51
|
Linch M, Miah AB, Thway K, Judson IR, Benson C. Systemic treatment of soft-tissue sarcoma-gold standard and novel therapies. Nat Rev Clin Oncol 2014; 11:187-202. [PMID: 24642677 DOI: 10.1038/nrclinonc.2014.26] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Soft-tissue sarcoma (STS) is a rare and heterogeneous group of tumours that comprise approximately 1% of all adult cancers, and encompass over 50 different subtypes. These tumours exhibit a wide range of differing behaviours and underlying molecular pathologies, and can arise anywhere in the body. Surgical resection is critical to the management of locoregional disease. In the locally advanced or metastatic disease settings, systemic therapy has an important role in the multidisciplinary management of sarcoma. Cytotoxic therapy that usually consists of doxorubicin and ifosfamide has been the mainstay of treatment for many years. However recent advances in molecular pathogenesis, the development of novel targeted therapies, changes in clinical trial design and increased international collaboration have led to the development of histology-driven therapy. Furthermore, genomic profiling has highlighted that some STS are driven by translocation, mutation or amplification and others have more complex and chaotic karyotypes. In this Review, we aim to describe the current gold standard treatment for specific STS subtypes as well as outline future promising therapies in the pipeline.
Collapse
Affiliation(s)
- Mark Linch
- Sarcoma Unit, Department of Medical Oncology, Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
| | - Aisha B Miah
- Department of Clinical Oncology, Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
| | - Khin Thway
- Department of Histopathology, Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
| | - Ian R Judson
- Sarcoma Unit, Department of Medical Oncology, Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
| | - Charlotte Benson
- Sarcoma Unit, Department of Medical Oncology, Royal Marsden Hospital, Fulham Road, London SW3 6JJ, UK
| |
Collapse
|
52
|
Genis L, Dávila D, Fernandez S, Pozo-Rodrigálvarez A, Martínez-Murillo R, Torres-Aleman I. Astrocytes require insulin-like growth factor I to protect neurons against oxidative injury. F1000Res 2014; 3:28. [PMID: 24715976 PMCID: PMC3954172 DOI: 10.12688/f1000research.3-28.v2] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/11/2014] [Indexed: 01/24/2023] Open
Abstract
Oxidative stress is a proposed mechanism in brain aging, making the study of its regulatory processes an important aspect of current neurobiological research. In this regard, the role of the aging regulator insulin-like growth factor I (IGF-I) in brain responses to oxidative stress remains elusive as both beneficial and detrimental actions have been ascribed to this growth factor. Because astrocytes protect neurons against oxidative injury, we explored whether IGF-I participates in astrocyte neuroprotection and found that blockade of the IGF-I receptor in astrocytes abrogated their rescuing effect on neurons. We found that IGF-I directly protects astrocytes against oxidative stress (H 2O 2). Indeed, in astrocytes but not in neurons, IGF-I decreases the pro-oxidant protein thioredoxin-interacting protein 1 and normalizes the levels of reactive oxygen species. Furthermore, IGF-I cooperates with trophic signals produced by astrocytes in response to H 2O 2 such as stem cell factor (SCF) to protect neurons against oxidative insult. After stroke, a condition associated with brain aging where oxidative injury affects peri-infarcted regions, a simultaneous increase in SCF and IGF-I expression was found in the cortex, suggesting that a similar cooperative response takes place in vivo. Cell-specific modulation by IGF-I of brain responses to oxidative stress may contribute in clarifying the role of IGF-I in brain aging.
Collapse
Affiliation(s)
- Laura Genis
- Instituto Cajal CSIC, 28002, Madrid, Spain ; CIBERNED, 28002, Madrid, Spain
| | - David Dávila
- Instituto Cajal CSIC, 28002, Madrid, Spain ; CIBERNED, 28002, Madrid, Spain
| | - Silvia Fernandez
- Instituto Cajal CSIC, 28002, Madrid, Spain ; CIBERNED, 28002, Madrid, Spain
| | | | | | | |
Collapse
|
53
|
Trautmann M, Sievers E, Aretz S, Kindler D, Michels S, Friedrichs N, Renner M, Kirfel J, Steiner S, Huss S, Koch A, Penzel R, Larsson O, Kawai A, Tanaka S, Sonobe H, Waha A, Schirmacher P, Mechtersheimer G, Wardelmann E, Büttner R, Hartmann W. SS18-SSX fusion protein-induced Wnt/β-catenin signaling is a therapeutic target in synovial sarcoma. Oncogene 2013; 33:5006-16. [PMID: 24166495 DOI: 10.1038/onc.2013.443] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 09/11/2013] [Accepted: 09/16/2013] [Indexed: 12/11/2022]
Abstract
Synovial sarcoma is a high-grade soft tissue malignancy characterized by a specific reciprocal translocation t(X;18), which leads to the fusion of the SS18 (SYT) gene to one of three SSX genes (SSX1, SSX2 or SSX4). The resulting chimeric SS18-SSX protein is suggested to act as an oncogenic transcriptional regulator. Despite multimodal therapeutic approaches, metastatic disease is often lethal and the development of novel targeted therapeutic strategies is required. Several expression-profiling studies identified distinct gene expression signatures, implying a consistent role of Wnt/β-catenin signaling in synovial sarcoma tumorigenesis. Here we investigate the functional and therapeutic relevance of Wnt/β-catenin pathway activation in vitro and in vivo. Immunohistochemical analyses of nuclear β-catenin and Wnt downstream targets revealed activation of canonical Wnt signaling in a significant subset of 30 primary synovial sarcoma specimens. Functional aspects of Wnt signaling including dependence of Tcf/β-catenin complex activity on the SS18-SSX fusion proteins were analyzed. Efficient SS18-SSX-dependent activation of the Tcf/β-catenin transcriptional complex was confirmed by TOPflash reporter luciferase assays and immunoblotting. In five human synovial sarcoma cell lines, inhibition of the Tcf/β-catenin protein-protein interaction significantly blocked the canonical Wnt/β-catenin signaling cascade, accompanied by the effective downregulation of Wnt targets (AXIN2, CDC25A, c-MYC, DKK1, CyclinD1 and Survivin) and the specific suppression of cell viability associated with the induction of apoptosis. In SYO-1 synovial sarcoma xenografts, administration of small molecule Tcf/β-catenin complex inhibitors significantly reduced tumor growth, associated with diminished AXIN2 protein levels. In summary, SS18-SSX-induced Wnt/β-catenin signaling appears to be of crucial biological importance in synovial sarcoma tumorigenesis and progression, representing a potential molecular target for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- M Trautmann
- 1] Department of Pathology, University Hospital Cologne, Cologne, Germany [2] Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - E Sievers
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| | - S Aretz
- Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - D Kindler
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| | - S Michels
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| | - N Friedrichs
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| | - M Renner
- Department of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - J Kirfel
- Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - S Steiner
- Department of Pathology, University Hospital Bonn, Bonn, Germany
| | - S Huss
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| | - A Koch
- Department of Neuropathology, Charité-Universitätsmedizin, Berlin, Germany
| | - R Penzel
- Department of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - O Larsson
- Departments of Oncology & Pathology, The Karolinska Institute, Stockholm, Sweden
| | - A Kawai
- Division of Orthopaedic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - S Tanaka
- Laboratory of Molecular & Cellular Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - H Sonobe
- Department of Laboratory Medicine, Chungoku Central Hospital, Fukuyama, Hiroshima, Japan
| | - A Waha
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - P Schirmacher
- Department of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - G Mechtersheimer
- Department of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - E Wardelmann
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| | - R Büttner
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| | - W Hartmann
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| |
Collapse
|
54
|
Schernthaner M, Leitinger G, Wolinski H, Kohlwein SD, Reisinger B, Barb RA, Graier WF, Heitz J, Groschner K. Enhanced Ca 2+Entry and Tyrosine Phosphorylation Mediate Nanostructure-Induced Endothelial Proliferation. JOURNAL OF NANOMATERIALS 2013; 2013:251063. [PMID: 24729782 PMCID: PMC3982206 DOI: 10.1155/2013/251063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nanostructured substrates have been recognized to initiate transcriptional programs promoting cell proliferation. Specifically β-catenin has been identified as transcriptional regulator, activated by adhesion to nanostructures. We set out to identify processes responsible for nanostructure-induced endothelial β-catenin signaling. Transmission electron microscopy (TEM) of cell contacts to differently sized polyethylene terephthalate (PET) surface structures (ripples with 250 to 300 nm and walls with 1.5 μm periodicity) revealed different patterns of cell-substrate interactions. Cell adhesion to ripples occurred exclusively on ripple peaks, while cells were attached to walls continuously. The Src kinase inhibitor PP2 was active only in cells grown on ripples, while the Abl inhibitors dasatinib and imatinib suppressed β-catenin translocation on both structures. Moreover, Gd3+ sensitive Ca2+ entry was observed in response to mechanical stimulation or Ca2+ store depletion exclusively in cells grown on ripples. Both PP2 and Gd3+ suppressed β-catenin nuclear translocation along with proliferation in cells grown on ripples but not on walls. Our results suggest that adhesion of endothelial cells to ripple structured PET induces highly specific, interface topology-dependent changes in cellular signalling, characterized by promotion of Gd3+ -sensitive Ca2+ entry and Src/Abl activation. We propose that these signaling events are crucially involved in nanostructure-induced promotion of cell proliferation.
Collapse
Affiliation(s)
| | - Gerd Leitinger
- Department of Cell Biology, Histology and Embryology, Core Facility Ultrastructure Analysis, Center for Medical Research, Medical University Graz, 8010 Graz, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Sepp D. Kohlwein
- Institute of Molecular Biosciences, University of Graz, 8010 Graz, Austria
| | - Bettina Reisinger
- Institute of Applied Physics, Johannes Kepler University Linz, 4040 Linz, Austria
| | - Ruxandra-A. Barb
- Institute of Applied Physics, Johannes Kepler University Linz, 4040 Linz, Austria
| | - Wolfgang F. Graier
- Institute of Molecular Biology and Biochemistry, Medical University Graz, 8010 Graz, Austria
| | - Johannes Heitz
- Institute of Applied Physics, Johannes Kepler University Linz, 4040 Linz, Austria
| | - Klaus Groschner
- Institute of Biophysics, Medical University Graz, 8010 Graz, Austria
| |
Collapse
|