51
|
Dorokhov YL, Sheshukova EV, Bialik TE, Komarova TV. Human Endogenous Formaldehyde as an Anticancer Metabolite: Its Oxidation Downregulation May Be a Means of Improving Therapy. Bioessays 2018; 40:e1800136. [PMID: 30370669 DOI: 10.1002/bies.201800136] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/27/2018] [Indexed: 02/06/2023]
Abstract
Malignant cells are characterized by an increased content of endogenous formaldehyde formed as a by-product of biosynthetic processes. Accumulation of formaldehyde in cancer cells is combined with activation of the processes of cellular formaldehyde clearance. These mechanisms include increased ALDH and suppressed ADH5/FDH activity, which oncologists consider poor and favorable prognostic markers, respectively. Here, the sources and regulation of formaldehyde metabolism in cancer cells are reviewed. The authors also analyze the participation of oncoproteins such as fibulins, FGFR1, HER2/neu, FBI-1, and MUC1-C in the control of genes related to formaldehyde metabolism, suggesting the existence of two mutually exclusive processes in cancer cells: 1) production and 2) oxidation and elimination of formaldehyde from the cell. The authors hypothesize that the study of the anticancer properties of disulfiram and alpha lipoic acid - which affect the balance of formaldehyde in the body - may serve as the basis of future anticancer therapy.
Collapse
Affiliation(s)
- Yuri L Dorokhov
- N.I. Vavilov Institute of General Genetics of RAS, 119991, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| | | | - Tatiana E Bialik
- N.N. Blokhin National Medical Research Center of Oncology, 115478, Moscow, Russia
| | - Tatiana V Komarova
- N.I. Vavilov Institute of General Genetics of RAS, 119991, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991, Moscow, Russia
| |
Collapse
|
52
|
Liu CW, Tian X, Hartwell HJ, Leng J, Chi L, Lu K, Swenberg JA. Accurate Measurement of Formaldehyde-Induced DNA–Protein Cross-Links by High-Resolution Orbitrap Mass Spectrometry. Chem Res Toxicol 2018; 31:350-357. [DOI: 10.1021/acs.chemrestox.8b00040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chih-Wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Xu Tian
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Hadley J. Hartwell
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jiapeng Leng
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - James A. Swenberg
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
53
|
Miller FJ, Conolly RB, Kimbell JS. An updated analysis of respiratory tract cells at risk for formaldehyde carcinogenesis. Inhal Toxicol 2018; 29:586-597. [DOI: 10.1080/08958378.2018.1430191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | | | - Julia S. Kimbell
- Department of Otolaryngology/Head & Neck Surgery, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
54
|
Mundt KA, Gentry PR, Dell LD, Rodricks JV, Boffetta P. Six years after the NRC review of EPA's Draft IRIS Toxicological Review of Formaldehyde: Regulatory implications of new science in evaluating formaldehyde leukemogenicity. Regul Toxicol Pharmacol 2017; 92:472-490. [PMID: 29158043 DOI: 10.1016/j.yrtph.2017.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 10/27/2017] [Accepted: 11/15/2017] [Indexed: 11/28/2022]
Abstract
Shortly after the International Agency for Research on Cancer (IARC) determined that formaldehyde causes leukemia, the United States Environmental Protection Agency (EPA) released its Draft IRIS Toxicological Review of Formaldehyde ("Draft IRIS Assessment"), also concluding that formaldehyde causes leukemia. Peer review of the Draft IRIS Assessment by a National Academy of Science committee noted that "causal determinations are not supported by the narrative provided in the draft" (NRC 2011). They offered recommendations for improving the Draft IRIS assessment and identified several important research gaps. Over the six years since the NRC peer review, significant new science has been published. We identify and summarize key recommendations made by NRC and map them to this new science, including extended analysis of epidemiological studies, updates of earlier occupational cohort studies, toxicological experiments using a sensitive mouse strain, mechanistic studies examining the role of exogenous versus endogenous formaldehyde in bone marrow, and several critical reviews. With few exceptions, new findings are consistently negative, and integration of all available evidence challenges the earlier conclusions that formaldehyde causes leukemia. Given formaldehyde's commercial importance, environmental ubiquity and endogenous production, accurate hazard classification and risk evaluation of whether exposure to formaldehyde from occupational, residential and consumer products causes leukemia are critical.
Collapse
Affiliation(s)
- Kenneth A Mundt
- Environment and Health, Ramboll Environ, Amherst MA, United States.
| | - P Robinan Gentry
- Environment and Health, Ramboll Environ, Amherst MA, United States
| | - Linda D Dell
- Environment and Health, Ramboll Environ, Amherst MA, United States
| | | | - Paolo Boffetta
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
55
|
Dou K, Chen G, Yu F, Liu Y, Chen L, Cao Z, Chen T, Li Y, You J. Bright and sensitive ratiometric fluorescent probe enabling endogenous FA imaging and mechanistic exploration of indirect oxidative damage due to FA in various living systems. Chem Sci 2017; 8:7851-7861. [PMID: 29163922 PMCID: PMC5674201 DOI: 10.1039/c7sc03719h] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022] Open
Abstract
As a notorious toxin, formaldehyde (FA) poses an immense threat to human health. Aberrantly elevated FA levels lead to serious pathologies, including organ damage, neurodegeneration, and cancer. Unfortunately, current techniques limit FA imaging to general comparative studies, instead of a mechanistic exploration of its biological role, and this is presumably due to the lack of robust molecular tools for reporting FA in living systems. More importantly, despite being reductive, FA, however, can induce oxidative damage to organisms, thus providing a challenge to the mechanistic study of FA using fluorescence imaging. Herein, we presented the design and multi-application of a bright sensitive ratiometric fluorescent probe 1-(4-(1H-phenanthro[9,10-d]imidazol-2-yl)phenyl) but-3-en-1-amine (PIPBA). With a π-extended phenylphenanthroimidazole fluorophore and an allylamine group, PIPBA exhibited high quantum yield (φ = 0.62) in blue fluorescent emission and selective reactivity toward FA. When sensing FA, PIPBA transformed to PIBE, which is a product capable of releasing bright green fluorescence (φ = 0.51) with its enhanced intramolecular charge transfer (ICT). Transformation of PIPBA to PIBE contributed to 80 nm of red shift in emission wavelength and a highly sensitive ratiometric response (92.2-fold), as well as a quite low detection limit (0.84 μM). PIPBA was successfully applied to various living systems, realizing, for the first time, ratiometric quantification (in cells), in vivo imaging (zebrafish), and living tissue imaging (vivisectional mouse under anaesthetic) of endogenous FA that was spontaneously generated by biological systems. Furthermore, with the aid of PIPBA, we obtained visual evidence for the oxidative damage of FA in both HeLa cells and renal tissue of a living mouse. The results demonstrated that FA exerted indirect oxidative damage by interacting with free radicals, thus producing more oxidizing species, which eventually caused aggravated oxidative damage to the organism. The indirect oxidative damage due to FA could be alleviated by an exogenous or endogenous antioxidant. The excellent behaviors of PIPBA demonstrate that a chemical probe can detect endogenous FA in cells/tissue/vivo, promising to be an effective tool for further exploration of the biological mechanism of FA in living systems.
Collapse
Affiliation(s)
- Kun Dou
- The Key Laboratory of Life-Organic Analysis , Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine , College of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273165 , China . ;
| | - Guang Chen
- The Key Laboratory of Life-Organic Analysis , Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine , College of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273165 , China . ; .,Key Laboratory of Coastal Environmental Processes and Ecological Remediation , Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences , Yantai 264003 , China.,Key Laboratory of Tibetan Medicine Research , Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources , Northwest Institute of Plateau Biology , Chinese Academy of Science , Xining 810001 , Qinghai , PR China
| | - Fabiao Yu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation , Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences , Yantai 264003 , China
| | - Yuxia Liu
- The Key Laboratory of Life-Organic Analysis , Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine , College of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273165 , China . ;
| | - Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation , Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences , Yantai 264003 , China
| | - Ziping Cao
- The Key Laboratory of Life-Organic Analysis , Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine , College of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273165 , China . ;
| | - Tao Chen
- Key Laboratory of Tibetan Medicine Research , Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources , Northwest Institute of Plateau Biology , Chinese Academy of Science , Xining 810001 , Qinghai , PR China
| | - Yulin Li
- Key Laboratory of Tibetan Medicine Research , Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources , Northwest Institute of Plateau Biology , Chinese Academy of Science , Xining 810001 , Qinghai , PR China
| | - Jinmao You
- The Key Laboratory of Life-Organic Analysis , Key Laboratory of Pharmaceutical Intermediates and Analysis of Natural Medicine , College of Chemistry and Chemical Engineering , Qufu Normal University , Qufu 273165 , China . ; .,Key Laboratory of Coastal Environmental Processes and Ecological Remediation , Yantai Institute of Coastal Zone Research , Chinese Academy of Sciences , Yantai 264003 , China
| |
Collapse
|
56
|
Edrissi B, Taghizadeh K, Moeller BC, Yu R, Kracko D, Doyle-Eisele M, Swenberg JA, Dedon PC. N 6-Formyllysine as a Biomarker of Formaldehyde Exposure: Formation and Loss of N 6-Formyllysine in Nasal Epithelium in Long-Term, Low-Dose Inhalation Studies in Rats. Chem Res Toxicol 2017; 30:1572-1576. [PMID: 28692800 PMCID: PMC5807069 DOI: 10.1021/acs.chemrestox.7b00075] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Exposure to both endogenous and exogenous formaldehyde has been established to be carcinogenic, likely by virtue of forming nucleic acid and proteins adducts such as N6-formyllysine. To better assess N6-formyllysine as a biomarker of formaldehyde exposure, we studied accumulation of N6-formyllysine adducts in tissues of rats exposed by inhalation to 2 ppm [13C2H2]-formaldehyde for 7, 14, 21, and 28 days (6 h/day) and investigated adduct loss over a 7-day postexposure period using liquid chromatography-coupled tandem mass spectrometry. Our results showed formation of exogenous adducts in nasal epithelium and to some extent in trachea but not in distant tissues of lung, bone marrow, or white blood cells, with a 2-fold increase over endogenous N6-formyllysine over a 3-week exposure period. Postexposure analyses indicated a biexponential decay of N6-formyllysine in proteins extracted from different cellular compartments, with half-lives of ∼25 and ∼182 h for the fast and slow phases, respectively, in cytoplasmic proteins. These results parallel the behavior of DNA adducts and DNA-protein cross-links, with protein adducts cleared faster than DNA-protein cross-links, and point to the potential utility of N6-formyllysine protein adducts as biomarkers of formaldehyde.
Collapse
Affiliation(s)
- Bahar Edrissi
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Koli Taghizadeh
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Benjamin C. Moeller
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, 27514, USA
- Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA
| | - Rui Yu
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Dean Kracko
- Lovelace Respiratory Research Institute, Albuquerque, NM, 87108, USA
| | | | - James A. Swenberg
- Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC, 27514, USA
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
57
|
Mundt KA, Gallagher AE, Dell LD, Natelson EA, Boffetta P, Gentry PR. Does occupational exposure to formaldehyde cause hematotoxicity and leukemia-specific chromosome changes in cultured myeloid progenitor cells? Crit Rev Toxicol 2017; 47:592-602. [PMID: 28462599 DOI: 10.1080/10408444.2017.1301878] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Several cross-sectional studies of a single population of workers exposed to formaldehyde at one of two factories using or producing formaldehyde-melamine resins in China have concluded that formaldehyde exposure induces damage to hematopoietic cells that originate in the bone marrow. Moreover, the investigators interpret observed differences between groups as evidence that formaldehyde induces myeloid leukemias, although the mechanisms for inducing these diseases are not obvious and recently published scientific findings do not support causation. Our objective was to evaluate hematological parameters and aneuploidy in relation to quantitative exposure measures of formaldehyde. We obtained the study data for the original study (Zhang et al. 2010 ) and performed linear regression analyses. Results showed that differences in white blood cell, granulocyte, platelet, and red blood cell counts are not exposure dependent. Among formaldehyde-exposed workers, no association was observed between individual average formaldehyde exposure estimates and frequency of aneuploidy, suggested by the original study authors to be indicators of myeloid leukemia risk.
Collapse
Affiliation(s)
| | | | | | - Ethan A Natelson
- b Houston Methodist Hospital - Texas Medical Center , Houston , TX , USA
| | - Paolo Boffetta
- c Icahn School of Medicine at Mount Sinai , New York , NY , USA
| | | |
Collapse
|
58
|
Significance of Wild-Type p53 Signaling in Suppressing Apoptosis in Response to Chemical Genotoxic Agents: Impact on Chemotherapy Outcome. Int J Mol Sci 2017; 18:ijms18050928. [PMID: 28452953 PMCID: PMC5454841 DOI: 10.3390/ijms18050928] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/18/2017] [Accepted: 04/25/2017] [Indexed: 12/17/2022] Open
Abstract
Our genomes are subject to potentially deleterious alterations resulting from endogenous sources (e.g., cellular metabolism, routine errors in DNA replication and recombination), exogenous sources (e.g., radiation, chemical agents), and medical diagnostic and treatment applications. Genome integrity and cellular homeostasis are maintained through an intricate network of pathways that serve to recognize the DNA damage, activate cell cycle checkpoints and facilitate DNA repair, or eliminate highly injured cells from the proliferating population. The wild-type p53 tumor suppressor and its downstream effector p21WAF1 (p21) are key regulators of these responses. Although extensively studied for its ability to control cell cycle progression, p21 has emerged as a multifunctional protein capable of downregulating p53, suppressing apoptosis, and orchestrating prolonged growth arrest through stress-induced premature senescence. Studies with solid tumors and solid tumor-derived cell lines have revealed that such growth-arrested cancer cells remain viable, secrete growth-promoting factors, and can give rise to progeny with stem-cell-like properties. This article provides an overview of the mechanisms by which p53 signaling suppresses apoptosis following genotoxic stress, facilitating repair of genomic injury under physiological conditions but having the potential to promote tumor regrowth in response to cancer chemotherapy.
Collapse
|
59
|
Vaz B, Popovic M, Ramadan K. DNA-Protein Crosslink Proteolysis Repair. Trends Biochem Sci 2017; 42:483-495. [PMID: 28416269 DOI: 10.1016/j.tibs.2017.03.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 01/18/2023]
Abstract
Proteins that are covalently bound to DNA constitute a specific type of DNA lesion known as DNA-protein crosslinks (DPCs). DPCs represent physical obstacles to the progression of DNA replication. If not repaired, DPCs cause stalling of DNA replication forks that consequently leads to DNA double-strand breaks, the most cytotoxic DNA lesion. Although DPCs are common DNA lesions, the mechanism of DPC repair was unclear until now. Recent work unveiled that DPC repair is orchestrated by proteolysis performed by two distinct metalloproteases, SPARTAN in metazoans and Wss1 in yeast. This review summarizes recent discoveries on two proteases in DNA replication-coupled DPC repair and establishes DPC proteolysis repair as a separate DNA repair pathway for genome stability and protection from accelerated aging and cancer.
Collapse
Affiliation(s)
- Bruno Vaz
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Marta Popovic
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Kristijan Ramadan
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
60
|
Groehler A, Degner A, Tretyakova NY. Mass Spectrometry-Based Tools to Characterize DNA-Protein Cross-Linking by Bis-Electrophiles. Basic Clin Pharmacol Toxicol 2017; 121 Suppl 3:63-77. [PMID: 28032943 DOI: 10.1111/bcpt.12751] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/14/2016] [Indexed: 12/14/2022]
Abstract
DNA-protein cross-links (DPCs) are unusually bulky DNA adducts that form in cells as a result of exposure to endogenous and exogenous agents including reactive oxygen species, ultraviolet light, ionizing radiation, environmental agents (e.g. transition metals, formaldehyde, 1,2-dibromoethane, 1,3-butadiene) and common chemotherapeutic agents. Covalent DPCs are cytotoxic and mutagenic due to their ability to interfere with faithful DNA replication and to prevent accurate gene expression. Key to our understanding of the biological significance of DPC formation is identifying the proteins most susceptible to forming these unusually bulky and complex lesions and quantifying the extent of DNA-protein cross-linking in cells and tissues. Recent advances in bottom-up mass spectrometry-based proteomics have allowed for an unbiased assessment of the whole protein DPC adductome after in vitro and in vivo exposures to cross-linking agents. This MiniReview summarizes current and emerging methods for DPC isolation and analysis by mass spectrometry-based proteomics. We also highlight several examples of successful applications of these novel methodologies to studies of DPC lesions induced by bis-electrophiles such as formaldehyde, 1,2,3,4-diepoxybutane, nitrogen mustards and cisplatin.
Collapse
Affiliation(s)
- Arnold Groehler
- Department of Medicinal Chemistry, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Amanda Degner
- Department of Medicinal Chemistry, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Natalia Y Tretyakova
- Department of Medicinal Chemistry, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
61
|
Nielsen GD, Larsen ST, Wolkoff P. Re-evaluation of the WHO (2010) formaldehyde indoor air quality guideline for cancer risk assessment. Arch Toxicol 2017; 91:35-61. [PMID: 27209488 PMCID: PMC5225186 DOI: 10.1007/s00204-016-1733-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 04/27/2016] [Indexed: 11/11/2022]
Abstract
In 2010, the World Health Organization (WHO) established an indoor air quality guideline for short- and long-term exposures to formaldehyde (FA) of 0.1 mg/m3 (0.08 ppm) for all 30-min periods at lifelong exposure. This guideline was supported by studies from 2010 to 2013. Since 2013, new key studies have been published and key cancer cohorts have been updated, which we have evaluated and compared with the WHO guideline. FA is genotoxic, causing DNA adduct formation, and has a clastogenic effect; exposure-response relationships were nonlinear. Relevant genetic polymorphisms were not identified. Normal indoor air FA concentrations do not pass beyond the respiratory epithelium, and therefore FA's direct effects are limited to portal-of-entry effects. However, systemic effects have been observed in rats and mice, which may be due to secondary effects as airway inflammation and (sensory) irritation of eyes and the upper airways, which inter alia decreases respiratory ventilation. Both secondary effects are prevented at the guideline level. Nasopharyngeal cancer and leukaemia were observed inconsistently among studies; new updates of the US National Cancer Institute (NCI) cohort confirmed that the relative risk was not increased with mean FA exposures below 1 ppm and peak exposures below 4 ppm. Hodgkin's lymphoma, not observed in the other studies reviewed and not considered FA dependent, was increased in the NCI cohort at a mean concentration ≥0.6 mg/m3 and at peak exposures ≥2.5 mg/m3; both levels are above the WHO guideline. Overall, the credibility of the WHO guideline has not been challenged by new studies.
Collapse
Affiliation(s)
- Gunnar Damgård Nielsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark.
| | - Søren Thor Larsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Peder Wolkoff
- National Research Centre for the Working Environment, Lersø Parkallé 105, 2100, Copenhagen, Denmark
| |
Collapse
|
62
|
Denby KJ, Iwig J, Bisson C, Westwood J, Rolfe MD, Sedelnikova SE, Higgins K, Maroney MJ, Baker PJ, Chivers PT, Green J. The mechanism of a formaldehyde-sensing transcriptional regulator. Sci Rep 2016; 6:38879. [PMID: 27934966 PMCID: PMC5146963 DOI: 10.1038/srep38879] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/15/2016] [Indexed: 01/12/2023] Open
Abstract
Most organisms are exposed to the genotoxic chemical formaldehyde, either from endogenous or environmental sources. Therefore, biology has evolved systems to perceive and detoxify formaldehyde. The frmRA(B) operon that is present in many bacteria represents one such system. The FrmR protein is a transcriptional repressor that is specifically inactivated in the presence of formaldehyde, permitting expression of the formaldehyde detoxification machinery (FrmA and FrmB, when the latter is present). The X-ray structure of the formaldehyde-treated Escherichia coli FrmR (EcFrmR) protein reveals the formation of methylene bridges that link adjacent Pro2 and Cys35 residues in the EcFrmR tetramer. Methylene bridge formation has profound effects on the pattern of surface charge of EcFrmR and combined with biochemical/biophysical data suggests a mechanistic model for formaldehyde-sensing and derepression of frmRA(B) expression in numerous bacterial species.
Collapse
Affiliation(s)
- Katie J Denby
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jeffrey Iwig
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Claudine Bisson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jodie Westwood
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Matthew D Rolfe
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Svetlana E Sedelnikova
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Khadine Higgins
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA 01003, USA
| | - Michael J Maroney
- Department of Chemistry, University of Massachusetts-Amherst, Amherst, MA 01003, USA
| | - Patrick J Baker
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Peter T Chivers
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA.,Departments of Biosciences and Chemistry, Durham University, Durham, DH1 3LE, UK
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
63
|
Chiarella P, Tranfo G, Pigini D, Carbonari D. Is it possible to use biomonitoring for the quantitative assessment of formaldehyde occupational exposure? Biomark Med 2016; 10:1287-1303. [PMID: 27924628 DOI: 10.2217/bmm-2016-0146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The European classification, labeling and packaging classified formaldehyde as human carcinogen Group 1B and mutagen 2, fostering the re-evaluation of the exposure risk in occupational settings. Although formaldehyde exposure is traditionally measured in air, many efforts were made to identify specific exposure biomarkers: urinary formaldehyde, formic acid and DNA damage indicators. Though used in combination, none of these seems satisfactory. The influence of the metabolism on exogenous formaldehyde levels, the exposure to other xenobiotics, the difference in genetic background and metabolism efficiency, misled the relationship between genotoxicity and exposure data. Nevertheless, the limitation of adverse effects to the local contact sites hampers biomonitoring. Here we discuss the feasibility of formaldehyde biomonitoring and the use of DNA, DNA-protein cross-links and protein adducts as potential biomarkers.
Collapse
Affiliation(s)
- Pieranna Chiarella
- INAIL Research - Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, Via Fontana Candida 1 - 00078 Monte Porzio Catone (RM), Italy
| | - Giovanna Tranfo
- INAIL Research - Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, Via Fontana Candida 1 - 00078 Monte Porzio Catone (RM), Italy
| | - Daniela Pigini
- INAIL Research - Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, Via Fontana Candida 1 - 00078 Monte Porzio Catone (RM), Italy
| | - Damiano Carbonari
- INAIL Research - Department of Occupational & Environmental Medicine, Epidemiology & Hygiene, Via Fontana Candida 1 - 00078 Monte Porzio Catone (RM), Italy
| |
Collapse
|