51
|
Han F, Zhang MQ, Liu WB, Sun L, Hao XL, Yin L, Jiang X, Cao J, Liu JY. SOX30 specially prevents Wnt-signaling to suppress metastasis and improve prognosis of lung adenocarcinoma patients. Respir Res 2018; 19:241. [PMID: 30514297 PMCID: PMC6280504 DOI: 10.1186/s12931-018-0952-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/23/2018] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Different histological subtypes of non-small cell lung cancer (NSCLC) show different molecular characteristics and responses to therapeutic strategy. Identification of specific gene, clarification of its special roles and molecular mechanisms are crucial for developing new therapeutic approach for particular subtype patients. METHODS Surgical specimens of 540 NSCLC patients were recruited. Immunohistochemistry was used to detect SOX30 expression, and correlations with clinical parameters were analyzed. Functional experiments and gene ontology analysis were performed to investigate roles of SOX30. Network analysis, TOP/FOP-Flash assays, luciferase reporter assays and ChIP-PCR assays were performed to determine the mechanism. Survival analyses were calculated by Kaplan-Meier and Cox regression. Recovery experiment was investigated the importance of the target of SOX30. RESULTS SOX30 expression is closely associated with histological types of NSCLC, and metastasis of adenocarcinoma (ADC) patients but not of squamous cell carcinoma (SCC) patients. SOX30 strongly inhibits cancer cell migration and invasion in ADC cell lines, whrereas not affects cell migration and invasion in SCC cell lines. The genes associated with SOX30 preferentially enrich in metastasis process and Wnt-signaling in only ADC patients. Consistently, SOX30 is negatively associated with the expression of Wnt-signaling and metastasis-related gene CTNNB1 (β-catenin) in ADC, but not in SCC. At the molecular level, SOX30 represses Wnt-signaling by directly transcriptional inhibition of CTNNB1 in ADC, and also not in SCC. In the clinical, SOX30 is a favorable and independent prognostic factor in ADC patients, whereas is an unfavorable and independent prognostic factor in SCC patients. Moreover, SOX30 expression is a double face early-stage prognostic biomarker in ADC and SCC patients. In addition, forcible restoration of CTNNB1 indeed can inhibit the anti-metastatic role of SOX30 in ADC patients. CONCLUSIONS In early-stage ADC patients, elevated SOX30 expression inhibits tumor-metastasis by directly binding to CTNNB1 promoter resulting in a favorable prognosis of these patients. However, in early-stage SCC patients, SOX30 has no inhibitory role on tumor-metastasis due to not binding to CTNNB1 promoter leading to an unfavorable prognosis of the patients. This study highlights a special role and prognostic value of SOX30 in ADC, providing a novel therapeutic target for particular subtype NSCLC patients.
Collapse
Affiliation(s)
- Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Ming-Qian Zhang
- Department of Emergency, Yan'an Hospital, Kunming Medical University, Kunming, Yunnan Province, China
| | - Wen-Bin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Lei Sun
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Xiang-Lin Hao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Li Yin
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, 30 Gaotanyan Street, Shapingba District, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
52
|
Ni H, Chen L, Song L, Sun L, Cui H, Zhou Q, Hu C, Jiao W, Shen T, Gao T, Liu Y, Li J. ErbB4 acts as a suppressor in colitis and its associated carcinoma by negatively regulating cholesterol metabolism. Carcinogenesis 2018; 40:680-686. [PMID: 30452622 DOI: 10.1093/carcin/bgy164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/24/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022] Open
Abstract
AbstractPreviously we reported that ErbB4 played a protective role in chronic liver injury and hepatocellular carcinoma. Herein, we examined the role of ErbB4 in the development of colitis-associated cancer (CAC) in ErbB4 knockout mice models, in vitro cell lines and clinical samples. We found that ErbB4 deficiency may lead to more severe inflammation, slower recovery and the development of CAC. Further, loss of ErbB4 could activate Kras by upregulating rate-limiting enzymes in cholesterol metabolism pathway through interacting with the transcription factor Srebf1. In clinic samples, ErbB4 is downregulated in colonic tissues from patients with Crohn’s disease. And data from The Cancer Genome Atlas also showed significant negative correlation between ErbB4 and several cholesterol metabolic enzymes. In summary, our study uncovers ErbB4 as a protector in the development of CAC, for its loss could activate Kras by upregulating cholesterol metabolism.
Collapse
Affiliation(s)
- Hengli Ni
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou, People’s Republic of China
| | - Lin Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Pathology, Huizhou Health Sciences Polytechnic, Huizhou, People’s Republic of China
| | - Liming Song
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Department of Basic Medicine, School of Medicine, Hubei Three Gorges Polytechnic, Yichang, People’s Republic of China
| | - Lina Sun
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou, People’s Republic of China
| | - Hongxia Cui
- Department of Pathology, Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, People’s Republic of China
| | - Qun Zhou
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou, People’s Republic of China
| | - Caihong Hu
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou, People’s Republic of China
| | - Weijuan Jiao
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou, People’s Republic of China
| | - Tong Shen
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou, People’s Republic of China
| | - Tianming Gao
- Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People’s Republic of China
| | - Yao Liu
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou, People’s Republic of China
- Department of Pathology, Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, People’s Republic of China
| | - Jianming Li
- Department of Pathology, Medical College of Soochow University, Soochow University, Suzhou, People’s Republic of China
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
53
|
Yildirim N, Kocal GC, Isik Z, Saatli B, Saygili U, Uysal T, Ulukus C, Koyuncuoglu M, Ellidokuz H, Basbinar Y. Ubiquitin-Proteasome Axis, Especially Ubiquitin-Specific Protease-17 ( USP17) Gene Family, is a Potential Target for Epithelial-Mesenchymal Transition in High-Grade Serous Ovarian Cancer. Reprod Sci 2018; 26:794-805. [PMID: 30198418 DOI: 10.1177/1933719118799189] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To investigate gene expression differences and related functions between primary tumor, malignant cells in ascites, and metastatic peritoneal implant in high-grade serous ovarian cancer. METHODS Biopsies from primary tumor, peritoneal implant, and ascites were collected from 10 patients operated primarily for high-grade, advanced-staged serous ovarian cancer. Total RNA isolation was performed from collected tissue biopsy and fluid samples, and RNA expression profile was measured. Messenger RNA expression profiles of 3 different groups were compared. Functional analyses of candidate genes were carried out by gene ontology and pathway analysis. RESULTS There were significant differences in the expression of 5 genes between primary tumor and peritoneal implant, 979 genes between primary tumor and malignant cells in ascites, and 649 genes between peritoneal implant and malignant cells in ascites. Three commonly enriched gene ontology functions between "primary tumor and malignant cells in the ascites" and "peritoneal implant and malignant cells in the ascites" were protein deubiquitination, ubiquitin-dependent protein catabolism, and apoptotic processes. All genes related to these functions belonged to USP17 gene family. CONCLUSION Gene expression difference between primary tumor and the peritoneal implant is not as much as the difference between primary tumor and free cells in the ascites. These results show that malignant cells in the ascites return into its genetic origin after they invade on the peritoneum. Significantly increased expression of DUB-enzyme genes, SNAR gene family, and ribosomal pathway genes in epithelial-mesenchymal transition suggests that this regulation is ubiquitin-proteasome dependent. Especially, this is the first study that offers USP17 as a potential target for epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Nuri Yildirim
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Ege University and Department of Basic Oncology, Dokuz Eylul University. Ege Üniversitesi Hastanesi, Kadın Hastalıkları ve Doğum AD, 35100, Bornova, Izmir, Turkey. .,Basic Oncology, Institute of Medical Sciences, Dokuz Eylul University, Izmir, Turkey.
| | - Gizem Calibasi Kocal
- Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey.,Personalized Medicine and Pharmacogenomics Research Center, Dokuz Eylul University, Izmir, Turkey
| | - Zerrin Isik
- Faculty of Engineering, Department of Computer Engineering, Dokuz Eylul University, Izmir, Turkey
| | - Bahadır Saatli
- Faculty of Medicine, Department of Obstetrics and Gynecology, Dokuz Eylul University, Izmir, Turkey
| | - Ugur Saygili
- Faculty of Medicine, Department of Obstetrics and Gynecology, Dokuz Eylul University, Izmir, Turkey
| | - Tugba Uysal
- Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - Cagnur Ulukus
- Faculty of Medicine, Department of Pathology, Dokuz Eylul University, Izmir, Turkey
| | - Meral Koyuncuoglu
- Faculty of Medicine, Department of Pathology, Dokuz Eylul University, Izmir, Turkey
| | - Hulya Ellidokuz
- Department of Preventive Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey
| | - Yasemin Basbinar
- Basic Oncology, Institute of Oncology, Dokuz Eylul University, Izmir, Turkey.,Personalized Medicine and Pharmacogenomics Research Center, Dokuz Eylul University, Izmir, Turkey.,Institute of Medical Sciences, Translational Oncology, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
54
|
Li L, Wang Y, Zhang X, Song G, Guo Q, Zhang Z, Diao Y, Yin H, Liu H, Jiang G. Deubiquitinase USP48 promotes ATRA-induced granulocytic differentiation of acute promyelocytic leukemia cells. Int J Oncol 2018; 53:895-903. [PMID: 29901102 DOI: 10.3892/ijo.2018.4440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 05/04/2018] [Indexed: 11/05/2022] Open
Abstract
All-trans retinoic acid (ATRA) has been used for the treatment of acute promyelocytic leukemia (APL). However, its molecular mechanisms of action are unclear. Ubiquitin-specific protease 48 (USP48) is a deubiquitinase enzyme that can post-translationally remove ubiquitin molecules from substrates. In the present study, the role of USP48 in ATRA-induced differentiation of APL cells was studied. The expression of USP48 decreased following ATRA treatment. Functionally, overexpression of USP48 using electroporation-mediated delivery inhibited the proliferation of APL cells and promoted ATRA-mediated differentiation. The inverse observations were made upon siRNA-mediated knockdown of USP48. Furthermore, the expression of USP48 was increased in the nucleus upon ATRA exposure for ≤24 h, suggesting that USP48 was translocated into the nucleus. Interestingly, regulation of p65, a substrate of USP48, did not contribute to the downstream mechanism of ATRA-induced differentiation of APL cells. In addition, upstream mechanistic studies demonstrated that the expression of USP48 was regulated by microRNA-301a-3p. In conclusion, the present study highlights the function of USP48 in the ATRA-induced granulocytic differentiation of APL cells and provides a theoretical basis for identifying novel targets for differentiation therapy of APL.
Collapse
Affiliation(s)
- Lianlian Li
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Yong Wang
- Shandong Xinchuang Biotechnology Co., Ltd., Jinan, Shandong 250102, P.R. China
| | - Xiaoyu Zhang
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Guanhua Song
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Qiang Guo
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Zhiyong Zhang
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Yutao Diao
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Haipeng Yin
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Hongyan Liu
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| | - Guosheng Jiang
- Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| |
Collapse
|
55
|
Yao R, Pu J, Fan R, Zhu W, Ding X, Shen X, Zhang T. Ubiquitin-specific protease 4 improves the prognosis of the patients in esophageal cancer. Cancer Biomark 2018; 20:317-323. [PMID: 28946564 DOI: 10.3233/cbm-170308] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Our study mainly investigated ubiquitin-specific protease 4 (USP4) expression in pathogenesis of esophageal cancer. The data showed significantly increased expression of USP4 in cancer tissues compared to that in para-carcinoma tissues (68.38% ± 25.60% vs 13.04% ± 9.95%, P= 0.000) and positive correlation between USP4 and pathology grade (r= 0.249, P= 0.014), although survival analysis revealed that USP4 expression was positively associated with the prognosis (32.4% vs 10.9%, P= 0.043). Grouped analysis revealed that the prognosis of patients with high USP4 expression were significantly better only in the small tumor subgroup (diameter ⩽ 5 cm) (52.6% VS 8.6%, P= 0.001) and the early stage subgroup (stages 1 and 2) (60.0% VS 16.7%, P= 0.006). Moreover, in the subgroup of clinical stages 1 and 2 with tumor diameter ⩽ 5 cm, high USP4 expression prolonged the survival time of esophageal cancer patients more significantly (75.5% VS 5.9%, P= 0.000). Based on these results, we speculated that it was possible to significantly improve the prognosis of patients with low USP4 expression by targeted therapy in early esophageal cancer. Taken together, our study uncovered a previously unknown function of USP4 in esophageal cancer and more investigations would be carried out to further study its regulation gene network and molecular biological mechanism in esophageal cancer.
Collapse
Affiliation(s)
- Rong Yao
- Departments of Oncology, Huaian First People's Hospital, Nanjing Medical University, Huaian 223300, Jiangsu, China.,Departments of Oncology, Huaian First People's Hospital, Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Juan Pu
- Department of Radiation Oncology, Lianshui People's Hospital, Huaian 223300, Jiangsu, China.,Departments of Oncology, Huaian First People's Hospital, Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Ruihua Fan
- Departments of Oncology, Huaian First People's Hospital, Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Weiguo Zhu
- Departments of Radiation Oncology, Huaian First People's Hospital, Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Xiaorong Ding
- Departments of Oncology, Huaian First People's Hospital, Nanjing Medical University, Huaian 223300, Jiangsu, China
| | - Xiaoying Shen
- Shanghai Outdo Biotech Co., Ltd., Shanghai 201399, China
| | - Tiecheng Zhang
- Departments of Oncology, Huaian First People's Hospital, Nanjing Medical University, Huaian 223300, Jiangsu, China
| |
Collapse
|
56
|
Hu Y, Yagüe E, Zhao J, Wang L, Bai J, Yang Q, Pan T, Zhao H, Liu J, Zhang J. Sabutoclax, pan-active BCL-2 protein family antagonist, overcomes drug resistance and eliminates cancer stem cells in breast cancer. Cancer Lett 2018; 423:47-59. [DOI: 10.1016/j.canlet.2018.02.036] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/18/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023]
|
57
|
Hardy S, Kostantin E, Hatzihristidis T, Zolotarov Y, Uetani N, Tremblay ML. Physiological and oncogenic roles of thePRLphosphatases. FEBS J 2018; 285:3886-3908. [DOI: 10.1111/febs.14503] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 04/30/2018] [Accepted: 05/09/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Serge Hardy
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
| | - Elie Kostantin
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
| | - Teri Hatzihristidis
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Medicine Division of Experimental Medicine McGill University Montreal Canada
| | - Yevgen Zolotarov
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
| | - Noriko Uetani
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
| | - Michel L. Tremblay
- Rosalind and Morris Goodman Cancer Research Centre Montréal Canada
- Department of Biochemistry McGill University Montréal Canada
- Department of Medicine Division of Experimental Medicine McGill University Montreal Canada
| |
Collapse
|
58
|
McQueeney KE, Salamoun JM, Ahn JG, Pekic P, Blanco IK, Struckman HL, Sharlow ER, Wipf P, Lazo JS. A chemical genetics approach identifies PTP4A3 as a regulator of colon cancer cell adhesion. FASEB J 2018; 32:5661-5673. [PMID: 29746167 DOI: 10.1096/fj.201701446r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dysregulation of the tightly controlled protein phosphorylation networks that govern cellular behavior causes cancer. The membrane-associated, intracellular protein tyrosine phosphatase PTP4A3 is overexpressed in human colorectal cancer and contributes to cell migration and invasion. To interrogate further the role of PTP4A3 in colorectal cancer cell migration and invasion, we deleted the Ptp4a3 gene from murine colorectal tumor cells. The resulting PTP4A3-/- cells exhibited impaired colony formation, spheroid formation, migration, and adherence compared with the paired PTP4A3fl/fl cells. We replicated these phenotypic changes using the new small-molecule, allosteric PTP4A3 inhibitor JMS-053. A related structure, JMS-038, which lacked phosphatase inhibition, displayed no cellular activity. Reduction in cell viability and colony formation by JMS-053 occurred in both mouse and human colorectal cell lines and required PTP4A3 expression. Ptp4a3 deletion increased the expression of extracellular matrix (ECM) and adhesion genes, including the tumor suppressor Emilin 1. JMS-053 also increased Emilin 1 gene expression. Moreover, The Cancer Genome Atlas genomic database revealed human colorectal tumors with high Ptp4a3 expression had low Emilin 1 expression. These chemical and biologic reagents reveal a previously unknown communication between the intracellular PTP4A3 phosphatase and the ECM and support efforts to pharmacologically target PTP4A3.-McQueeney, K. E., Salamoun, J. M., Ahn J. G., Pekic, P., Blanco, I. K., Struckman, H. L., Sharlow, E. R., Wipf, P., Lazo, J. S. A chemical genetics approach identifies PTP4A3 as a regulator of colon cancer cell adhesion.
Collapse
Affiliation(s)
- Kelley E McQueeney
- Fiske Drug Discovery Laboratory, Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Joseph M Salamoun
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jennifer G Ahn
- Fiske Drug Discovery Laboratory, Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Paula Pekic
- Fiske Drug Discovery Laboratory, Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Isabella K Blanco
- Fiske Drug Discovery Laboratory, Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Heather L Struckman
- Fiske Drug Discovery Laboratory, Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Elizabeth R Sharlow
- Fiske Drug Discovery Laboratory, Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John S Lazo
- Fiske Drug Discovery Laboratory, Department of Pharmacology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
59
|
SOX30 Inhibits Tumor Metastasis through Attenuating Wnt-Signaling via Transcriptional and Posttranslational Regulation of β-Catenin in Lung Cancer. EBioMedicine 2018; 31:253-266. [PMID: 29739711 PMCID: PMC6014586 DOI: 10.1016/j.ebiom.2018.04.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 04/17/2018] [Accepted: 04/27/2018] [Indexed: 01/10/2023] Open
Abstract
Although high mortality of lung cancer is greatly due to distant metastasis, the mechanism of this metastasis remains unclear. Here, we investigate in lung cancer that SOX30 is sharply under-expressed in metastatic tumors compared with non-metastatic tumors, and suppresses plenty of metastasis related processes or pathways. SOX30 strongly inhibits tumor cell metastasis in vitro and in vivo. Sox30 deficiency promotes lung metastasis in Sox30−/− mice and this uncontrollable lung-metastasis is re-inhibited upon Sox30 re-expression. Mechanistically, SOX30 diminishes Wnt-signaling via directly transcriptional repressing β-catenin or interacting with β-catenin to compete with TCF for binding to β-catenin. The carboxyl-terminus of SOX30 is required for attenuating β-catenin transcriptional activity, whereas the amino-terminus of SOX30 is required for its interaction with β-catenin protein. Enhance of β-catenin attenuates the anti-metastatic role of SOX30. Moreover, Sox30 deficiency promotes tumor metastasis and reduces survival of mice. In addition, nuclear SOX30 expression is closely associated with metastasis and represents a favorable independent prognostic biomarker of lung cancer patients. Altogether, these results highlight an important role and mechanism of SOX30 in lung cancer metastasis, providing a potential therapeutic target for anti-metastasis. SOX30 is closely associated with lung cancer metastasis, and strongly inhibits cancer cell metastasis in vitro and in vivo. SOX30 suppresses cancer metastasis via transcriptional repressing β-catenin or competing with TCF for β-catenin binding. SOX30 deficiency promotes tumor long-distance metastasis and reduces overall survival of mice and lung cancer patients.
The high mortality of lung cancer is largely due to distant-metastases. However, the mechanism of this metastasis remains unclear. Here, we demonstrate that SOX30 strongly inhibits lung cancer metastasis in vitro and in vivo. As an important metastatic suppressor, SOX30 prevents long-distant metastases and causes fine prognosis inhibiting Wnt-signaling via transcriptional repressing β-catenin or competing with TCF for interaction with β-catenin. This study provides useful information for effective therapies against tumor-metastasis. Considering key role of β-catenin in tumor-metastasis and ineffective treatment using inhibitors against β-catenin, it is a potential choice to suppress Wnt/β-catenin activity via targeting the upstream SOX30.
Collapse
|
60
|
Guo W, Ma J, Pei T, Zhao T, Guo S, Yi X, Liu Y, Wang S, Zhu G, Jian Z, Gao T, Li C, Liao W, Shi Q. Up-regulated deubiquitinase USP4 plays an oncogenic role in melanoma. J Cell Mol Med 2018; 22:2944-2954. [PMID: 29542252 PMCID: PMC5908120 DOI: 10.1111/jcmm.13603] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/13/2018] [Indexed: 02/06/2023] Open
Abstract
Melanoma is the most malignant skin cancer with increasing incidence worldwide. Although innovative therapies such as BRAF inhibitor and immune checkpoint inhibitor have gained remarkable advances, metastatic melanoma remains an incurable disease for its notorious aggressiveness. Therefore, further clarification of the underlying mechanism of melanoma pathogenesis is critical for the improvement of melanoma therapy. Ubiquitination is an important regulatory event for cancer hallmarks and melanoma development, and the deubiquitinating enzymes including ubiquitin-specific peptidase (USP) families are greatly implicated in modulating cancer biology. Herein, we first found that the expression of the deubiquitinase USP4 was significantly up-regulated in melanoma tissues and cell lines. Furthermore, although USP4 knockdown had little impact on melanoma cell proliferation, it could increase the sensitivity to DNA damage agent cisplatin. We subsequently showed that USP4 regulated cisplatin-induced cell apoptosis via p53 signalling. More importantly, USP4 could accentuate the invasive and migratory capacity of melanoma cells by promoting epithelial-mesenchymal transition. Altogether, our results demonstrate that the up-regulated USP4 plays an oncogenic role in melanoma by simultaneously suppressing stress-induced cell apoptosis and facilitating tumour metastasis.
Collapse
Affiliation(s)
- Weinan Guo
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jinyuan Ma
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tianli Pei
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tao Zhao
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sen Guo
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiuli Yi
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yu Liu
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shiyu Wang
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Guannan Zhu
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhe Jian
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tianwen Gao
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wenjun Liao
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qiong Shi
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
61
|
Zhong M, Jiang Q, Jin R. USP4 expression independently predicts favorable survival in lung adenocarcinoma. IUBMB Life 2018; 70:670-677. [PMID: 29667299 DOI: 10.1002/iub.1755] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/29/2018] [Indexed: 01/29/2023]
Abstract
Ubiquitin specific protease 4 (USP4) is a member of the USPs family, which catalyzes the cleavage of ubiquitin from a series of protein substrates, thereby modulating a number of cellular signaling pathways. In this study, we aimed to explore the expression profile of USP4 in lung adenocarcinoma (LUAD) using large patient cohorts in the Cancer Genome Atlas and the International Cancer Genome Consortium and to investigate its prognostic value and the possible mechanisms of its dysregulation. Results showed that USP4 was significantly downregulated in LUAD tissues (N = 514) compared with the normal controls (N = 59). The high USP4 expression group had significantly better overall survival (OS) and recurrence-free survival (RFS). Multivariate analysis showed that preserved USP4 expression was an independent prognostic factor of favorable OS (HR: 0.574, 95%CI: 0.427-0.771, P < 0.001) and RFS (HR: 0.625, 95%CI: 0.444-0.880, P = 0.007) in LUAD. In comparison, although USP4 was downregulated in lung squamous cell carcinoma, its expression had no prognostic value in term of OS and RFS. By examining USP4 DNA copy number alterations (CNAs) (N = 511) and DNA methylation (N = 453) in LUAD, we found that DNA shallow deletion was frequent (-1, N = 239, 46.8%) and was associated with significantly decreased USP4 expression compared with the copy-neutral (0) cases. The methylation status of some CpG sites in USP4 DNA was negatively correlated with USP4 expression. Based on these findings, we infer that USP4 expression might be a favorable biomarker in terms of OS and RFS in LUAD patients. DNA shallow deletion and hypermethylation might be two important mechanisms of decreased USP4 in these patients. © 2018 IUBMB Life, 70(7):670-677, 2018.
Collapse
Affiliation(s)
- Ming Zhong
- Department of Respiration, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Qi Jiang
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Ronghui Jin
- Department of Respiration, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
62
|
Phosphatase of regenerating liver maintains cellular magnesium homeostasis. Biochem J 2018; 475:1129-1139. [DOI: 10.1042/bcj20170756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/16/2018] [Accepted: 02/27/2018] [Indexed: 11/17/2022]
Abstract
Phosphatase of regenerating liver (PRL) is highly expressed in malignant cancers and promotes cancer progression. Recent studies have suggested its functional relationship with Mg2+, but the importance and molecular details of this relationship remain unknown. Here, we report that PRL expression is regulated by Mg2+ and PRL protects cells from apoptosis under Mg2+-depleted conditions. When cultured cells were subjected to Mg2+ depletion, endogenous PRL protein levels increased significantly. siRNA-mediated knockdown of endogenous PRL did not significantly affect cell proliferation under normal culture conditions, but it increased cell death after Mg2+ depletion. Imaging analyses with a fluorescent probe for Mg2+ showed that PRL knockdown severely reduced intracellular Mg2+ levels, indicating a role for PRL in maintaining intracellular Mg2+. We also examined the mechanism of augmented expression of PRL proteins and found that PRL mRNA transcription was stimulated by Mg2+ depletion. A series of analyses revealed the activation and the crucial importance of signal transducer and activator of transcription 1 in this process. Collectively, these results implicate PRL in maintaining cellular Mg2+ homeostasis.
Collapse
|
63
|
Predictive and preventive significance of AMPK activation on hepatocarcinogenesis in patients with liver cirrhosis. Cell Death Dis 2018; 9:264. [PMID: 29449537 PMCID: PMC5833839 DOI: 10.1038/s41419-018-0308-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/16/2017] [Accepted: 01/10/2018] [Indexed: 02/07/2023]
Abstract
Metformin has been demonstrated to prevent hepatocellular carcinoma (HCC). Metformin acts mainly by phosphorylation of AMPK. However, the phosphorylation status of AMPK and its role in the prediction and prevention of HCC in cirrhotic patients remains unclear. The phosphorylation status of AMPK (Thr172) was determined by immunostaining in tissue microarrays of 426 cirrhotic liver tissues. Low expression of p-AMPK was observed in 94 (22.1%) cases. The median follow-up time was 87 months. HCC occurrence probability at 1/3/5/10 years after Hassab procedure was 3.1/9.6/13.8/30.6% in patients with p-AMPK low expression and 0/0.3/0.3/8% in patients with p-AMPK high expression, respectively. HCC occurrence risk was significantly higher in patients with p-AMPK low expression in univariable analysis (HR, 6.25; 95% CI: 3.36–11.60; P < 0.001) and multivariable analysis (HR, 6.0; 95% CI: 3.24–11.10; P < 0.001). An independent external cohort validated the significance of p-AMPK low expression. In addition, in vivo experiments demonstrated that AMPK activation status was negatively related to HCC occurrence and blocking autophagy by chloroquine counteracted the protective effect of AMPK phosphorylation. These results present novel insight into a critical predictive role of AMPK activation in hepatocarcinogenesis and AMPK activation seems to be a potential target for the prevention of hepatocellular carcinoma in patients with liver cirrhosis.
Collapse
|
64
|
Li T, Yan B, Ma Y, Weng J, Yang S, Zhao N, Wang X, Sun X. Ubiquitin-specific protease 4 promotes hepatocellular carcinoma progression via cyclophilin A stabilization and deubiquitination. Cell Death Dis 2018; 9:148. [PMID: 29396555 PMCID: PMC5833721 DOI: 10.1038/s41419-017-0182-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 12/19/2022]
Abstract
Ubiquitin-specific protease 4 (USP4) is a member of the deubiquitinating enzyme family, which plays an important role in human tumor diseases. However, the mechanisms by which USP4 facilitates tumor development, especially in hepatocellular carcinoma (HCC), remain unclear. Clinically, we found that USP4 is overexpressed in human HCC tissues compared with adjacent non-tumoral tissues and is significantly correlated with malignant phenotype characteristics, including tumor size, tumor number, differentiation, serum alpha-fetoprotein level, and vascular invasion. Moreover, Kaplan-Meier survival analysis showed a poor overall survival rate in patients with USP4-overexpressing tumors. Analyses of univariate and multivariate Cox proportional hazard models indicated that USP4 is a prognostic biomarker for poor outcome. Using in vitro and in vivo assays, we demonstrated that USP4 overexpression enhanced HCC cell growth, migration, and invasion. Mechanistically, cyclophilin A (CypA) was identified as an important molecule for USP4-mediated oncogenic activity in HCC. We observed that USP4 interacted with CypA and inhibited CypA degradation via deubiquitination in HCC cells. Subsequently, the USP4/CypA complex activated the MAPK signaling pathway and prevented CrkII phosphorylation. These data suggest that USP4 acts as a novel prognostic marker, offering potential therapeutic opportunities for HCC.
Collapse
Affiliation(s)
- Tianyi Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Bin Yan
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yang Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Junyong Weng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Shouwen Yang
- Department of Gynaecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Nan Zhao
- Department of General Surgery, Shanghai General Hospital, Nanjing Medical University, Shanghai, China
| | - Xiaoliang Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| | - Xing Sun
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
65
|
Lian S, Meng L, Yang Y, Ma T, Xing X, Feng Q, Song Q, Liu C, Tian Z, Qu L, Shou C. PRL-3 promotes telomere deprotection and chromosomal instability. Nucleic Acids Res 2017; 45:6546-6571. [PMID: 28482095 PMCID: PMC5499835 DOI: 10.1093/nar/gkx392] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 04/26/2017] [Indexed: 12/24/2022] Open
Abstract
Phosphatase of regenerating liver (PRL-3) promotes cell invasiveness, but its role in genomic integrity remains unknown. We report here that shelterin component RAP1 mediates association between PRL-3 and TRF2. In addition, TRF2 and RAP1 assist recruitment of PRL-3 to telomeric DNA. Silencing of PRL-3 in colon cancer cells does not affect telomere integrity or chromosomal stability, but induces reactive oxygen species-dependent DNA damage response and senescence. However, overexpression of PRL-3 in colon cancer cells and primary fibroblasts promotes structural abnormalities of telomeres, telomere deprotection, DNA damage response, chromosomal instability and senescence. Furthermore, PRL-3 dissociates RAP1 and TRF2 from telomeric DNA in vitro and in cells. PRL-3-promoted telomere deprotection, DNA damage response and senescence are counteracted by disruption of PRL-3–RAP1 complex or expression of ectopic TRF2. Examination of clinical samples showed that PRL-3 status positively correlates with telomere deprotection and senescence. PRL-3 transgenic mice exhibit hallmarks of telomere deprotection and senescence and are susceptible to dextran sodium sulfate-induced colon malignancy. Our results uncover a novel role of PRL-3 in tumor development through its adverse impact on telomere homeostasis.
Collapse
Affiliation(s)
- Shenyi Lian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China.,Department of Pathology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Lin Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Yongyong Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ting Ma
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaofang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qin Feng
- Central Laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Qian Song
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Caiyun Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhihua Tian
- Central Laboratory, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Like Qu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Chengchao Shou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
66
|
He M, Zhou Z, Wu G, Chen Q, Wan Y. Emerging role of DUBs in tumor metastasis and apoptosis: Therapeutic implication. Pharmacol Ther 2017; 177:96-107. [PMID: 28279784 PMCID: PMC5565705 DOI: 10.1016/j.pharmthera.2017.03.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Malfunction of ubiquitin-proteasome system is tightly linked to tumor formation and tumor metastasis. Targeting the ubiquitin-pathway provides a new strategy for anti-cancer therapy. Despite the parts played by ubiquitin modifiers, removal of ubiquitin from the functional proteins by the deubiquitinating enzymes (DUBs) plays an important role in governing the multiple steps of the metastatic cascade, including local invasion, dissemination, and eventual colonization of the tumor to distant organs. Both deregulated ubiquitination and deubiquitination could lead to dysregulation of various critical events and pathways such as apoptosis and epithelial-mesenchymal transition (EMT). Recent TCGA study has further revealed the connection between mutations of DUBs and various types of tumors. In addition, emerging drug design targeting DUBs provides a new strategy for anti-cancer therapy. In this review, we will summarize the role of deubiquitination and highlight the recent discoveries of DUBs with regards to multiple metastatic events including anti-apoptosis pathway and EMT. We will further discuss the regulation of deubiquitination as a novel strategy for anti-cancer therapy.
Collapse
Affiliation(s)
- Mingjing He
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Zhuan Zhou
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - George Wu
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Yong Wan
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| |
Collapse
|
67
|
The long non-coding RNA NONHSAT062994 inhibits colorectal cancer by inactivating Akt signaling. Oncotarget 2017; 8:68696-68706. [PMID: 28978149 PMCID: PMC5620289 DOI: 10.18632/oncotarget.19827] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/28/2017] [Indexed: 12/24/2022] Open
Abstract
The aberrant expression of long noncoding RNAs (lncRNAs) is implicated in cancer development and progression. However, the clinical significance and mechanism by which NONHSAT062994 regulates colorectal cancer (CRC) is unknown. We here reported that NONHSAT062994 was significantly downregulated in human CRC tissues and cell lines. Moreover, its expression was inversely correlated with tumor size and overall survival (OS) time in CRC patients. In CRC cells, the overexpression and knockdown of NONHSAT062994 inhibited and enhanced CRC cell growth, respectively, in vitro and in vivo. Mechanistically, NONHSAT062994 functioned as a tumor suppressor to inhibit CRC cell growth by inactivating Akt signaling. Notably, the NONHSAT062994 expression status was negatively correlated with the Akt downstream targets c-Myc and Cyclin D1 in clinical CRC samples. The current findings suggest that NONHSAT062994 plays a critical role in the development of CRC by regulating Akt signaling, and identified a candidate prognostic biomarker or potential therapeutic target for CRC patients.
Collapse
|
68
|
Jiao W, Leng X, Zhou Q, Wu Y, Sun L, Tan Y, Ni H, Dong X, Shen T, Liu Y, Li J. Different miR-21-3p isoforms and their different features in colorectal cancer. Int J Cancer 2017; 141:2103-2111. [PMID: 28734015 DOI: 10.1002/ijc.30902] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 05/26/2017] [Accepted: 07/11/2017] [Indexed: 12/22/2022]
Abstract
MiR-21, the only microRNA (miRNA) found to be overexpressed in any type of solid tumor, its guide stand, miR-21-5p, has been studied a lot in colorectal cancer (CRC); however, few researchers focused on its passenger strand, miR-21-3p. In our study, based on The Cancer Genome Atlas (TCGA) data, we found that there were more varieties and quantities of miR-21-3p isoforms in microsatellite instability (MSI)-type CRC. We further examined the role of miR-21-3p by in vitro and in vivo studies. MiR-21-3p may be an oncogene in CRC by promoting cellular mobility through epithelial-mesenchymal transition. However, different isoforms, especially miR-21-3p 0 | 2, may be a favorable prognostic marker for CRC survival, probably due to increased complementary effect of miR-21-5p and/or target genes. Further study investigating the underlying mechanism of miRNA isoforms is needed.
Collapse
Affiliation(s)
- Weijuan Jiao
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Soochow University, Suzhou, People's Republic of China
| | - Xueqin Leng
- Department of Bioinformatics, Medical College of Soochow University, Soochow University, Suzhou, People's Republic of China
| | - Qun Zhou
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Soochow University, Suzhou, People's Republic of China
| | - Yayun Wu
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Lina Sun
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Soochow University, Suzhou, People's Republic of China
| | - Yan Tan
- Department of Pathology, the First People's Hospital of Changzhou, Changzhou, People's Republic of China
| | - Hengli Ni
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Soochow University, Suzhou, People's Republic of China
| | - Xiaoqiang Dong
- Department of General Surgery, First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Tong Shen
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Soochow University, Suzhou, People's Republic of China
| | - Yao Liu
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Soochow University, Suzhou, People's Republic of China
| | - Jianming Li
- Department of Pathology and Pathophysiology, Medical College of Soochow University, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
69
|
Regulatory mechanisms of phosphatase of regenerating liver (PRL)-3. Biochem Soc Trans 2017; 44:1305-1312. [PMID: 27911713 PMCID: PMC5095905 DOI: 10.1042/bst20160146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/04/2016] [Accepted: 07/11/2016] [Indexed: 12/19/2022]
Abstract
The phosphatase of regenerating liver (PRL)-3 is overexpressed in many human cancer types and tumor metastases when compared with healthy tissues. Different pathways and mechanisms have been suggested to modulate PRL-3 expression levels and activity, giving some valuable insights but still leaving an incomplete picture. Investigating these mechanisms could provide new targets for therapeutic drug development. Here, we present an updated overview and summarize recent findings concerning the different PRL-3 expression regulatory mechanisms and posttranslational modifications suggested to modulate the activity, localization, or stability of this phosphatase.
Collapse
|
70
|
Yun SI, Kim KK. Ubiquitin-specific protease 4 (USP4) suppresses myoblast differentiation by down regulating MyoD activity in a catalytic-independent manner. Cell Signal 2017; 35:48-60. [PMID: 28336234 DOI: 10.1016/j.cellsig.2017.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/28/2017] [Accepted: 03/19/2017] [Indexed: 11/27/2022]
Abstract
For myotube formation, proliferation and differentiation of myoblasts must be tightly regulated by various myogenic regulatory factors (MRFs) such as MyoD, myogenic factor 5 (Myf5), myogenin, and muscle-specific regulatory factor 4 (MRF4). However, it is not clear how the expression or activity of these MRFs is controlled during myogenesis. In this study, we identified ubiquitin-specific protease 4 (USP4), one of deubiquitinating enzymes, as a suppressor of MRFs by demonstrating that a knockdown of USP4 enhances myogenesis by controlling MyoD and the level of myogenesis marker proteins in C2C12 cells. However, it was revealed that the effect of USP4 on myogenesis is independent of its deubiquitinase activity because the catalytic-site mutant has the same inhibitory effects as the wild-type USP4 on myogenesis. We observed that the activity and protein levels of both HDAC1 and HDAC4 are decreased when myoblast differentiation is promoted by the USP4 knockdown. We also found that the role of USP4 in muscle differentiation is correlated with two major signaling pathways in myogenesis, AKT and the p38 mitogen-activated protein kinase pathways. According to these results, we propose that USP4 is a key player in myogenic differentiation; it controls myogenic regulatory factors in a catalytic-independent manner.
Collapse
Affiliation(s)
- Sun-Il Yun
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea.
| |
Collapse
|
71
|
Li XM, Wang JR, Shen T, Gao SS, He XS, Li JN, Yang TY, Zhang S, Gan WJ, Li JM, Wu H. Nur77 deficiency in mice accelerates tumor invasion and metastasis by facilitating TNFα secretion and lowering CSF-1R expression. PLoS One 2017; 12:e0171347. [PMID: 28170411 PMCID: PMC5295676 DOI: 10.1371/journal.pone.0171347] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/19/2017] [Indexed: 12/26/2022] Open
Abstract
Nur77, an orphan member of the nuclear receptor superfamily, plays critical roles in inflammation and immunity. However, the role of Nur77 in tumor microenvironment remains elusive. Results showed that deletion of Nur77 strikingly enhanced tumor metastasis compared to WT mice. Additionally, compared to the conditioned media derived from Nur77+/+ peritoneal macrophages (CM1), the conditioned media derived from Nur77-/- peritoneal macrophages (CM2) significantly promoted the EMT of cancer cells, and greatly enhanced the migratory and invasive abilities of cancer cells. Moreover, studies using TNF-α blocking antibody demonstrated that pro-inflammatory cytokine TNF-α was indispensable in supporting CM2-induced EMT to drive cancer cells migration and invasion. Furthermore, we found that Nur77 promoted the expression of CSF-1R, a novel downstream target gene of Nur77, and subsequently enhanced the migration of inflammatory cells. Notably, infiltration of inflammatory cells in the tumors of Nur77-/- mice was markedly abrogated compared to Nur77+/+ mice. Collectively, these results revealed that host Nur77 expression was pivotal in antitumor immune response, and in inhibiting tumor metastasis.
Collapse
Affiliation(s)
- Xiu-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Jing-Ru Wang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Tong Shen
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Shang-Shang Gao
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Xiao-Shun He
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiang-Nan Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Tian-Yu Yang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Shen Zhang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Wen-Juan Gan
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian-Ming Li
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- * E-mail: (HW); (JML)
| | - Hua Wu
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
- * E-mail: (HW); (JML)
| |
Collapse
|
72
|
Kwon SK, Kim EH, Baek KH. RNPS1 is modulated by ubiquitin-specific protease 4. FEBS Lett 2017; 591:369-381. [DOI: 10.1002/1873-3468.12531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/01/2016] [Accepted: 12/12/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Seul-Ki Kwon
- Department of Biomedical Science; CHA University; Gyeonggi-Do Korea
| | - Eun-Hea Kim
- Department of Biomedical Science; CHA University; Gyeonggi-Do Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science; CHA University; Gyeonggi-Do Korea
| |
Collapse
|
73
|
Gan WJ, Wang JR, Zhu XL, He XS, Guo PD, Zhang S, Li XM, Li JM, Wu H. RARγ-induced E-cadherin downregulation promotes hepatocellular carcinoma invasion and metastasis. J Exp Clin Cancer Res 2016; 35:164. [PMID: 27756432 PMCID: PMC5069892 DOI: 10.1186/s13046-016-0441-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/08/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Aberrant expression of Retinoic acid receptor γ (RARγ) is implicated in cancer development. Our previous study identified that RARγ functions as a tumor promoter to drive hepatocellular carcinoma (HCC) growth. However, its contribution to HCC invasion and metastasis remains unclear. METHODS RARγ expression in clinical HCC samples was detected by western blot and immunohistochemistry. The relationship between RARγ expression levels and the clinical characteristics were evaluated. HCC cell line MHCC-97H were stably knocked down RARγ using a lentivirus vector-based shRNA technique. The cells were analyzed by migration and invasion assays, and injected into nude mice to assess tumor metastasis. E-cadherin expression regulated by RARγ was examined by qPCR, western blot and immunofluorescence staining. RESULTS The expression of RARγ is significantly upregulated in human HCC tissues. Moreover, its expression positively correlates with tumor size, distant metastasis and TNM stage, and negatively correlates with length of survival of HCC patients. Knockdown of RARγ markedly inhibits HCC cell invasion and metastasis both in vitro and in vivo. Mechanistic investigations reveal that RARγ functions through regulation of NF-κB-mediated E-cadherin downregulation to promote HCC invasion and metastasis. Notably, RARγ expression status negatively correlates with E-cadherin expression in HCC cell lines and clinical HCC samples. CONCLUSIONS These findings demonstrate that RARγ could promote HCC invasion and metastasis by regulating E-cadherin reduction, and implicate new strategies to aggressively treat HCC through targeting RARγ/E-cadherin signaling axis.
Collapse
Affiliation(s)
- Wen-Juan Gan
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
- The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Jing-Ru Wang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Xiao-Li Zhu
- The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Xiao-Shun He
- The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Peng-Da Guo
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Shen Zhang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Xiu-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Jian-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Hua Wu
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| |
Collapse
|
74
|
Zhou F, Li F, Fang P, Dai T, Yang B, van Dam H, Jia J, Zheng M, Zhang L. Ubiquitin-Specific Protease 4 Antagonizes Osteoblast Differentiation Through Dishevelled. J Bone Miner Res 2016; 31:1888-1898. [PMID: 27128386 DOI: 10.1002/jbmr.2863] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/20/2016] [Accepted: 04/27/2016] [Indexed: 11/08/2022]
Abstract
The canonical Wnt/β-catenin signaling pathway plays a pivotal role and is essentially required for the osteoblast differentiation and bone formation. In this study, we found ubiquitin-specific peptidase 4 (USP4) to strongly inhibit the Wnt/β-catenin signaling by removing Lysine-63 linked poly-ubiquitin chain from Dishevelled (Dvl). Ectopic expression of USP4 promoted β-catenin poly-ubiquitination and thus inhibited Wnt-induced accumulation of cytosolic β-catenin and counteracted Wnt-induced transcriptional activity. Moreover, USP4 knockdown or USP4 knockout led to an increase in the active β-catenin levels and in activation of Wnt/β-catenin-induced transcription. Functional studies in C2C12 myoblasts and KS483 osteoprogenitor cells showed that ectopic expression of USP4 resulted in impaired activation of endogenous Wnt3a-induced genes and decreased osteoblast differentiation and mineralization, whereas USP4 depletion showed the opposite effect. These results identify USP4 as a novel regulator of Dvl in Wnt/β-catenin signal and show its involvement in Wnt3a-induced osteoblast differentiation. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Fangfang Zhou
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China. .,Institutes of Biology and Medical Science, Soochow University, Suzhou, PR China. .,Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands.
| | - Fang Li
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Pengfei Fang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Tong Dai
- Institutes of Biology and Medical Science, Soochow University, Suzhou, PR China
| | - Bing Yang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Hans van Dam
- Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands, Leiden University Medical Center, Leiden, The Netherlands
| | - Junling Jia
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China
| | - Min Zheng
- State Key Laboratory for Diagnostic and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Hangzhou, China
| | - Long Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, China.
| |
Collapse
|
75
|
Luján P, Varsano G, Rubio T, Hennrich ML, Sachsenheimer T, Gálvez-Santisteban M, Martín-Belmonte F, Gavin AC, Brügger B, Köhn M. PRL-3 disrupts epithelial architecture by altering the post-mitotic midbody position. J Cell Sci 2016; 129:4130-4142. [PMID: 27656108 PMCID: PMC5117205 DOI: 10.1242/jcs.190215] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 09/16/2016] [Indexed: 12/20/2022] Open
Abstract
Disruption of epithelial architecture is a fundamental event during epithelial tumorigenesis. We show that the expression of the cancer-promoting phosphatase PRL-3 (PTP4A3), which is overexpressed in several epithelial cancers, in polarized epithelial MDCK and Caco2 cells leads to invasion and the formation of multiple ectopic, fully polarized lumens in cysts. Both processes disrupt epithelial architecture and are hallmarks of cancer. The pathological relevance of these findings is supported by the knockdown of endogenous PRL-3 in MCF-7 breast cancer cells grown in three-dimensional branched structures, showing the rescue from multiple-lumen- to single-lumen-containing branch ends. Mechanistically, it has been previously shown that ectopic lumens can arise from midbodies that have been mislocalized through the loss of mitotic spindle orientation or through the loss of asymmetric abscission. Here, we show that PRL-3 triggers ectopic lumen formation through midbody mispositioning without altering the spindle orientation or asymmetric abscission, instead, PRL-3 accelerates cytokinesis, suggesting that this process is an alternative new mechanism for ectopic lumen formation in MDCK cysts. The disruption of epithelial architecture by PRL-3 revealed here is a newly recognized mechanism for PRL-3-promoted cancer progression.
Collapse
Affiliation(s)
- Pablo Luján
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Giulia Varsano
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Teresa Rubio
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Marco L Hennrich
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg 69117, Germany
| | - Timo Sachsenheimer
- Heidelberg University Biochemistry Center, University of Heidelberg, Heidelberg 69120, Germany
| | - Manuel Gálvez-Santisteban
- Department of Development and Differentiation, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Fernando Martín-Belmonte
- Department of Development and Differentiation, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC), Madrid 28049, Spain
| | - Anne-Claude Gavin
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg 69117, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center, University of Heidelberg, Heidelberg 69120, Germany
| | - Maja Köhn
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| |
Collapse
|
76
|
Pinto-Fernandez A, Kessler BM. DUBbing Cancer: Deubiquitylating Enzymes Involved in Epigenetics, DNA Damage and the Cell Cycle As Therapeutic Targets. Front Genet 2016; 7:133. [PMID: 27516771 PMCID: PMC4963401 DOI: 10.3389/fgene.2016.00133] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/12/2016] [Indexed: 12/21/2022] Open
Abstract
Controlling cell proliferation is one of the hallmarks of cancer. A number of critical checkpoints ascertain progression through the different stages of the cell cycle, which can be aborted when perturbed, for instance by errors in DNA replication and repair. These molecular checkpoints are regulated by a number of proteins that need to be present at the right time and quantity. The ubiquitin system has emerged as a central player controlling the fate and function of such molecules such as cyclins, oncogenes and components of the DNA repair machinery. In particular, proteases that cleave ubiquitin chains, referred to as deubiquitylating enzymes (DUBs), have attracted recent attention due to their accessibility to modulation by small molecules. In this review, we describe recent evidence of the critical role of DUBs in aspects of cell cycle checkpoint control, associated DNA repair mechanisms and regulation of transcription, representing pathways altered in cancer. Therefore, DUBs involved in these processes emerge as potentially critical targets for the treatment of not only hematological, but potentially also solid tumors.
Collapse
Affiliation(s)
- Adan Pinto-Fernandez
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford, UK
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford, UK
| |
Collapse
|
77
|
Guo PD, Lu XX, Gan WJ, Li XM, He XS, Zhang S, Ji QH, Zhou F, Cao Y, Wang JR, Li JM, Wu H. RARγ Downregulation Contributes to Colorectal Tumorigenesis and Metastasis by Derepressing the Hippo-Yap Pathway. Cancer Res 2016; 76:3813-25. [PMID: 27325643 DOI: 10.1158/0008-5472.can-15-2882] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/15/2016] [Indexed: 11/16/2022]
Abstract
The Hippo-Yap pathway conveys oncogenic signals, but its regulation during cancer development is not well understood. Here, we identify the nuclear receptor RARγ as a regulator of the Hippo-Yap pathway in colorectal tumorigenesis and metastasis. RARγ is downregulated in human colorectal cancer tissues, where its expression correlates inversely with tumor size, TNM stage, and distant metastasis. Functional studies established that silencing of RARγ drove colorectal cancer cell growth, invasion, and metastatic properties both in vitro and in vivo Mechanistically, RARγ controlled Hippo-Yap signaling to inhibit colorectal cancer development, acting to promote phosphorylation and binding of Lats1 to its transcriptional coactivator Yap and thereby inactivating Yap target gene expression. In clinical specimens, RARγ expression correlated with overall survival outcomes and expression of critical Hippo-Yap pathway effector molecules in colorectal cancer patients. Collectively, our results defined RARγ as tumor suppressor in colorectal cancer that acts by restricting oncogenic signaling by the Hippo-Yap pathway, with potential implications for new approaches to colorectal cancer therapy. Cancer Res; 76(13); 3813-25. ©2016 AACR.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Cell Movement
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Colorectal Neoplasms/genetics
- Colorectal Neoplasms/metabolism
- Colorectal Neoplasms/pathology
- Hippo Signaling Pathway
- Humans
- Immunoenzyme Techniques
- Lymphatic Metastasis
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasm Staging
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Prognosis
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Survival Rate
- Transcription Factors
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- YAP-Signaling Proteins
- Retinoic Acid Receptor gamma
Collapse
Affiliation(s)
- Peng-Da Guo
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Xing-Xing Lu
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Wen-Juan Gan
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China. The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiu-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Xiao-Shun He
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China. The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shen Zhang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Qing-Hua Ji
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Feng Zhou
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Yue Cao
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Jing-Ru Wang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China
| | - Jian-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China.
| | - Hua Wu
- Pathology Center and Department of Pathology, Soochow University, Suzhou, China.
| |
Collapse
|
78
|
He B, Zhao YC, Gao LC, Ying XY, Xu LW, Su YY, Ji QQ, Lin N, Pu J. Ubiquitin-Specific Protease 4 Is an Endogenous Negative Regulator of Pathological Cardiac Hypertrophy. Hypertension 2016; 67:1237-48. [PMID: 27045030 DOI: 10.1161/hypertensionaha.116.07392] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/08/2016] [Indexed: 11/16/2022]
Abstract
Dysregulation of the ubiquitin proteasome system components ubiquitin ligases and proteasome plays an important role in the pathogenesis of cardiac hypertrophy. However, little is known about the role of another ubiquitin proteasome system component, the deubiquitinating enzymes, in cardiac hypertrophy. Here, we revealed a crucial role of ubiquitin specific protease 4 (USP4), a deubiquitinating enzyme prominently expressed in the heart, in attenuating pathological cardiac hypertrophy and dysfunction. USP4 levels were consistently decreased in human failing hearts and in murine hypertrophied hearts. Adenovirus-mediated gain- and loss-of-function approaches indicated that deficiency of endogenous USP4 promoted myocyte hypertrophy induced by angiotensin II in vitro, whereas restoration of USP4 significantly attenuated the prohypertrophic effect of angiotensin II. To corroborate the role of USP4 in vivo, we generated USP4 global knockout mice and mice with cardiac-specific overexpression of USP4. Consistent with the in vitro study, USP4 depletion exacerbated the hypertrophic phenotype and cardiac dysfunction in mice subjected to pressure overload, whereas USP4 transgenic mice presented ameliorated pathological cardiac hypertrophy compared with their control littermates. Molecular analysis revealed that USP4 deficiency augmented the activation of the transforming growth factor β–activated kinase 1 (TAK1)-(JNK1/2)/P38 signaling in response to hypertrophic stress, and blockage of TAK1 activation abolished the pathological effects of USP4 deficiency in vivo. These findings provide the first evidence for the involvement of USP4 in cardiac hypertrophy, and shed light on the therapeutic potential of targeting USP4 in the treatment of cardiac hypertrophy.
Collapse
Affiliation(s)
- Ben He
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi-Chao Zhao
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling-Chen Gao
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Ying Ying
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Long-Wei Xu
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yuan-Yuan Su
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qing-Qi Ji
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Lin
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Pu
- From the Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
79
|
Li XM, Zhang S, He XS, Guo PD, Lu XX, Wang JR, Li JM, Wu H. Nur77-mediated TRAF6 signalling protects against LPS-induced sepsis in mice. JOURNAL OF INFLAMMATION-LONDON 2016; 13:4. [PMID: 26839514 PMCID: PMC4735956 DOI: 10.1186/s12950-016-0112-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/25/2016] [Indexed: 12/20/2022]
Abstract
Background Nur77, a key member of the NR4A receptor subfamily, is involved in the regulation of inflammation and immunity. However, the in vivo regulatory roles of Nur77 in sepsis and the mechanisms involved remains largely elusive. In this study, we used Nur77-deficient (Nur77−/−) mice and investigated the function of Nur77 in sepsis. Findings Compared to wild-type (Nur77+/+) mice, Nur77−/− mice are more susceptible to LPS-induced sepsis and acute liver inflammation. Mechanistically, we observed that Nur77 can interact with TRAF6, a crucial adaptor molecule in the Toll-like receptor-interleukin 1 receptor (TLR-IL-1R) signalling pathway, in in vivo mouse model of sepsis. The interaction may affect TRAF6 auto-ubiquitination, thereby inhibiting NF-κB activation and pro-inflammatory cytokines production. Conclusions These in vivo observations reveals an important protective role for Nur77 in LPS-induced sepsis through its regulation to TRAF6 signalling, and highlights the potential clinical application of Nur77 as a molecular target in prevention and/or treatment of sepsis. Electronic supplementary material The online version of this article (doi:10.1186/s12950-016-0112-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiu-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Shen Zhang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Xiao-Shun He
- The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Peng-Da Guo
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Xing-Xing Lu
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Jing-Ru Wang
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Jian-Ming Li
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| | - Hua Wu
- Pathology Center and Department of Pathology, Soochow University, Suzhou, 215123 China
| |
Collapse
|