glasgow, Cancer Research UK Beatson Labs, Glasgow, Scotland, UK
| | - P D Adams
- Department of Epigenetics of Cancer and Aging, Institute of Cancer Sciences, University of Glasgow, Beatson Institute for Cancer Research, Glasgow, Scotland, UK
| | - M Copland
- Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Gartnavel General Hospital, 1053 Great Western Road, Glasgow, Scotland
| |
Collapse
|
68
|
Benetatos L, Vartholomatos G, Hatzimichael E. Polycomb group proteins and MYC: the cancer connection. Cell Mol Life Sci 2014; 71:257-69. [PMID: 23897499 PMCID: PMC11113285 DOI: 10.1007/s00018-013-1426-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 01/07/2023]
Abstract
Polycomb group proteins (PcGs) are transcriptional repressors involved in physiological processes whereas PcG deregulation might result in oncogenesis. MYC oncogene is able to regulate gene transcription, proliferation, apoptosis, and malignant transformation. MYC deregulation might result in tumorigenesis with tumor maintenance properties in both solid and blood cancers. Although the interaction of PcG and MYC in cancer was described years ago, new findings are reported every day to explain the exact mechanisms and results of such interactions. In this review, we summarize recent data on the PcG and MYC interactions in cancer, and the putative involvement of microRNAs in the equation.
Collapse
Affiliation(s)
- Leonidas Benetatos
- Blood Bank, General Hospital of Preveza, Selefkias 2, 48100, Preveza, Greece,
| | | | | |
Collapse
|
69
|
Roles for MYC in the establishment and maintenance of pluripotency. Cold Spring Harb Perspect Med 2013; 3:a014381. [PMID: 24296349 DOI: 10.1101/cshperspect.a014381] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
MYC and MYCN have been directly implicated in the transcriptional regulation of several thousand genes in pluripotent stem cells and possibly contribute to the activity of all transcribed genes. Control of transcription by a pause-release mechanism, recruitment of positive and negative epigenetic regulators, and a general role in transcriptional amplification have all been implicated as part of the broad, overarching mechanism by which MYC controls stem cell biology. As would be anticipated from the regulation of so many genes, MYC is involved in a wide range of cellular processes including cell-cycle control, metabolism, signal transduction, self-renewal, maintenance of pluripotency, and control of cell fate decisions. MYC transcription factors also have clear roles in cell reprogramming and establishment of the pluripotent state. The mechanism by which MYC accomplishes this is now being explored and promises to uncover unexpected facets of general MYC regulation that are likely to be applicable to cancer biology. In this work we review our current understanding of how MYC contributes to the maintenance and establishment of pluripotent cells and how it contributes to early embryonic development.
Collapse
|
70
|
Levens D. Cellular MYCro economics: Balancing MYC function with MYC expression. Cold Spring Harb Perspect Med 2013; 3:3/11/a014233. [PMID: 24186489 DOI: 10.1101/cshperspect.a014233] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The expression levels of the MYC oncoprotein have long been recognized to be associated with the outputs of major cellular processes including proliferation, cell growth, apoptosis, differentiation, and metabolism. Therefore, to understand how MYC operates, it is important to define quantitatively the relationship between MYC input and expression output for its targets as well as the higher-order relationships between the expression levels of subnetwork components and the flow of information and materials through those networks. Two different views of MYC are considered, first as a molecular microeconomic manager orchestrating specific positive and negative responses at individual promoters in collaboration with other transcription and chromatin components, and second, as a macroeconomic czar imposing an overarching rule onto all active genes. In either case, c-myc promoter output requires multiple inputs and exploits diverse mechanisms to tune expression to the appropriate levels relative to the thresholds of expression that separate health and disease.
Collapse
Affiliation(s)
- David Levens
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892-1500
| |
Collapse
|
71
|
Ni M, Chen Y, Fei T, Li D, Lim E, Liu XS, Brown M. Amplitude modulation of androgen signaling by c-MYC. Genes Dev 2013; 27:734-48. [PMID: 23530127 DOI: 10.1101/gad.209569.112] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Androgen-stimulated growth of the molecular apocrine breast cancer subtype is mediated by an androgen receptor (AR)-regulated transcriptional program. However, the molecular details of this AR-centered regulatory network and the roles of other transcription factors that cooperate with AR in the network remain elusive. Here we report a positive feed-forward loop that enhances breast cancer growth involving AR, AR coregulators, and downstream target genes. In the absence of an androgen signal, TCF7L2 interacts with FOXA1 at AR-binding sites and represses the basal expression of AR target genes, including MYC. Direct AR regulation of MYC cooperates with AR-mediated activation of HER2/HER3 signaling. HER2/HER3 signaling increases the transcriptional activity of MYC through phosphorylation of MAD1, leading to increased levels of MYC/MAX heterodimers. MYC in turn reinforces the transcriptional activation of androgen-responsive genes. These results reveal a novel regulatory network in molecular apocrine breast cancers regulated by androgen and AR in which MYC plays a central role as both a key target and a cooperating transcription factor to drive oncogenic growth.
Collapse
Affiliation(s)
- Min Ni
- Division of Molecular and Cellular Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | |
Collapse
|