51
|
Akhoundi M, Mohammadi M, Sahraei SS, Sheykhhasan M, Fayazi N. CAR T cell therapy as a promising approach in cancer immunotherapy: challenges and opportunities. Cell Oncol (Dordr) 2021; 44:495-523. [PMID: 33759063 DOI: 10.1007/s13402-021-00593-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-modified T cell therapy has shown great potential in the immunotherapy of patients with hematologic malignancies. In spite of this striking achievement, there are still major challenges to overcome in CAR T cell therapy of solid tumors, including treatment-related toxicity and specificity. Also, other obstacles may be encountered in tackling solid tumors, such as their immunosuppressive microenvironment, the heterogeneous expression of cell surface markers, and the cumbersome arrival of T cells at the tumor site. Although several strategies have been developed to overcome these challenges, aditional research aimed at enhancing its efficacy with minimum side effects, the design of precise yet simplified work flows and the possibility to scale-up production with reduced costs and related risks is still warranted. CONCLUSIONS Here, we review main strategies to establish a balance between the toxicity and activity of CAR T cells in order to enhance their specificity and surpass immunosuppression. In recent years, many clinical studies have been conducted that eventually led to approved products. To date, the FDA has approved two anti-CD19 CAR T cell products for non-Hodgkin lymphoma therapy, i.e., axicbtagene ciloleucel and tisagenlecleucel. With all the advances that have been made in the field of CAR T cell therapy for hematologic malignancies therapy, ongoing studies are focused on optimizing its efficacy and specificity, as well as reducing the side effects. Also, the efforts are poised to broaden CAR T cell therapeutics for other cancers, especially solid tumors.
Collapse
Affiliation(s)
- Maryam Akhoundi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahsa Mohammadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyedeh Saeideh Sahraei
- Department of Reproductive Biology, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
| | - Mohsen Sheykhhasan
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Mesenchymal Stem Cells, Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran.
| | - Nashmin Fayazi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
52
|
Mangal JL, Handlos JL, Esrafili A, Inamdar S, Mcmillian S, Wankhede M, Gottardi R, Acharya AP. Engineering Metabolism of Chimeric Antigen Receptor (CAR) Cells for Developing Efficient Immunotherapies. Cancers (Basel) 2021; 13:1123. [PMID: 33807867 PMCID: PMC7962004 DOI: 10.3390/cancers13051123] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell-based therapies have shown tremendous advancement in clinical and pre-clinical studies for the treatment of hematological malignancies, such as the refractory of pre-B cell acute lymphoblastic leukemia (B-ALL), chronic lymphocytic leukemia (CLL), and large B cell lymphoma (LBCL). However, CAR T cell therapy for solid tumors has not been successful clinically. Although, some research efforts, such as combining CARs with immune checkpoint inhibitor-based therapy, have been used to expand the application of CAR T cells for the treatment of solid tumors. Importantly, further understanding of the coordination of nutrient and energy supplies needed for CAR T cell expansion and function, especially in the tumor microenvironment (TME), is greatly needed. In addition to CAR T cells, there is great interest in utilizing other types of CAR immune cells, such as CAR NK and CAR macrophages that can infiltrate solid tumors. However, the metabolic competition in the TME between cancer cells and immune cells remains a challenge. Bioengineering technologies, such as metabolic engineering, can make a substantial contribution when developing CAR cells to have an ability to overcome nutrient-paucity in the solid TME. This review introduces technologies that have been used to generate metabolically fit CAR-immune cells as a treatment for hematological malignancies and solid tumors, and briefly discusses the challenges to treat solid tumors with CAR-immune cells.
Collapse
Affiliation(s)
- Joslyn L. Mangal
- Biological Design Graduate Program, School for Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA;
| | - Jamie L. Handlos
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA; (J.L.H.); (A.E.); (S.I.); (S.M.); (M.W.)
| | - Arezoo Esrafili
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA; (J.L.H.); (A.E.); (S.I.); (S.M.); (M.W.)
| | - Sahil Inamdar
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA; (J.L.H.); (A.E.); (S.I.); (S.M.); (M.W.)
| | - Sidnee Mcmillian
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA; (J.L.H.); (A.E.); (S.I.); (S.M.); (M.W.)
| | - Mamta Wankhede
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA; (J.L.H.); (A.E.); (S.I.); (S.M.); (M.W.)
| | - Riccardo Gottardi
- Department of Pediatrics, Division of Pulmonary Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Fondazione Ri.MED, 90133 Palermo, Italy
| | - Abhinav P. Acharya
- Biological Design Graduate Program, School for Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85281, USA;
- Department of Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA; (J.L.H.); (A.E.); (S.I.); (S.M.); (M.W.)
- Department of Materials Science and Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ 85281, USA
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Tempe, AZ 85281, USA
| |
Collapse
|
53
|
Tan X, Letendre JH, Collins JJ, Wong WW. Synthetic biology in the clinic: engineering vaccines, diagnostics, and therapeutics. Cell 2021; 184:881-898. [PMID: 33571426 PMCID: PMC7897318 DOI: 10.1016/j.cell.2021.01.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022]
Abstract
Synthetic biology is a design-driven discipline centered on engineering novel biological functions through the discovery, characterization, and repurposing of molecular parts. Several synthetic biological solutions to critical biomedical problems are on the verge of widespread adoption and demonstrate the burgeoning maturation of the field. Here, we highlight applications of synthetic biology in vaccine development, molecular diagnostics, and cell-based therapeutics, emphasizing technologies approved for clinical use or in active clinical trials. We conclude by drawing attention to recent innovations in synthetic biology that are likely to have a significant impact on future applications in biomedicine.
Collapse
Affiliation(s)
- Xiao Tan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Division of Gastroenterology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA; Harvard Medical School, 25 Shattuck St., Boston, MA 02115, USA; Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA
| | - Justin H Letendre
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA
| | - James J Collins
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA; Department of Biological Engineering, MIT, Cambridge, MA 02139, USA; Synthetic Biology Center, MIT, 77 Massachusetts Ave., Cambridge, MA 02139, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA.
| | - Wilson W Wong
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Biological Design Center, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
54
|
Abstract
Genetically engineered T cell immunotherapies have provided remarkable clinical success to treat B cell acute lymphoblastic leukaemia by harnessing a patient's own T cells to kill cancer, and these approaches have the potential to provide therapeutic benefit for numerous other cancers, infectious diseases and autoimmunity. By introduction of either a transgenic T cell receptor or a chimeric antigen receptor, T cells can be programmed to target cancer cells. However, initial studies have made it clear that the field will need to implement more complex levels of genetic regulation of engineered T cells to ensure both safety and efficacy. Here, we review the principles by which our knowledge of genetics and genome engineering will drive the next generation of adoptive T cell therapies.
Collapse
|
55
|
Immunotherapy for osteosarcoma: Fundamental mechanism, rationale, and recent breakthroughs. Cancer Lett 2020; 500:1-10. [PMID: 33359211 DOI: 10.1016/j.canlet.2020.12.024] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 02/06/2023]
Abstract
Osteosarcoma (OS) is the most common primary malignancy of the bone and has a high propensity for local invasion and metastasis. Although combining surgery with chemotherapy has immensely improved the outcomes of osteosarcoma patients, the prognosis of metastatic or recurrent osteosarcomas is still unsatisfactory. Immunotherapy has proven to be a promising therapeutic strategy against human malignancies and improved understanding of the immune response to OS, and biomarker development has increased the number of patients who benefit from immunotherapies in recent years. Here, we review recent advances in immunotherapy in osteosarcoma and discuss the mechanisms and status of immunotherapies in both preclinical and clinical trials as well as future therapies on the horizon. These advances may pave the way for novel treatments requisite for patients with osteosarcoma in need of new therapies.
Collapse
|
56
|
Zhang Y, Li P, Fang H, Wang G, Zeng X. Paving the Way Towards Universal Chimeric Antigen Receptor Therapy in Cancer Treatment: Current Landscape and Progress. Front Immunol 2020; 11:604915. [PMID: 33362790 PMCID: PMC7758418 DOI: 10.3389/fimmu.2020.604915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/09/2020] [Indexed: 12/27/2022] Open
Abstract
Chimeric antigen receptor (CAR) therapy has been proved effective in a stream of clinical trials, especially in hematologic malignancies. However, current CAR therapy is highly personalized as cells used are derived from patients themselves, which can be costly, time-consuming, and sometimes fails to achieve optimal therapeutic results due to poor quality/quantity of patient-derived cells. On the contrary, universal CAR therapy, which is based on healthy individuals’ cells, circumvents several limitations of current autologous CAR therapy. To achieve the universality of CAR therapy, the allogeneic cell transplantation related issues, such as graft-versus-host disease (GVHD) and host-versus-graft activities (HVGA), must be addressed. In this review, we focus on current progress regarding GVHD and HVGA in the universal CAR therapy, followed by a universal CAR design that may be applied to allogeneic cells and a summary of key clinical trials in this field. This review may provide valuable insights into the future design of universal CAR products.
Collapse
Affiliation(s)
- Yixi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hongyu Fang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guocan Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
57
|
Xie M, Viviani M, Fussenegger M. Engineering precision therapies: lessons and motivations from the clinic. Synth Biol (Oxf) 2020; 6:ysaa024. [PMID: 33817342 PMCID: PMC7998714 DOI: 10.1093/synbio/ysaa024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
In the past decade, gene- and cell-based therapies have been at the forefront of the biomedical revolution. Synthetic biology, the engineering discipline of building sophisticated 'genetic software' to enable precise regulation of gene activities in living cells, has been a decisive success factor of these new therapies. Here, we discuss the core technologies and treatment strategies that have already gained approval for therapeutic applications in humans. We also review promising preclinical work that could either enhance the efficacy of existing treatment strategies or pave the way for new precision medicines to treat currently intractable human conditions.
Collapse
Affiliation(s)
- Mingqi Xie
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zheijang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zheijang, China
| | - Mirta Viviani
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, Zheijang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, Zheijang, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
58
|
Andrea AE, Chiron A, Bessoles S, Hacein-Bey-Abina S. Engineering Next-Generation CAR-T Cells for Better Toxicity Management. Int J Mol Sci 2020; 21:E8620. [PMID: 33207607 PMCID: PMC7696189 DOI: 10.3390/ijms21228620] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/09/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Immunoadoptive therapy with genetically modified T lymphocytes expressing chimeric antigen receptors (CARs) has revolutionized the treatment of patients with hematologic cancers. Although clinical outcomes in B-cell malignancies are impressive, researchers are seeking to enhance the activity, persistence, and also safety of CAR-T cell therapy-notably with a view to mitigating potentially serious or even life-threatening adverse events like on-target/off-tumor toxicity and (in particular) cytokine release syndrome. A variety of safety strategies have been developed by replacing or adding various components (such as OFF- and ON-switch CARs) or by combining multi-antigen-targeting OR-, AND- and NOT-gate CAR-T cells. This research has laid the foundations for a whole new generation of therapeutic CAR-T cells. Here, we review the most promising CAR-T cell safety strategies and the corresponding preclinical and clinical studies.
Collapse
Affiliation(s)
- Alain E. Andrea
- Laboratoire de Biochimie et Thérapies Moléculaires, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut 1100, Lebanon;
| | - Andrada Chiron
- Université de Paris, CNRS, INSERM, UTCBS, Unité des Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France; (A.C.); (S.B.)
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, 94275 Le-Kremlin-Bicêtre, France
| | - Stéphanie Bessoles
- Université de Paris, CNRS, INSERM, UTCBS, Unité des Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France; (A.C.); (S.B.)
| | - Salima Hacein-Bey-Abina
- Université de Paris, CNRS, INSERM, UTCBS, Unité des Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France; (A.C.); (S.B.)
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, 94275 Le-Kremlin-Bicêtre, France
| |
Collapse
|
59
|
Affiliation(s)
- Mingqi Xie
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, Hangzhou, Zhejiang 310024, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| | - Peilong Lu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang 310024, China.
- Key Laboratory of Structural Biology of Zhejiang Province, Hangzhou, Zhejiang 310024, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China.
| |
Collapse
|
60
|
Ponterio E, De Maria R, Haas TL. Identification of Targets to Redirect CAR T Cells in Glioblastoma and Colorectal Cancer: An Arduous Venture. Front Immunol 2020; 11:565631. [PMID: 33101285 PMCID: PMC7555836 DOI: 10.3389/fimmu.2020.565631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
The chimeric antigen receptor (CAR) is an artificial molecule engineered to induce cytolytic T cell reactions in tumors. Generally, this molecule combines an extracellular single-chain variable fragment (scFv) able to recognize tumor-associated epitopes together with the intracellular signaling domains that are required for T cell activation. When expressed by T cells, the CAR enables the recognition and subsequent destruction of cancer cells expressing the complementary antigen on their surface. Although the clinical application for CAR T cells is currently limited to some hematological malignancies, researchers are trying to develop CAR T cell-based therapies for the treatment of solid tumors. However, while in the case of CD19, or other targets restricted to the hematopoietic compartment, the toxicity is limited and manageable, the scarcity of specific antigens expressed by solid tumors and not by healthy cells from vital organs makes the clinical development of CAR T cells in this context particularly challenging. Here we summarize relevant research and clinical trials conducted to redirect CAR T cells to surface antigens in solid tumors and cancer stem cells with a focus on colorectal cancer and glioblastoma. Finally, we will discuss current knowledge of altered glycosylation of CSCs and cancer cells and how these novel epitopes may help to target CAR T cell-based immunotherapy in the future.
Collapse
Affiliation(s)
- Eleonora Ponterio
- Fondazione Policlinico Universitario "A. Gemelli" -Istituti di Ricovero e Cura a Carattere Scientifico, Rome, Italy.,Istituto di Patologia Generale, Università Cattolica del Sacro Cuore Rome, Rome, Italy
| | - Ruggero De Maria
- Fondazione Policlinico Universitario "A. Gemelli" -Istituti di Ricovero e Cura a Carattere Scientifico, Rome, Italy.,Istituto di Patologia Generale, Università Cattolica del Sacro Cuore Rome, Rome, Italy
| | - Tobias Longin Haas
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore Rome, Rome, Italy.,IIGM-Italian Institute for Genomic Medicine, IRCCS, Candiolo, Italy.,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-Istituti di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy
| |
Collapse
|
61
|
Bera TK. Anti-BCMA Immunotoxins: Design, Production, and Preclinical Evaluation. Biomolecules 2020; 10:biom10101387. [PMID: 33003418 PMCID: PMC7600380 DOI: 10.3390/biom10101387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022] Open
Abstract
Multiple myeloma (MM) is a B-cell malignancy that is incurable for a majority of patients. B-cell maturation antigen (BCMA) is a lineage-restricted differentiation protein highly expressed in multiple myeloma cells but not in other normal tissues except normal plasma B cells. Due to the restricted expression and being a cell surface membrane protein, BCMA is an ideal target for immunotherapy approaches in MM. Recombinant immunotoxins (RITs) are a novel class of protein therapeutics that are composed of the Fv or Fab portion of an antibody fused to a cytotoxic agent. RITs were produced by expressing plasmids encoding the components of the anti-BCMA RITs in E. coli followed by inclusion body preparation, solubilization, renaturation, and purification by column chromatography. The cytotoxic activity of RITs was tested in vitro by WST-8 assays using BCMA expressing cell lines and on cells isolated from MM patients. The in vivo efficacy of RITs was tested in a xenograft mouse model using BCMA expressing multiple myeloma cell lines. Anti-BCMA recombinant immunotoxins are very effective in killing myeloma cell lines and cells isolated from myeloma patients expressing BCMA. Two mouse models of myeloma showed that the anti-BCMA immunotoxins can produce a long-term complete response and warrant further preclinical development.
Collapse
Affiliation(s)
- Tapan K Bera
- Laboratory of Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
62
|
Chen Y, Nagarajan C, Tan MS, Martinelli G, Cerchione C. BCMA-targeting approaches for treatment of multiple myeloma. Panminerva Med 2020; 63:28-36. [PMID: 32955181 DOI: 10.23736/s0031-0808.20.04121-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recent advances in treatment modalities have led to improved survival in patients with multiple myeloma (MM). However, despite these, MM remains an incurable disease. Many MM patients relapse through and become refractory to current treatment strategies or are intolerant due to toxicities arising from therapy. As such, novel strategies addressing new targets are crucial in improving care for MM patients. BCMA has emerged as a rationale therapeutic target for treatment of MM as it is preferentially expressed in mature B-lymphocytes and plasma cells with the overexpression and activation of BCMA via its ligands associated with the disease progression in multiple myeloma. Given the high expression of BCMA in malignant Plasma cells compared to those from normal healthy volunteers, targeting BCMA should reduce risks of on-target off-tumor toxicities. The main BCMA-targeting approaches currently used for treatment of MM include: 1) chimeric antigen receptor (CAR) T-cell therapy; 2) bi- and multi- specific antibodies; and 3) monoclonal antibodies and their drug conjugates. This review will outline these therapeutic agents and present their emerging clinical data.
Collapse
Affiliation(s)
- Yunxin Chen
- Department of Hematology, Singapore General Hospital, Singapore, Singapore - .,SingHealth Duke NUS Blood Cancer Center, Singapore, Singapore -
| | - Chandramouli Nagarajan
- Department of Hematology, Singapore General Hospital, Singapore, Singapore.,SingHealth Duke NUS Blood Cancer Center, Singapore, Singapore
| | - Melinda S Tan
- Department of Hematology, Singapore General Hospital, Singapore, Singapore
| | - Giovanni Martinelli
- Unit of Hematology, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy
| | - Claudio Cerchione
- Unit of Hematology, IRCCS Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST), Meldola, Forlì-Cesena, Italy
| |
Collapse
|
63
|
Lim RM, Rong L, Zhen A, Xie J. A Universal CAR-NK Cell Targeting Various Epitopes of HIV-1 gp160. ACS Chem Biol 2020; 15:2299-2310. [PMID: 32667183 DOI: 10.1021/acschembio.0c00537] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Engineering T cells and natural killer (NK) cells with anti-HIV chimeric antigen receptors (CAR) has emerged as a promising strategy to eradicate HIV-infected cells. However, current anti-HIV CARs are limited by targeting a single epitope of the HIV envelope glycoprotein gp160, which cannot counter the enormous diversity and mutability of viruses. Here, we report the development of a universal CAR-NK cell, which recognizes 2,4-dinitrophenyl (DNP) and can subsequently be redirected to target various epitopes of gp160 using DNP-conjugated antibodies as adaptor molecules. We show that this CAR-NK cell can recognize and kill mimic HIV-infected cell lines expressing subtypes B and C gp160. We additionally find that anti-gp160 antibodies targeting membrane-distal epitopes (including V1/V2, V3, and CD4bs) are more likely to activate universal CAR-NK cells against gp160+ target cells, compared with those targeting membrane-proximal epitopes located in the gp41 MPER. Finally, we confirm that HIV-infected primary human CD4+ T cells can be effectively killed using the same approach. Given that numerous anti-gp160 antibodies with different antigen specificities are readily available, this modular universal CAR-NK cell platform can potentially overcome HIV diversity, thus providing a promising strategy to eradicate HIV-infected cells.
Collapse
Affiliation(s)
- Rebecca M. Lim
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Liang Rong
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Anjie Zhen
- Department of Medicine, Division of Hematology and Oncology, University of California, Los Angeles, California 90095, United States
| | - Jianming Xie
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
64
|
Overhauling CAR T Cells to Improve Efficacy, Safety and Cost. Cancers (Basel) 2020; 12:cancers12092360. [PMID: 32825533 PMCID: PMC7564591 DOI: 10.3390/cancers12092360] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022] Open
Abstract
Gene therapy is now surpassing 30 years of clinical experience and in that time a variety of approaches has been applied for the treatment of a wide range of pathologies. While the promise of gene therapy was over-stated in the 1990’s, the following decades were met with polar extremes between demonstrable success and devastating setbacks. Currently, the field of gene therapy is enjoying the rewards of overcoming the hurdles that come with turning new ideas into safe and reliable treatments, including for cancer. Among these modalities, the modification of T cells with chimeric antigen receptors (CAR-T cells) has met with clear success and holds great promise for the future treatment of cancer. We detail a series of considerations for the improvement of the CAR-T cell approach, including the design of the CAR, routes of gene transfer, introduction of CARs in natural killer and other cell types, combining the CAR approach with checkpoint blockade or oncolytic viruses, improving pre-clinical models as well as means for reducing cost and, thus, making this technology more widely available. While CAR-T cells serve as a prime example of translating novel ideas into effective treatments, certainly the lessons learned will serve to accelerate the current and future development of gene therapy drugs.
Collapse
|
65
|
Feldmann A, Hoffmann A, Bergmann R, Koristka S, Berndt N, Arndt C, Rodrigues Loureiro L, Kittel-Boselli E, Mitwasi N, Kegler A, Lamprecht C, González Soto KE, Bachmann M. Versatile chimeric antigen receptor platform for controllable and combinatorial T cell therapy. Oncoimmunology 2020; 9:1785608. [PMID: 32923149 PMCID: PMC7458653 DOI: 10.1080/2162402x.2020.1785608] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells show remarkable therapeutic effects in some hematological malignancies. However, CAR T cells can also cause life-threatening side effects. In order to minimize off-target and on-target/off-tumor reactions, improve safety, enable controllability, provide high flexibility, and increase tumor specificity, we established a novel humanized artificial receptor platform termed RevCARs. RevCAR genes encode for small surface receptors lacking any antigen-binding moiety. Steering of RevCAR T cells occurs via bispecific targeting molecules (TMs). The small size of RevCAR-encoding genes allows the construction of polycistronic vectors. Here, we demonstrate that RevCAR T cells efficiently kill tumor cells, can be steered by TMs, flexibly redirected against multiple targets, and used for combinatorial targeting following the "OR" and "AND" gate logic.
Collapse
Affiliation(s)
- Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Anja Hoffmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Ralf Bergmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Stefanie Koristka
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Nicole Berndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Claudia Arndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Liliana Rodrigues Loureiro
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Enrico Kittel-Boselli
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | - Nicola Mitwasi
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Alexandra Kegler
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Chris Lamprecht
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,Department of Neurology, Center of Clinical Neuroscience, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Karla Elizabeth González Soto
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Michael Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.,Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany: German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Dresden, Germany
| |
Collapse
|
66
|
Improving Immunotherapy Against B-Cell Malignancies Using γδ T-Cell-specific Stimulation and Therapeutic Monoclonal Antibodies. J Immunother 2020; 42:331-344. [PMID: 31318724 DOI: 10.1097/cji.0000000000000289] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumor antigen-targeting monoclonal antibodies (mAbs) are an important element of current cancer therapies. Some of these therapeutic mAbs enable antibody-dependent cell mediated cytotoxicity (ADCC) against tumor cells. However, cancer-related functional impairment of immune effector cells may limit the clinical efficacy of antibody treatments. We reckoned that combining mAbs with cell-based immunotherapies would provide a clinically relevant synergism and benefit for cancer patients. Here, we focus on γδ T cells, as earlier studies demonstrated that γδ T-cell-based therapies are safe and promising for several types of malignancies. Similar to natural killer cells, their antitumor effects can be enhanced using antibodies, and they could, therefore, become a versatile effector cell platform for use with a variety of licensed therapeutic mAbs against cancer. In this study, we explore the potential of a combination therapy of activated γδ T cells with rituximab and the more recently developed mAbs (obinutuzumab and daratumumab) in different B-cell malignancies in vitro. Obinutuzumab outperformed the other mAbs with regard to direct target cell lysis and ADCC by γδ T cells in several CD20 cell lines and primary lymphoma specimens. We demonstrate that comparatively few CD16 γδ T cells are sufficient to mediate a strong ADCC. Using Fc-receptor-positive B-cell lymphomas as target cells, ADCC cannot be blocked by high concentrations of immunoglobulins or anti-CD16 antibodies, but both substances can promote cell mediated target cell lysis. This study expands on earlier reports on the therapeutic potential of distinctive tumor antigen-targeting mAbs and facilitates the understanding of the mechanism and potential of ADCC by γδ T-cell subsets.
Collapse
|
67
|
Crowther MD, Svane IM, Met Ö. T-Cell Gene Therapy in Cancer Immunotherapy: Why It Is No Longer Just CARs on The Road. Cells 2020; 9:cells9071588. [PMID: 32630096 PMCID: PMC7407663 DOI: 10.3390/cells9071588] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/26/2022] Open
Abstract
T-cells have a natural ability to fight cancer cells in the tumour microenvironment. Due to thymic selection and tissue-driven immunomodulation, these cancer-fighting T-cells are generally low in number and exhausted. One way to overcome these issues is to genetically alter T-cells to improve their effectiveness. This process can involve introducing a receptor that has high affinity for a tumour antigen, with two promising candidates known as chimeric-antigen receptors (CARs), or T-cell receptors (TCRs) with high tumour specificity. This review focuses on the editing of immune cells to introduce such novel receptors to improve immune responses to cancer. These new receptors redirect T-cells innate killing abilities to the appropriate target on cancer cells. CARs are modified receptors that recognise whole proteins on the surface of cancer cells. They have been shown to be very effective in haematological malignancies but have limited documented efficacy in solid cancers. TCRs recognise internal antigens and therefore enable targeting of a much wider range of antigens. TCRs require major histocompatibility complex (MHC) restriction but novel TCRs may have broader antigen recognition. Moreover, there are multiple cell types which can be used as targets to improve the “off-the-shelf” capabilities of these genetic engineering methods.
Collapse
Affiliation(s)
- Michael D. Crowther
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital Herlev, 2730 Herlev, Denmark;
- Correspondence: (M.D.C.); (Ö.M.)
| | - Inge Marie Svane
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital Herlev, 2730 Herlev, Denmark;
| | - Özcan Met
- Department of Oncology, National Center for Cancer Immune Therapy (CCIT-DK), Copenhagen University Hospital Herlev, 2730 Herlev, Denmark;
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: (M.D.C.); (Ö.M.)
| |
Collapse
|
68
|
Safaei M, Mobini GR, Abiri A, Shojaeian A. Synthetic biology in various cellular and molecular fields: applications, limitations, and perspective. Mol Biol Rep 2020; 47:6207-6216. [PMID: 32507922 DOI: 10.1007/s11033-020-05565-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 05/28/2020] [Indexed: 01/10/2023]
Abstract
Synthetic biology breakthroughs have facilitated genetic circuit engineering to program cells through novel biological functions, dynamic gene expressions, as well as logic controls. SynBio can also participate in the rapid development of new treatments required for the human lifestyle. Moreover, these technologies are applied in the development of innovative therapeutic, diagnostic, as well as discovery-related methods within a wide range of cellular and molecular applications. In the present review study, SynBio applications in various cellular and molecular fields such as novel strategies for cancer therapy, biosensing, metabolic engineering, protein engineering, and tissue engineering were highlighted and summarized. The major safety and regulatory concerns about synthetic biology will be the environmental release, legal concerns, and risks of the engineered organisms. The final sections focused on limitations to SynBio.
Collapse
Affiliation(s)
- Mohsen Safaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Gholam-Reza Mobini
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Shojaeian
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
69
|
Pellegrino C, Favalli N, Sandholzer M, Volta L, Bassi G, Millul J, Cazzamalli S, Matasci M, Villa A, Myburgh R, Manz MG, Neri D. Impact of Ligand Size and Conjugation Chemistry on the Performance of Universal Chimeric Antigen Receptor T-Cells for Tumor Killing. Bioconjug Chem 2020; 31:1775-1783. [DOI: 10.1021/acs.bioconjchem.0c00258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Christian Pellegrino
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), 8093 Zurich, Switzerland
| | - Nicholas Favalli
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), 8093 Zurich, Switzerland
| | - Michael Sandholzer
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), 8093 Zurich, Switzerland
| | - Laura Volta
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), 8093 Zurich, Switzerland
| | - Gabriele Bassi
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), 8093 Zurich, Switzerland
| | - Jacopo Millul
- Philochem AG, Libernstrasse 3, 8112 Otelfingen, Switzerland
| | | | - Mattia Matasci
- Philochem AG, Libernstrasse 3, 8112 Otelfingen, Switzerland
| | | | - Renier Myburgh
- Department of Medical Oncology and Hematology, Comprehensive Cancer Center Zurich (CCCZ), University Hospital Zurich and University of Zürich, 8091 Zürich, Switzerland
| | - Markus G. Manz
- Department of Medical Oncology and Hematology, Comprehensive Cancer Center Zurich (CCCZ), University Hospital Zurich and University of Zürich, 8091 Zürich, Switzerland
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zürich), 8093 Zurich, Switzerland
| |
Collapse
|
70
|
Cho SF, Lin L, Xing L, Li Y, Yu T, Anderson KC, Tai YT. BCMA-Targeting Therapy: Driving a New Era of Immunotherapy in Multiple Myeloma. Cancers (Basel) 2020; 12:E1473. [PMID: 32516895 PMCID: PMC7352710 DOI: 10.3390/cancers12061473] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
The treatment of multiple myeloma (MM) has entered into a new era of immunotherapy. Novel immunotherapies will significantly improve patient outcome via simultaneously targeting malignant plasma cell (PC) and reversing immunocompromised bone marrow (BM) microenvironment. B-cell maturation antigen (BCMA), selectively expressed in PCs and a key receptor for A proliferation-inducing ligand (APRIL), is highly expressed in MM cells from patients at all stages. The APRIL/BCMA signal cascades promote the survival and drug resistance of MM cells and further modulate immunosuppressive BM milieu. Impressively, anti-BCMA immunotherapeutic reagents, including chimeric antigen receptor (CAR), antibody-drug conjugate (ADC) and bispecific T cell engager (BiTE) have all shown high response rates in their first clinical trials in relapse and refractory patients with very limited treatment options. These results rapidly inspired numerous development of next-generation anti-BCMA biotherapeutics, i.e., bispecific molecule, bispecific or trispecific antibodies, a novel form of CAR T/NK cells and T Cell Antigen Coupler (TAC) receptors, antibody-coupled T cell receptor (ACTR) as well as a cancer vaccine. We here highlight seminal preclinical and clinical studies on novel BCMA-based immunotherapies as effective monotherapy and discuss their potential in combination with current anti-MM and novel checkpoint drugs in earlier disease stages to further achieve durable responses in patients.
Collapse
Affiliation(s)
- Shih-Feng Cho
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02138, USA; (S.-F.C.); (L.L.); (L.X.); (Y.L.); (T.Y.); (K.C.A.)
- Division of Hematology & Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Liang Lin
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02138, USA; (S.-F.C.); (L.L.); (L.X.); (Y.L.); (T.Y.); (K.C.A.)
| | - Lijie Xing
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02138, USA; (S.-F.C.); (L.L.); (L.X.); (Y.L.); (T.Y.); (K.C.A.)
| | - Yuyin Li
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02138, USA; (S.-F.C.); (L.L.); (L.X.); (Y.L.); (T.Y.); (K.C.A.)
| | - Tengteng Yu
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02138, USA; (S.-F.C.); (L.L.); (L.X.); (Y.L.); (T.Y.); (K.C.A.)
| | - Kenneth C Anderson
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02138, USA; (S.-F.C.); (L.L.); (L.X.); (Y.L.); (T.Y.); (K.C.A.)
| | - Yu-Tzu Tai
- LeBow Institute for Myeloma Therapeutics and Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02138, USA; (S.-F.C.); (L.L.); (L.X.); (Y.L.); (T.Y.); (K.C.A.)
| |
Collapse
|
71
|
Arndt C, Fasslrinner F, Loureiro LR, Koristka S, Feldmann A, Bachmann M. Adaptor CAR Platforms-Next Generation of T Cell-Based Cancer Immunotherapy. Cancers (Basel) 2020; 12:cancers12051302. [PMID: 32455621 PMCID: PMC7281723 DOI: 10.3390/cancers12051302] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 02/07/2023] Open
Abstract
The success of conventional chimeric antigen receptor (CAR) therapy in the treatment of refractory hematologic malignancies has triggered the development of novel exciting experimental CAR technologies. Among them, adaptor CAR platforms have received much attention. They combine the flexibility and controllability of recombinant antibodies with the power of CARs. Due to their modular design, adaptor CAR systems propose answers to the central problems of conventional CAR therapy, such as safety and antigen escape. This review provides an overview on the different adaptor CAR platforms available, discusses the possibilities and challenges of adaptor CAR therapy, and summarizes the first clinical experiences.
Collapse
Affiliation(s)
- Claudia Arndt
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (C.A.); (L.R.L.); (S.K.); (A.F.)
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Frederick Fasslrinner
- Medical Clinic and Polyclinic I, Medical Faculty, University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany;
| | - Liliana R. Loureiro
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (C.A.); (L.R.L.); (S.K.); (A.F.)
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Stefanie Koristka
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (C.A.); (L.R.L.); (S.K.); (A.F.)
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Anja Feldmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (C.A.); (L.R.L.); (S.K.); (A.F.)
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (C.A.); (L.R.L.); (S.K.); (A.F.)
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), Carl Gustav Carus, Technical University Dresden, 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-351-260-3170
| |
Collapse
|
72
|
Sievers NM, Dörrie J, Schaft N. CARs: Beyond T Cells and T Cell-Derived Signaling Domains. Int J Mol Sci 2020; 21:E3525. [PMID: 32429316 PMCID: PMC7279007 DOI: 10.3390/ijms21103525] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
When optimizing chimeric antigen receptor (CAR) therapy in terms of efficacy, safety, and broadening its application to new malignancies, there are two main clusters of topics to be addressed: the CAR design and the choice of transfected cells. The former focuses on the CAR construct itself. The utilized transmembrane and intracellular domains determine the signaling pathways induced by antigen binding and thereby the cell-specific effector functions triggered. The main part of this review summarizes our understanding of common signaling domains employed in CARs, their interactions among another, and their effects on different cell types. It will, moreover, highlight several less common extracellular and intracellular domains that might permit unique new opportunities. Different antibody-based extracellular antigen-binding domains have been pursued and optimized to strike a balance between specificity, affinity, and toxicity, but these have been reviewed elsewhere. The second cluster of topics is about the cellular vessels expressing the CAR. It is essential to understand the specific attributes of each cell type influencing anti-tumor efficacy, persistence, and safety, and how CAR cells crosstalk with each other and bystander cells. The first part of this review focuses on the progress achieved in adopting different leukocytes for CAR therapy.
Collapse
Affiliation(s)
- Nico M. Sievers
- Department of Dermatology, Universtitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (N.M.S.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universtitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (N.M.S.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universtitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (N.M.S.); (J.D.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| |
Collapse
|
73
|
Arriga R, Caratelli S, Lanzilli G, Ottaviani A, Cenciarelli C, Sconocchia T, Spagnoli GC, Iezzi G, Roselli M, Lauro D, Coppola A, Dotti G, Ferrone S, Sconocchia G. CD16-158-valine chimeric receptor T cells overcome the resistance of KRAS-mutated colorectal carcinoma cells to cetuximab. Int J Cancer 2020; 146:2531-2538. [PMID: 31396956 PMCID: PMC8711772 DOI: 10.1002/ijc.32618] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/31/2019] [Indexed: 01/06/2023]
Abstract
KRAS mutations hinder therapeutic efficacy of epidermal growth factor receptor (EGFR)-specific monoclonal antibodies cetuximab and panitumumab-based immunotherapy of EGFR+ cancers. Although cetuximab inhibits KRAS-mutated cancer cell growth in vitro by natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC), KRAS-mutated colorectal carcinoma (CRC) cells escape NK cell immunosurveillance in vivo. To overcome this limitation, we used cetuximab and panitumumab to redirect Fcγ chimeric receptor (CR) T cells against KRAS-mutated HCT116 colorectal cancer (CRC) cells. We compared four polymorphic Fcγ-CR constructs including CD16158F -CR, CD16158V -CR, CD32131H -CR, and CD32131R -CR transduced into T cells by retroviral vectors. Percentages of transduced T cells expressing CD32131H -CR (83.5 ± 9.5) and CD32131R -CR (77.7 ± 13.2) were significantly higher than those expressing with CD16158F -CR (30.3 ± 10.2) and CD16158V -CR (51.7 ± 13.7) (p < 0.003). CD32131R -CR T cells specifically bound soluble cetuximab and panitumumab. However, only CD16158V -CR T cells released high levels of interferon gamma (IFNγ = 1,145.5 pg/ml ±16.5 pg/ml, p < 0.001) and tumor necrosis factor alpha (TNFα = 614 pg/ml ± 21 pg/ml, p < 0.001) upon incubation with cetuximab-opsonized HCT116 cells. Moreover, only CD16158V -CR T cells combined with cetuximab killed HCT116 cells and A549 KRAS-mutated cells in vitro. CD16158V -CR T cells also effectively controlled subcutaneous growth of HCT116 cells in CB17-SCID mice in vivo. Thus, CD16158V -CR T cells combined with cetuximab represent useful reagents to develop innovative EGFR+KRAS-mutated CRC immunotherapies.
Collapse
Affiliation(s)
- Roberto Arriga
- Department of Systems Medicine, Endocrinology and Medical Oncology, University of Rome “Tor Vergata”, Rome, Italy
| | - Sara Caratelli
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | | | | | | | - Tommaso Sconocchia
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology Medical University of Graz, Graz, Austria
| | | | - Giandomenica Iezzi
- Department of Surgery, Ente Ospedaliero Cantonale, Università della Svizzera Italiana, Lugano, Switzerland
| | - Mario Roselli
- Department of Systems Medicine, Endocrinology and Medical Oncology, University of Rome “Tor Vergata”, Rome, Italy
| | - Davide Lauro
- Department of Systems Medicine, Endocrinology and Medical Oncology, University of Rome “Tor Vergata”, Rome, Italy
| | - Andrea Coppola
- Department of Systems Medicine, Endocrinology and Medical Oncology, University of Rome “Tor Vergata”, Rome, Italy
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
74
|
Maryamchik E, Gallagher KME, Preffer FI, Kadauke S, Maus MV. New directions in chimeric antigen receptor T cell [CAR-T] therapy and related flow cytometry. CYTOMETRY PART B-CLINICAL CYTOMETRY 2020; 98:299-327. [PMID: 32352629 DOI: 10.1002/cyto.b.21880] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Chimeric antigen receptor (CAR) T cells provide a promising approach to the treatment of hematologic malignancies and solid tumors. Flow cytometry is a powerful analytical modality, which plays an expanding role in all stages of CAR T therapy, from lymphocyte collection, to CAR T cell manufacturing, to in vivo monitoring of the infused cells and evaluation of their function in the tumor environment. Therefore, a thorough understanding of the new directions is important for designing and implementing CAR T-related flow cytometry assays in the clinical and investigational settings. However, the speed of new discoveries and the multitude of clinical and preclinical trials make it challenging to keep up to date in this complex field. In this review, we summarize the current state of CAR T therapy, highlight the areas of emergent research, discuss applications of flow cytometry in modern cell therapy, and touch upon several considerations particular to CAR detection and assessing the effectiveness of CAR T therapy.
Collapse
Affiliation(s)
- Elena Maryamchik
- Department of Pathology and Laboratory Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Frederic I Preffer
- Clinical Cytometry, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Stephan Kadauke
- Department of Pathology and Laboratory Medicine, Cell and Gene Therapy Laboratory, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Marcela V Maus
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Cellular Immunotherapy Program, Department of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
75
|
Tan AHJ, Vinanica N, Campana D. Chimeric antigen receptor-T cells with cytokine neutralizing capacity. Blood Adv 2020; 4:1419-1431. [PMID: 32271901 PMCID: PMC7160280 DOI: 10.1182/bloodadvances.2019001287] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
Infusion of T lymphocytes expressing chimeric antigen receptors (CARs) can produce extraordinary antitumor activity in patients with leukemia, lymphoma, and myeloma. The signaling mechanisms activating T cells and provoking tumor cell killing also trigger cytokine secretion and macrophage activation, leading to cytokine release syndrome (CRS). CRS is a serious side effect of CAR-T cells, and proinflammatory interleukin-6 (IL-6) is central to its pathogenesis. To endow T cells with anti-CRS activity, we designed a nonsignaling membrane-bound IL-6 receptor (mbaIL6) constituted by a single chain variable fragment derived from an anti-IL-6 antibody linked to a transmembrane anchoring peptide. We found that mbaIL6 expressed on the surface of T cells could rapidly remove IL-6 from the culture supernatant. IL-6 removal was proportional to the number of mbaIL6+ cells, increased with T-cell proliferation, and neutralized IL-6 signaling and function. A construct encoding for mbaIL6 and an anti-CD19-41BB-CD3ζ CAR allowed simultaneous expression of both receptors. T cells with mbaIL6 and CAR neutralized macrophage-derived IL-6 while exerting powerful antitumor activity. Cytotoxicity and proliferation were identical to those of cells expressing CAR alone in vitro, and CAR-T cells were effective in xenograft models regardless of mbaIL6 expression. Levels of human IL-6 in mice, however, were greatly reduced if T cells expressed both receptors instead of CAR alone. Thus, CAR-T cells with on-board capacity to extinguish IL-6 represent a new approach to prevent CRS and suppress its severity without affecting the antitumor potential of CAR-T cells.
Collapse
Affiliation(s)
- Adrian H J Tan
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Natasha Vinanica
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dario Campana
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
76
|
Weber EW, Maus MV, Mackall CL. The Emerging Landscape of Immune Cell Therapies. Cell 2020; 181:46-62. [PMID: 32243795 PMCID: PMC8900215 DOI: 10.1016/j.cell.2020.03.001] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/21/2022]
Abstract
Cell therapies present an entirely new paradigm in drug development. Within this class, immune cell therapies are among the most advanced, having already demonstrated definitive evidence of clinical benefits in cancer and infectious disease. Numerous features distinguish these "living therapies" from traditional medicines, including their ability to expand and contract in proportion to need and to mediate therapeutic benefits for months or years following a single application. Continued advances in fundamental immunology, genetic engineering, gene editing, and synthetic biology exponentially expand opportunities to enhance the sophistication of immune cell therapies, increasing potency and safety and broadening their potential for treatment of disease. This perspective will summarize the current status of immune cell therapies for cancer, infectious disease, and autoimmunity, and discuss advances in cellular engineering to overcome barriers to progress.
Collapse
Affiliation(s)
- Evan W Weber
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
77
|
Minutolo NG, Sharma P, Poussin M, Shaw LC, Brown DP, Hollander EE, Smole A, Rodriguez-Garcia A, Hui JZ, Zappala F, Tsourkas A, Powell DJ. Quantitative Control of Gene-Engineered T-Cell Activity through the Covalent Attachment of Targeting Ligands to a Universal Immune Receptor. J Am Chem Soc 2020; 142:6554-6568. [PMID: 32191035 DOI: 10.1021/jacs.9b11622] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Universal immune receptors represent a rapidly emerging form of adoptive T-cell therapy with the potential to overcome safety and antigen escape challenges faced by conventional chimeric antigen receptor (CAR) T-cell therapy. By decoupling antigen recognition and T-cell signaling domains via bifunctional antigen-specific targeting ligands, universal immune receptors can regulate T-cell effector function and target multiple antigens with a single receptor. Here, we describe the development of the SpyCatcher immune receptor, the first universal immune receptor that allows for the post-translational covalent attachment of targeting ligands at the T-cell surface through the application of SpyCatcher-SpyTag chemistry. The SpyCatcher immune receptor redirected primary human T cells against a variety of tumor antigens via the addition of SpyTag-labeled targeting ligands, both in vitro and in vivo. SpyCatcher T-cell activity relied upon the presence of both target antigen and SpyTag-labeled targeting ligand, allowing for dose-dependent control of function. The mutational disruption of covalent bond formation between the receptor and the targeting ligand still permitted redirected T-cell function but significantly compromised antitumor function. Thus, the SpyCatcher immune receptor allows for rapid antigen-specific receptor assembly, multiantigen targeting, and controllable T-cell activity.
Collapse
|
78
|
Bowyer JE, Chakravarti D, Wong WW, Bates DG. Mechanistic modelling of tyrosine recombination reveals key parameters determining the performance of a CAR T cell switching circuit. ENGINEERING BIOLOGY 2020; 4:10-19. [PMID: 36970230 PMCID: PMC9996713 DOI: 10.1049/enb.2019.0020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 12/30/2022] Open
Abstract
Inducible genetic switches based on tyrosine recombinase-based DNA excision are a promising platform for the regulation and control of chimeric antigen receptor (CAR) T cell activity in cancer immunotherapy. These switches exploit the increased stability of DNA excision in tyrosine recombinases through an inversion-excision circuit design. Here, the authors develop the first mechanistic mathematical model of switching dynamics in tyrosine recombinases and validate it against experimental data through both global optimisation and statistical approximation approaches. Analysis of this model provides guidelines regarding which system parameters are best suited to experimental tuning in order to establish optimal switch performance in vivo. In particular, they find that the switching response can be made significantly faster by increasing the concentration of the inducer drug 4-OHT and/or by using promoters generating higher expression levels of the FlpO recombinase.
Collapse
Affiliation(s)
- Jack E. Bowyer
- School of Engineering University of Warwick Coventry CV4 7AL UK
- Warwick Integrative Synthetic Biology Centre Coventry CV4 7AL UK
| | - Deboki Chakravarti
- Department of Biomedical Engineering Boston University Boston MA 02215 USA
- Biological Design Center Boston University Boston MA 02215 USA
| | - Wilson W. Wong
- Department of Biomedical Engineering Boston University Boston MA 02215 USA
- Biological Design Center Boston University Boston MA 02215 USA
| | - Declan G. Bates
- School of Engineering University of Warwick Coventry CV4 7AL UK
- Warwick Integrative Synthetic Biology Centre Coventry CV4 7AL UK
| |
Collapse
|
79
|
Liu X, Wen J, Yi H, Hou X, Yin Y, Ye G, Wu X, Jiang X. Split chimeric antigen receptor-modified T cells targeting glypican-3 suppress hepatocellular carcinoma growth with reduced cytokine release. Ther Adv Med Oncol 2020; 12:1758835920910347. [PMID: 32215059 PMCID: PMC7065297 DOI: 10.1177/1758835920910347] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/30/2020] [Indexed: 12/25/2022] Open
Abstract
Background: Human glypican-3 (hGPC3) is a protein highly expressed in hepatocellular carcinoma (HCC) but limited in normal tissues, making it an ideal target for immunotherapy. The adoptive transfer of hGPC3-specific chimeric antigen receptor T (CAR-T) cells for HCC treatment has been conducted in clinical trials. Due to the rigid construction, conventional CAR-T cells have some intrinsic limitations, like uncontrollable overactivation and inducing severe cytokine release syndrome. Methods: We redesigned the hGPC3-specific CAR by splitting the traditional CAR into two parts. By using coculturing assays and a xenograft mouse model, the in vitro and in vivo cytotoxicity and cytokine release of the split anti-hGPC3 CAR-T cells were evaluated against various HCC cell lines and compared with conventional CAR-T cells. Results: In vitro data demonstrated that split anti-hGPC3 CAR-T cells could recognize and lyse hGPC3+ HepG2 and Huh7 cells in a dose-dependent manner. Impressively, split anti-hGPC3 CAR-T cells produced and released a significantly lower amount of proinflammatory cytokines, including IFN-γ, TNF-α, IL-6, and GM-CSF, than conventional CAR-T cells. When injected into immunodeficient mice inoculated subcutaneously with HepG2 cells, our split anti-hGPC3 CAR-T cells could suppress HCC tumor growth, but released significantly lower levels of cytokines than conventional CAR-T cells. Conclusions: We describe here for the first time the use of split anti-hGPC3 CAR-T cells to treat HCC; split anti-hGPC3 CAR-T cells could suppress tumor growth and reduce cytokine release, and represent a more versatile and safer alternative to conventional CAR-T cells treatment.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianyun Wen
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Honglei Yi
- Department of Orthopedics, General Hospital of Southern Theater Command, Guangzhou, China
| | - Xiaorui Hou
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yue Yin
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guofu Ye
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Tonghe Road, Guangzhou, 510515, China
| | - Xiaotao Jiang
- Department of Immunology, School of Basic Medical Sciences, Southern Medical University, Shatai Road, Guangzhou, 510515, China
| |
Collapse
|
80
|
Choe JH, Williams JZ, Lim WA. Engineering T Cells to Treat Cancer: The Convergence of Immuno-Oncology and Synthetic Biology. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2020. [DOI: 10.1146/annurev-cancerbio-030419-033657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
T cells engineered to recognize and kill tumor cells have emerged as powerful agents for combating cancer. Nonetheless, our ability to engineer T cells remains relatively primitive. Aside from CAR T cells for treating B cell malignancies, most T cell therapies are risky, toxic, and often ineffective, especially those that target solid cancers. To fulfill the promise of cell-based therapies, we must transform cell engineering into a systematic and predictable science by applying the principles and tools of synthetic biology. Synthetic biology uses a hierarchical approach—assembling sets of modular molecular parts that can be combined into larger circuits and systems that perform defined target tasks. We outline the toolkit of synthetic modules that are needed to overcome the challenges of solid cancers, progress in building these components, and how these modules could be used to reliably engineer more effective and precise T cell therapies.
Collapse
Affiliation(s)
- Joseph H. Choe
- Department of Cellular and Molecular Pharmacology and Cell Design Initiative, University of California, San Francisco, California 94158, USA
| | - Jasper Z. Williams
- Department of Cellular and Molecular Pharmacology and Cell Design Initiative, University of California, San Francisco, California 94158, USA
| | - Wendell A. Lim
- Department of Cellular and Molecular Pharmacology and Cell Design Initiative, University of California, San Francisco, California 94158, USA
| |
Collapse
|
81
|
Specific stimulation of T lymphocytes with erythropoietin for adoptive immunotherapy. Blood 2020; 135:668-679. [PMID: 31697835 DOI: 10.1182/blood.2019001645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/18/2019] [Indexed: 02/07/2023] Open
Abstract
In adoptive T-cell immunotherapy of cancer, expansion and persistence of effector cells is a key determinant of response. We tested whether T lymphocytes could be rendered sensitive to erythropoietin (Epo) through ectopic expression of its wild-type receptor or a truncated form (EpoRm), which augments Epo signaling in erythrocyte progenitors. Both receptors could be expressed in human T lymphocytes; Epo ligation induced STAT5 phosphorylation, which was abrogated by nontoxic concentrations of the JAK1/2 inhibitor ruxolitinib. EpoRm had higher expression and triggered more potent stimulation than its wild-type counterpart, including superior T-cell survival and proliferation. Using a bicistronic vector, we expressed EpoRm together with an anti-CD19-41BB-CD3ζ chimeric antigen receptor (CAR), while maintaining the functions of each receptor. In the presence of Epo, EpoRm-CAR T cells had greater ex vivo expansion than CAR T cells and killed CD19+ leukemic cells more effectively in long-term cultures. In immunodeficient mice, physiologic levels of murine Epo were sufficient to preferentially expand EpoRm-CAR T cells, yielding a significantly higher antileukemic activity. Thus, outfitting adoptive T cells with EpoRm should yield greater effector-to-target ratios with a smaller number of infused cells; Epo or ruxolitinib administration could be used to adjust their levels postinfusion, maximizing antitumor activity and minimizing toxicity.
Collapse
|
82
|
Brandt LJB, Barnkob MB, Michaels YS, Heiselberg J, Barington T. Emerging Approaches for Regulation and Control of CAR T Cells: A Mini Review. Front Immunol 2020; 11:326. [PMID: 32194561 PMCID: PMC7062233 DOI: 10.3389/fimmu.2020.00326] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/10/2020] [Indexed: 12/18/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells have emerged as a promising treatment for patients with advanced B-cell cancers. However, widespread application of the therapy is currently limited by potentially life-threatening toxicities due to a lack of control of the highly potent transfused cells. Researchers have therefore developed several regulatory mechanisms in order to control CAR T cells in vivo. Clinical adoption of these control systems will depend on several factors, including the need for temporal and spatial control, the immunogenicity of the requisite components as well as whether the system allows reversible control or induces permanent elimination. Here we describe currently available and emerging control methods and review their function, advantages, and limitations.
Collapse
Affiliation(s)
- Lærke J B Brandt
- Department of Clinical Immunology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Mike B Barnkob
- Department of Clinical Immunology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Yale S Michaels
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Julia Heiselberg
- Department of Clinical Immunology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| | - Torben Barington
- Department of Clinical Immunology, Odense University Hospital, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
83
|
Shimasaki N, Jain A, Campana D. NK cells for cancer immunotherapy. Nat Rev Drug Discov 2020; 19:200-218. [PMID: 31907401 DOI: 10.1038/s41573-019-0052-1] [Citation(s) in RCA: 775] [Impact Index Per Article: 155.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
Natural killer (NK) cells can swiftly kill multiple adjacent cells if these show surface markers associated with oncogenic transformation. This property, which is unique among immune cells, and their capacity to enhance antibody and T cell responses support a role for NK cells as anticancer agents. Although tumours may develop several mechanisms to resist attacks from endogenous NK cells, ex vivo activation, expansion and genetic modification of NK cells can greatly increase their antitumour activity and equip them to overcome resistance. Some of these methods have been translated into clinical-grade platforms and support clinical trials of NK cell infusions in patients with haematological malignancies or solid tumours, which have yielded encouraging results so far. The next generation of NK cell products will be engineered to enhance activating signals and proliferation, suppress inhibitory signals and promote their homing to tumours. These modifications promise to significantly increase their clinical activity. Finally, there is emerging evidence of increased NK cell-mediated tumour cell killing in the context of molecularly targeted therapies. These observations, in addition to the capacity of NK cells to magnify immune responses, suggest that NK cells are poised to become key components of multipronged therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Noriko Shimasaki
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amit Jain
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Division of Medical Oncology, National Cancer Centre, Singapore, Singapore
| | - Dario Campana
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
84
|
Abstract
As a specifically programmable, living immunotherapeutic drug, chimeric antigen receptor (CAR)-modified T cells are providing an alternative treatment option for a broad variety of diseases including so far refractory cancer. By recognizing a tumor-associated antigen, the CAR triggers an anti-tumor response of engineered patient's T cells achieving lasting remissions in the treatment of leukemia and lymphoma. During the last years, significant progress was made in optimizing the CAR design, in manufacturing CAR-engineered T cells, and in the clinical management of patients showing promise to establish adoptive CAR T cell therapy as an effective treatment option in the forefront.
Collapse
Affiliation(s)
- Astrid Holzinger
- RCI Regensburg Center for Interventional Immunology, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany
- Chair Genetic Immunotherapy, RCI c/o University Hospital Regensburg, Regensburg, Germany
| | - Hinrich Abken
- RCI Regensburg Center for Interventional Immunology, Franz-Josef-Strauss Allee 11, 93053, Regensburg, Germany.
- Chair Genetic Immunotherapy, RCI c/o University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
85
|
Caratelli S, Arriga R, Sconocchia T, Ottaviani A, Lanzilli G, Pastore D, Cenciarelli C, Venditti A, Del Principe MI, Lauro D, Landoni E, Du H, Savoldo B, Ferrone S, Dotti G, Sconocchia G. In vitro elimination of epidermal growth factor receptor-overexpressing cancer cells by CD32A-chimeric receptor T cells in combination with cetuximab or panitumumab. Int J Cancer 2020; 146:236-247. [PMID: 31479522 PMCID: PMC8711771 DOI: 10.1002/ijc.32663] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 02/03/2023]
Abstract
Cetuximab and panitumumab bind the human epidermal growth factor receptor (EGFR). Although the chimeric cetuximab (IgG1) triggers antibody-dependent-cellular-cytotoxicity (ADCC) of EGFR positive target cells, panitumumab (a human IgG2) does not. The inability of panitumumab to trigger ADCC reflects the poor binding affinity of human IgG2 Fc for the FcγRIII (CD16) on natural killer (NK) cells. However, both human IgG1 and IgG2 bind the FcγRII (CD32A) to a similar extent. Our study compares the ability of T cells, engineered with a novel low-affinity CD32A131R -chimeric receptor (CR), and those engineered with the low-affinity CD16158F -CR T cells, in eliminating EGFR positive epithelial cancer cells (ECCs) in combination with cetuximab or panitumumab. After T-cell transduction, the percentage of CD32A131R -CR T cells was 74 ± 10%, whereas the percentage of CD16158F -CR T cells was 46 ± 15%. Only CD32A131R -CR T cells bound panitumumab. CD32A131R -CR T cells combined with the mAb 8.26 (anti-CD32) and CD16158F -CR T cells combined with the mAb 3g8 (anti-CD16) eliminated colorectal carcinoma (CRC), HCT116FcγR+ cells, in a reverse ADCC assay in vitro. Crosslinking of CD32A131R -CR on T cells by cetuximab or panitumumab and CD16158F -CR T cells by cetuximab induced elimination of triple negative breast cancer (TNBC) MDA-MB-468 cells, and the secretion of interferon gamma and tumor necrosis factor alpha. Neither cetuximab nor panitumumab induced Fcγ-CR T antitumor activity against Kirsten rat sarcoma (KRAS)-mutated HCT116, nonsmall-cell-lung-cancer, A549 and TNBC, MDA-MB-231 cells. The ADCC of Fcγ-CR T cells was associated with the overexpression of EGFR on ECCs. In conclusion, CD32A131R -CR T cells are efficiently redirected by cetuximab or panitumumab against breast cancer cells overexpressing EGFR.
Collapse
Affiliation(s)
- Sara Caratelli
- Department of Biomedical Sciences, Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Roberto Arriga
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Tommaso Sconocchia
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Alessio Ottaviani
- Department of Biomedical Sciences, Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Giulia Lanzilli
- Department of Biomedical Sciences, Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Donatella Pastore
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Carlo Cenciarelli
- Department of Biomedical Sciences, Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Adriano Venditti
- Hematology, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | | | - Davide Lauro
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Elisa Landoni
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Hongwei Du
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Barbara Savoldo
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Gianpietro Dotti
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Giuseppe Sconocchia
- Department of Biomedical Sciences, Institute of Translational Pharmacology, CNR, Rome, Italy
| |
Collapse
|
86
|
Hughes-Parry HE, Cross RS, Jenkins MR. The Evolving Protein Engineering in the Design of Chimeric Antigen Receptor T Cells. Int J Mol Sci 2019; 21:ijms21010204. [PMID: 31892219 PMCID: PMC6981602 DOI: 10.3390/ijms21010204] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 12/24/2022] Open
Abstract
The clinical success of chimeric antigen receptor (CAR) T cell immunotherapy in the treatment of haematological cancers has encouraged the extensive development of CAR design to improve their function and increase their applicability. Advancements in protein engineering have seen modifications to both the ecto- and endo-domains of the CAR, with recent designs targeting multiple antigens and including inducible elements. These developments are likely to play an important role in inducing effective CAR T cell responses in a solid tumour context, where clinical responses have not been effective to date. This review highlights the spectrum of novel strategies being employed in CAR design, including for example variations in targeting tumour antigens by utilising different ectodomain designs such as dual chain CARs, natural receptor or ligand-based CARs, and T cell receptor fusion constructs, and also reviews some of the innovative approaches to a "universal" CAR and various multi-antigen targeting CAR strategies. We also explore how choices in the endodomain impact CAR function and how these need to be considered in the overall CAR design.
Collapse
Affiliation(s)
- Hannah E. Hughes-Parry
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (H.E.H.-P.); (R.S.C.)
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ryan S. Cross
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (H.E.H.-P.); (R.S.C.)
| | - Misty R. Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (H.E.H.-P.); (R.S.C.)
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
- Institute of Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
- Correspondence:
| |
Collapse
|
87
|
Chimeric antigen receptor -T cell therapy: Applications and challenges in treatment of allergy and asthma. Biomed Pharmacother 2019; 123:109685. [PMID: 31862474 DOI: 10.1016/j.biopha.2019.109685] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/28/2019] [Accepted: 11/16/2019] [Indexed: 01/10/2023] Open
Abstract
Despite the current advancements, cancer treatment approaches have limitations restricting their cure rate. Immunotherapy techniques are among novel and promising cancer therapeutic approaches. Therapeutic antibodies and adoptive cell therapy (ACT) are the main branches of immunotherapy. T lymphocytes and genetically engineered cells are among important cells which can be used in ACT. This review has focused on recent advances in engineered cell-based immunotherapy based on T lymphocytes with chimeric antigen receptors (CARs). CARs are recombinant receptors expressing T cell signaling domains with or without co-stimulatory molecules. CAR-T cells are expanded ex vivo and re-infused to patients in order to improve their therapeutic efficacy. Nowadays, the beneficial function of CAR-T cell therapy has been indicated in various diseases including hematological malignancies, solid tumors, autoimmune diseases, and allergic diseases such as asthma. Furthermore, antigen-specific T regulatory cells (Tregs) and gene-edited T cells seem to be beneficial in controlling inflammation in allergic asthma. In fact, dysregulated function of Tregs is responsible for dominance of T helper 2 immune response and progression of allergic asthma. CAR-Treg cells can also be designed and reproduced using iTreg population to manage asthma. In addition, universal CAR-T cells can be modified to selectively target multiple antigens. The fourth generation CAR-T cells (i.e. TRUCK cells) represent novel strategies to cure asthma and allergic diseases as well. Despite the advantages of CAR-T cells, their applications can be associated with some unwanted reactions such as cytokine storm, anaphylaxis, neurotoxicity, etc. For clinical application, there is a need to prevent and manage these complications by optimizing ACT protocols.
Collapse
|
88
|
Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol 2019; 17:147-167. [PMID: 31848460 PMCID: PMC7223338 DOI: 10.1038/s41571-019-0297-y] [Citation(s) in RCA: 894] [Impact Index Per Article: 149.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Abstract
T cells genetically engineered to express chimeric antigen receptors (CARs) have proven — and impressive — therapeutic activity in patients with certain subtypes of B cell leukaemia or lymphoma, with promising efficacy also demonstrated in patients with multiple myeloma. Nevertheless, various barriers restrict the efficacy and/or prevent the widespread use of CAR T cell therapies in these patients as well as in those with other cancers, particularly solid tumours. Key challenges relating to CAR T cells include severe toxicities, restricted trafficking to, infiltration into and activation within tumours, suboptimal persistence in vivo, antigen escape and heterogeneity, and manufacturing issues. The evolution of CAR designs beyond the conventional structures will be necessary to address these limitations and to expand the use of CAR T cells to a wider range of malignancies. Investigators are addressing the current obstacles with a wide range of engineering strategies in order to improve the safety, efficacy and applicability of this therapeutic modality. In this Review, we discuss the innovative designs of novel CAR T cell products that are being developed to increase and expand the clinical benefits of these treatments in patients with diverse cancers. Chimeric antigen receptor (CAR) T cell therapy, the first approved therapeutic approach with a genetic engineering component, holds substantial promise in the treatment of a range of cancers but is nevertheless limited by various challenges, including toxicities, intrinsic and acquired resistance mechanisms, and manufacturing issues. In this Review, the authors describe the innovative approaches to the engineering of CAR T cell products that are providing solutions to these challenges and therefore have the potential to considerably improve the safety and effectiveness of treatment. Chimeric antigen receptor (CAR) T cells have induced remarkable responses in patients with certain haematological malignancies, yet various barriers restrict the efficacy and/or prevent the widespread use of this treatment. Investigators are addressing these challenges with engineering strategies designed to improve the safety, efficacy and applicability of CAR T cell therapy. CARs have modular components, and therefore the optimal molecular design of the CAR can be achieved through many variations of the constituent protein domains. Toxicities currently associated with CAR T cell therapy can be mitigated using engineering strategies to make CAR T cells safer and that potentially broaden the range of tumour-associated antigens that can be targeted by overcoming on-target, off-tumour toxicities. CAR T cell efficacy can be enhanced by using engineering strategies to address the various challenges relating to the unique biology of diverse haematological and solid malignancies. Strategies to address the manufacturing challenges can lead to an improved CAR T cell product for all patients.
Collapse
|
89
|
Kim HR, Park HJ, Son J, Lee JG, Chung KY, Cho NH, Shim HS, Park S, Kim G, In Yoon H, Kim HG, Jung YW, Cho BC, Park SY, Rha SY, Ha SJ. Tumor microenvironment dictates regulatory T cell phenotype: Upregulated immune checkpoints reinforce suppressive function. J Immunother Cancer 2019; 7:339. [PMID: 31801611 PMCID: PMC6894345 DOI: 10.1186/s40425-019-0785-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 10/22/2019] [Indexed: 01/29/2023] Open
Abstract
Background Regulatory T (Treg) cells have an immunosuppressive function in cancer, but the underlying mechanism of immunosuppression in the tumor microenvironment (TME) is unclear. Methods We compared the phenotypes of T cell subsets, including Treg cells, obtained from peripheral blood, malignant effusion, and tumors of 103 cancer patients. Our primary focus was on the expression of immune checkpoint (IC)-molecules, such as programmed death (PD)-1, T-cell immunoglobulin and mucin-domain containing (TIM)-3, T cell Ig and ITIM domain (TIGIT), and cytotoxic T lymphocyte antigen (CTLA)-4, on Treg cells in paired lymphocytes from blood, peritumoral tissue, and tumors of 12 patients with lung cancer. To identify the immunosuppressive mechanisms acting on tumor-infiltrating Treg cells, we conducted immunosuppressive functional assays in a mouse model. Results CD8+, CD4+ T cells, and Treg cells exhibited a gradual upregulation of IC-molecules the closer they were to the tumor. Interestingly, PD-1 expression was more prominent in Treg cells than in conventional T (Tconv) cells. In lung cancer patients, higher levels of IC-molecules were expressed on Treg cells than on Tconv cells, and Treg cells were also more enriched in the tumor than in the peri-tumor and blood. In a mouse lung cancer model, IC-molecules were also preferentially upregulated on Treg cells, compared to Tconv cells. PD-1 showed the greatest increase on most cell types, especially Treg cells, and this increase occurred gradually over time after the cells entered the TME. PD-1 high-expressing tumor-infiltrating Treg cells displayed potent suppressive activity, which could be partially inhibited with a blocking anti-PD-1 antibody. Conclusions We demonstrate that the TME confers a suppressive function on Treg cells by upregulating IC-molecule expression. Targeting IC-molecules, including PD-1, on Treg cells may be effective for cancer treatment.
Collapse
Affiliation(s)
- Hye Ryun Kim
- Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 120-752, South Korea
| | - Hyo Jin Park
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, South Korea
| | - Jimin Son
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, South Korea
| | - Jin Gu Lee
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 120-752, South Korea
| | - Kyung Young Chung
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 120-752, South Korea
| | - Nam Hoon Cho
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyo Sup Shim
- Department of Pathology, Yonsei University College of Medicine, Seoul, South Korea
| | - Seyeon Park
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, South Korea
| | - Gamin Kim
- Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 120-752, South Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyun Gyung Kim
- Department of Pharmacy, Korea University, Sejong, South Korea
| | - Yong Woo Jung
- Department of Pharmacy, Korea University, Sejong, South Korea
| | - Byoung Chul Cho
- Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 120-752, South Korea
| | - Seong Yong Park
- Department of Thoracic and Cardiovascular Surgery, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 120-752, South Korea.
| | - Sun Young Rha
- Yonsei Cancer Center, Division of Medical Oncology, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-Gu, Seoul, 120-752, South Korea.
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
90
|
Pesch T, Bonati L, Kelton W, Parola C, Ehling RA, Csepregi L, Kitamura D, Reddy ST. Molecular Design, Optimization, and Genomic Integration of Chimeric B Cell Receptors in Murine B Cells. Front Immunol 2019; 10:2630. [PMID: 31798579 PMCID: PMC6868064 DOI: 10.3389/fimmu.2019.02630] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 10/23/2019] [Indexed: 11/13/2022] Open
Abstract
Immune cell therapies based on the integration of synthetic antigen receptors comprise a powerful strategy for the treatment of diverse diseases, most notably T cells engineered to express chimeric antigen receptors (CAR) for targeted cancer therapy. In addition to T lymphocytes, B lymphocytes may also represent valuable immune cells that can be engineered for therapeutic purposes such as protein replacement therapy or recombinant antibody production. In this article, we report a promising concept for the molecular design, optimization, and genomic integration of a novel class of synthetic antigen receptors, chimeric B cell receptors (CBCR). We initially optimized CBCR expression and detection by modifying the extracellular surface tag, the transmembrane regions and intracellular signaling domains. For this purpose, we stably integrated a series of CBCR variants using CRISPR-Cas9 into immortalized B cell hybridomas. Subsequently, we developed a reliable and consistent pipeline to precisely introduce cassettes of several kb size into the genome of primary murine B cells also using CRISPR-Cas9 induced HDR. Finally, we were able to show the robust surface expression and antigen recognition of a synthetic CBCR in primary B cells. We anticipate CBCRs and our approach for engineering primary B cells will be a valuable tool for the advancement of future B cell- based immune cell therapies.
Collapse
Affiliation(s)
- Theresa Pesch
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Lucia Bonati
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - William Kelton
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Cristina Parola
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Life Science Graduate School, Systems Biology, ETH Zürich, University of Zurich, Zurich, Switzerland
| | - Roy A. Ehling
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Lucia Csepregi
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Life Science Graduate School, Microbiology and Immunology, ETH Zürich, University of Zurich, Zurich, Switzerland
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| |
Collapse
|
91
|
Zhang C, Xiong X, Li Y, Huang K, Liu L, Peng X, Weng W. Cytokine-induced killer cells/natural killer cells combined with anti-GD2 monoclonal antibody increase cell death rate in neuroblastoma SK-N-SH cells. Oncol Lett 2019; 18:6525-6535. [PMID: 31807172 PMCID: PMC6876305 DOI: 10.3892/ol.2019.11020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
Neuroblastoma (NB) is one of the most common extracranial, solid, pediatric malignancies. Despite improvements in conventional therapies, including surgery, chemotherapy and radiation therapy, the prognosis of stage IV NB remains poor, indicating that novel treatment strategies are required. Immunotherapies, such as anti-GD2 monoclonal antibodies, used alone or in combination with cytokines, and peripheral blood mononuclear cells or cord blood mononuclear cells (CBMNCs), have been indicated to cause NB cell death and to prolong patient survival in high-risk NB; however, they remain limited by severe cytotoxicity and side effects. In the present study, it was determined that anti-GD2 monoclonal antibody alone or CBMNC-isolated cytokine-induced killer (CIK)/natural killer (NK) cells alone significantly induced cell death of NB SK-N-SH cells, and the combination of anti-GD2 antibody and CIK/NK cells could significantly increase the cell death rate compared with either treatment alone. In addition, based on a method referred to our previous study, it was identified that a two-cytokine culture system, using interleukin IL-2 and IL-7, effectively stimulated the proliferation of CIK/NK cells. These results serve to suggest a novel treatment strategy for relapsed/refractory NB with high efficiency and few side effects.
Collapse
Affiliation(s)
- Chi Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xilin Xiong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ke Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ling Liu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong 524000, P.R. China
| | - Xiaomin Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Wenjun Weng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China.,Department of Pediatric Hematology/Oncology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
92
|
Yu S, Yi M, Qin S, Wu K. Next generation chimeric antigen receptor T cells: safety strategies to overcome toxicity. Mol Cancer 2019; 18:125. [PMID: 31429760 PMCID: PMC6701025 DOI: 10.1186/s12943-019-1057-4] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/14/2019] [Indexed: 01/06/2023] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy is an emerging and effective cancer immunotherapy. Especially in hematological malignancies, CAR-T cells have achieved exciting results. Two Anti-CD19 CAR-T therapies have been approved for the treatment of CD19-positive leukemia or lymphoma. However, the application of CAR-T cells is obviously hampered by the adverse effects, such as cytokines release syndrome and on-target off-tumor toxicity. In some clinical trials, patients quitted the treatment of CAR-T cells due to life-threatening toxicity. Seeking to alleviate these toxicities or prevent the occurrence, researchers have developed a number of safety strategies of CAR-T cells, including suicide genes, synthetic Notch receptor, on-switch CAR, combinatorial target-antigen recognition, bispecific T cell engager and inhibitory CAR. This review summarized the preclinical studies and clinical trials of the safety strategies of CAR-T cells and their respective strengths and weaknesses.
Collapse
Affiliation(s)
- Shengnan Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
93
|
Chakravarti D, Caraballo LD, Weinberg BH, Wong WW. Inducible Gene Switches with Memory in Human T Cells for Cellular Immunotherapy. ACS Synth Biol 2019; 8:1744-1754. [PMID: 31268301 PMCID: PMC6703182 DOI: 10.1021/acssynbio.8b00512] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Cell-based therapies that employ
engineered T cells—including
those modified to express chimeric antigen receptors (CARs)—to
target cancer cells have demonstrated promising responses in clinical
trials. However, engineered T cell responses must be regulated to
prevent severe side effects such as cytokine storms and off-target
responses. Here we present a class of recombinase-based gene circuits
that will enable inducible, one-time state switching in adoptive T
cell therapy using an FDA-approved drug, creating a generalizable
platform that can be used to control when and how strongly a gene
is expressed. These circuits exhibit memory such that induced T cells
will maintain any changes made even when the drug inducer is removed.
This memory feature avoids prolonged drug inducer exposure, thus reducing
the complexity and potential side effect associated with the drug
inducer. We have utilized these circuits to control the expression
of an anti-Her2-CAR, demonstrating the ability of these circuits to
regulate CAR expression and T cell activity. We envision this platform
can be extended to regulate other genes involved in T cell behavior
for applications in various adoptive T cell therapies.
Collapse
Affiliation(s)
- Deboki Chakravarti
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
| | - Leidy D. Caraballo
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
| | - Benjamin H. Weinberg
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
| | - Wilson W. Wong
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Biological Design Center, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
94
|
Marei HE, Althani A, Caceci T, Arriga R, Sconocchia T, Ottaviani A, Lanzilli G, Roselli M, Caratelli S, Cenciarelli C, Sconocchia G. Recent perspective on CAR and Fcγ-CR T cell immunotherapy for cancers: Preclinical evidence versus clinical outcomes. Biochem Pharmacol 2019; 166:335-346. [PMID: 31176617 DOI: 10.1016/j.bcp.2019.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022]
Abstract
The chimeric antigen receptor T cell (CAR-T cell) immunotherapy currently represents a hot research trend and it is expected to revolutionize the field of cancer therapy. Promising outcomes have been achieved using CAR-T cell therapy for haematological malignancies. Despite encouraging results, several challenges still pose eminent hurdles before being fully recognized. Directing CAR-T cells to target a single tumour associated antigen (TAA) as the case in haematological malignancies might be much simpler than targeting the extensive inhibitory microenvironments associated with solid tumours. This review focuses on the basic principles involved in development of CAR-T cells, emphasizing the differences between humoral IgG, T-cell receptors, CAR and Fcγ-CR constructs. It also highlights the complex inhibitory network that is usually associated with solid tumours, and tackles recent advances in the clinical studies that have provided great hope for the future use of CAR-T cell immunotherapy. While current Fcγ-CR T cell immunotherapy is in pre-clinical stage, is expected to provide a sound therapeutic approach to add to existing classical chemo- and radio-therapeutic modalities.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35116, Egypt.
| | - Asma Althani
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Thomas Caceci
- Biomedical Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Roberto Arriga
- Department of Systems Medicine, Endocrinology and Medical Oncology, University of Rome "Tor Vergata", Rome, Italy
| | - Tommaso Sconocchia
- Otto Loewi Research Center, Chair of Immunology and Pathophysiology, Medical University of Graz, Graz, Austria
| | | | | | - Mario Roselli
- Department of Systems Medicine, Endocrinology and Medical Oncology, University of Rome "Tor Vergata", Rome, Italy
| | - Sara Caratelli
- Institute of Translational Pharmacology-CNR, Rome, Italy
| | | | | |
Collapse
|
95
|
|
96
|
Ayyappan S, Maddocks K. Novel and emerging therapies for B cell lymphoma. J Hematol Oncol 2019; 12:82. [PMID: 31345247 PMCID: PMC6659277 DOI: 10.1186/s13045-019-0752-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/14/2019] [Indexed: 02/08/2023] Open
Abstract
Lymphomas are a heterogeneous group of lymphoproliferative disorders, with unique clinical and biological characteristics that exhibit variable response to therapy. Advances in chemo-immunotherapy have improved outcomes in a number of lymphoma subtypes; however, the prognosis for many patients with relapsed and refractory disease remains poor. Novel therapies including several small molecule inhibitors and chimeric antigen receptor T cells have been approved for the treatment of different lymphoma subtypes at relapse, changing the therapy landscape and further improving survival in many of these diseases. This has led to a focus on the development of new cellular therapy, antibody-based therapy, and small molecule inhibitors for relapsed and refractory disease that offer an alternative approach to cytotoxic chemotherapy. We will review these promising novel therapies and discuss their safety and efficacy in first in human studies.
Collapse
Affiliation(s)
- Sabarish Ayyappan
- Division of Hematology, Department of Internal Medicine, Arthur G. James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, 320 W 10th Street, A342 Starling Loving Hall, Columbus, Ohio, 43210, USA.
| | - Kami Maddocks
- Division of Hematology, Department of Internal Medicine, Arthur G. James Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, 320 W 10th Street, A342 Starling Loving Hall, Columbus, Ohio, 43210, USA
| |
Collapse
|
97
|
Karches CH, Benmebarek MR, Schmidbauer ML, Kurzay M, Klaus R, Geiger M, Rataj F, Cadilha BL, Lesch S, Heise C, Murr R, Vom Berg J, Jastroch M, Lamp D, Ding J, Duewell P, Niederfellner G, Sustmann C, Endres S, Klein C, Kobold S. Bispecific Antibodies Enable Synthetic Agonistic Receptor-Transduced T Cells for Tumor Immunotherapy. Clin Cancer Res 2019; 25:5890-5900. [PMID: 31285373 DOI: 10.1158/1078-0432.ccr-18-3927] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/25/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE Genetically engineered T cells are powerful anticancer treatments but are limited by safety and specificity issues. We herein describe an MHC-unrestricted modular platform combining autologous T cells, transduced with a targetable synthetic agonistic receptor (SAR), with bispecific antibodies (BiAb) that specifically recruit and activate T cells for tumor killing. EXPERIMENTAL DESIGN BiAbs of different formats were generated by recombinant expression. T cells were retrovirally transduced with SARs. T-cell activation, proliferation, differentiation, and T-cell-induced lysis were characterized in three murine and human tumor models in vitro and in vivo. RESULTS Murine T cells transduced with SAR composed of an extracellular domain EGFRvIII fused to CD28 and CD3ζ signaling domains could be specifically recruited toward murine tumor cells expressing EpCAM by anti-EGFRvIII × anti-EpCAM BiAb. BiAb induced selective antigen-dependent activation, proliferation of SAR T cells, and redirected tumor cell lysis. Selectivity was dependent on the monovalency of the antibody for EGFRvIII. We identified FAS ligand as a major mediator of killing utilized by the T cells. Similarly, human SAR T cells could be specifically redirected toward mesothelin-expressing human pancreatic cancer cells. In vivo, treatment with SAR T cells and BiAb mediated antitumoral activity in three human pancreatic cancer cell xenograft models. Importantly, SAR activity, unlike CAR activity, was reversible in vitro and in vivo. CONCLUSIONS We describe a novel ACT platform with antitumor activity in murine and human tumor models with a distinct mode of action that combines adoptive T-cell therapy with bispecific antibodies.
Collapse
Affiliation(s)
- Clara H Karches
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Mohamed-Reda Benmebarek
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Moritz L Schmidbauer
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Mathias Kurzay
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Richard Klaus
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | | | - Felicitas Rataj
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Bruno L Cadilha
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Stefanie Lesch
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Constanze Heise
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Ramona Murr
- Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Johannes Vom Berg
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Martin Jastroch
- Helmholtz Diabetes Center and German Diabetes Center (DZD), Helmholtz Zentrum München, Neuherberg, Germany
| | - Daniel Lamp
- Helmholtz Diabetes Center and German Diabetes Center (DZD), Helmholtz Zentrum München, Neuherberg, Germany
| | - Jian Ding
- TCR Therapeutics, Cambridge, Massachusetts
| | - Peter Duewell
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | | | | | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | | | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL).
| |
Collapse
|
98
|
Bailey SR, Maus MV. Gene editing for immune cell therapies. Nat Biotechnol 2019; 37:1425-1434. [DOI: 10.1038/s41587-019-0137-8] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 04/22/2019] [Indexed: 02/06/2023]
|
99
|
Mardiana S, Lai J, House IG, Beavis PA, Darcy PK. Switching on the green light for chimeric antigen receptor T-cell therapy. Clin Transl Immunology 2019; 8:e1046. [PMID: 31073403 PMCID: PMC6500780 DOI: 10.1002/cti2.1046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/18/2022] Open
Abstract
Adoptive cellular therapy involving genetic modification of T cells with chimeric antigen receptor (CAR) transgene offers a promising strategy to broaden the efficacy of this approach for the effective treatment of cancer. Although remarkable antitumor responses have been observed following CAR T‐cell therapy in a subset of B‐cell malignancies, this has yet to be extended in the context of solid cancers. A number of promising strategies involving reprogramming the tumor microenvironment, increasing the specificity and safety of gene‐modified T cells and harnessing the endogenous immune response have been tested in preclinical models that may have a significant impact in patients with solid cancers. This review will discuss these exciting new developments and the challenges that must be overcome to deliver a more sustained and potent therapeutic response.
Collapse
Affiliation(s)
- Sherly Mardiana
- Cancer Immunology Program Peter MacCallum Cancer Centre Melbourne VIC Australia.,Sir Peter MacCallum Department of Oncology The University of Melbourne Parkville VIC Australia
| | - Junyun Lai
- Cancer Immunology Program Peter MacCallum Cancer Centre Melbourne VIC Australia.,Sir Peter MacCallum Department of Oncology The University of Melbourne Parkville VIC Australia
| | - Imran Geoffrey House
- Cancer Immunology Program Peter MacCallum Cancer Centre Melbourne VIC Australia.,Sir Peter MacCallum Department of Oncology The University of Melbourne Parkville VIC Australia
| | - Paul Andrew Beavis
- Cancer Immunology Program Peter MacCallum Cancer Centre Melbourne VIC Australia.,Sir Peter MacCallum Department of Oncology The University of Melbourne Parkville VIC Australia
| | - Phillip Kevin Darcy
- Cancer Immunology Program Peter MacCallum Cancer Centre Melbourne VIC Australia.,Sir Peter MacCallum Department of Oncology The University of Melbourne Parkville VIC Australia.,Department of Pathology University of Melbourne Parkville VIC Australia.,Department of Immunology Monash University Clayton VIC Australia
| |
Collapse
|
100
|
Sacchetti B, Botticelli A, Pierelli L, Nuti M, Alimandi M. CAR-T with License to Kill Solid Tumors in Search of a Winning Strategy. Int J Mol Sci 2019; 20:E1903. [PMID: 30999624 PMCID: PMC6514830 DOI: 10.3390/ijms20081903] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/11/2019] [Accepted: 04/13/2019] [Indexed: 02/06/2023] Open
Abstract
Artificial receptors designed for adoptive immune therapies need to absolve dual functions: antigen recognition and abilities to trigger the lytic machinery of reprogrammed effector T lymphocytes. In this way, CAR-T cells deliver their cytotoxic hit to cancer cells expressing targeted tumor antigens, bypassing the limitation of HLA-restricted antigen recognition. Expanding technologies have proposed a wide repertoire of soluble and cellular "immunological weapons" to kill tumor cells; they include monoclonal antibodies recognizing tumor associated antigens on tumor cells and immune cell checkpoint inhibition receptors expressed on tumor specific T cells. Moreover, a wide range of formidable chimeric antigen receptors diversely conceived to sustain quality, strength and duration of signals delivered by engineered T cells have been designed to specifically target tumor cells while minimize off-target toxicities. The latter immunological weapons have shown distinct efficacy and outstanding palmarès in curing leukemia, but limited and durable effects for solid tumors. General experience with checkpoint inhibitors and CAR-T cell immunotherapy has identified a series of variables, weaknesses and strengths, influencing the clinical outcome of the oncologic illness. These aspects will be shortly outlined with the intent of identifying the still "missing strategy" to combat epithelial cancers.
Collapse
Affiliation(s)
| | - Andrea Botticelli
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Luca Pierelli
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Marianna Nuti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Maurizio Alimandi
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|