51
|
Roato I, Vitale M. The Uncovered Role of Immune Cells and NK Cells in the Regulation of Bone Metastasis. Front Endocrinol (Lausanne) 2019; 10:145. [PMID: 30930851 PMCID: PMC6423901 DOI: 10.3389/fendo.2019.00145] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/18/2019] [Indexed: 12/17/2022] Open
Abstract
Bone is one of the main metastatic sites of solid tumors like breast, lung, and prostate cancer. Disseminated tumor cells (DTCs) and cancer stem cells (CSCs) represent the main target to counteract bone metastatization. These cells often localize in bone marrow (BM) at level of pre-metastatic niche: they can remain dormant for years or directly grow and create bone lesion, according to the different stimulations received in BM. The immune system in bone marrow is dampened and represents an appealing site for DTCs/CSCs. NK cells have an important role in controlling tumor progression, but their involvement in bone metastasis formation is an interesting and not fully investigated issue. Indeed, whether NK cells can interfere with CSC formation, kill them at the site of primary tumor, during circulation or in the pre-metastic niche needs to be elucidated. This review focuses on different aspects that regulate DTC/CSC life in bone and how NK cells potentially control bone metastasis formation.
Collapse
Affiliation(s)
- Ilaria Roato
- Center for Research and Medical Studies (CeRMS), A.O.U. Città della Salute e della Scienza di Torino, Turin, Italy
- *Correspondence: Ilaria Roato
| | - Massimo Vitale
- UOC Immunologia, IRCCS Ospedale Policlinico San Martino Genova, Genoa, Italy
| |
Collapse
|
52
|
NK Cell-Based Immunotherapy in Cancer Metastasis. Cancers (Basel) 2018; 11:cancers11010029. [PMID: 30597841 PMCID: PMC6357056 DOI: 10.3390/cancers11010029] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/11/2018] [Accepted: 12/20/2018] [Indexed: 01/01/2023] Open
Abstract
Metastasis represents the leading cause of cancer-related death mainly owing to the limited efficacy of current anticancer therapies on advanced malignancies. Although immunotherapy is rendering promising results in the treatment of cancer, many adverse events and factors hampering therapeutic efficacy, especially in solid tumors and metastases, still need to be solved. Moreover, immunotherapeutic strategies have mainly focused on modulating the activity of T cells, while Natural Killer (NK) cells have only recently been taken into consideration. NK cells represent an attractive target for cancer immunotherapy owing to their innate capacity to eliminate malignant tumors in a non-Major Histocompatibility Complex (MHC) and non-tumor antigen-restricted manner. In this review, we analyze the mechanisms and efficacy of NK cells in the control of metastasis and we detail the immunosubversive strategies developed by metastatic cells to evade NK cell-mediated immunosurveillance. We also share current and cutting-edge clinical approaches aimed at unleashing the full anti-metastatic potential of NK cells, including the adoptive transfer of NK cells, boosting of NK cell activity, redirecting NK cell activity against metastatic cells and the release of evasion mechanisms dampening NK cell immunosurveillance.
Collapse
|
53
|
Vacca P, Munari E, Tumino N, Moretta F, Pietra G, Vitale M, Del Zotto G, Mariotti FR, Mingari MC, Moretta L. Human natural killer cells and other innate lymphoid cells in cancer: Friends or foes? Immunol Lett 2018; 201:14-19. [PMID: 30439479 DOI: 10.1016/j.imlet.2018.11.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/26/2022]
Abstract
Innate lymphoid cells (ILC) including NK cells (cytotoxic) and the recently identified "helper" ILC1, ILC2 and ILC3, play an important role in innate defenses against pathogens. Notably, they mirror analogous T cell subsets, regarding the pattern of cytokine produced, while the timing of their intervention is few hours vs days required for T cell-mediated adaptive responses. On the other hand, the effectiveness of ILC in anti-tumor defenses is controversial. The relevance of NK cells in the control of tumor growth and metastasis has been well documented and they have been exploited in the therapy of high risk leukemia in the haploidentical hematopoietic stem cell transplantation setting. In contrast, the actual involvement of helper ILCs remains contradictory. Thus, while certain functional capabilities of ILC1 and ILC3 may favor anti-tumor responses, other functions could rather favor tumor growth, neo-angiogenesis, epithelial-mesenchymal transition and metastasis. In addition, ILC2, by secreting type-2 cytokines, are thought to induce a prevalent pro-tumorigenic effect. Finally, the function of both NK cells and helper ILCs may be inhibited by the tumor microenvironment, thus adding further complexity to the interplay between ILC and tumors.
Collapse
Affiliation(s)
- Paola Vacca
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Enrico Munari
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy; Department of Pathology, Sacro Cuore Don Calabria, Negrar, VR, Italy
| | - Nicola Tumino
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Francesca Moretta
- Department of Laboratory Medicine, Sacro Cuore Don Calabria Hospital, 37024, Negrar, VR, Italy
| | - Gabriella Pietra
- UOC Immunologia, Ospedale Policlinico San Martino Genova, Genoa, Italy; Department of Experimental Medicine (DIMES) and Centre of Exellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Massimo Vitale
- UOC Immunologia, Ospedale Policlinico San Martino Genova, Genoa, Italy
| | - Genny Del Zotto
- Department of Research and Diagnostics, Istituto G. Gaslini, Genoa, Italy
| | | | - Maria Cristina Mingari
- UOC Immunologia, Ospedale Policlinico San Martino Genova, Genoa, Italy; Department of Experimental Medicine (DIMES) and Centre of Exellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy.
| |
Collapse
|
54
|
Terry S, Faouzi Zaarour R, Hassan Venkatesh G, Francis A, El-Sayed W, Buart S, Bravo P, Thiery J, Chouaib S. Role of Hypoxic Stress in Regulating Tumor Immunogenicity, Resistance and Plasticity. Int J Mol Sci 2018; 19:ijms19103044. [PMID: 30301213 PMCID: PMC6213127 DOI: 10.3390/ijms19103044] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/28/2018] [Accepted: 10/04/2018] [Indexed: 12/15/2022] Open
Abstract
Hypoxia, or gradients of hypoxia, occurs in most growing solid tumors and may result in pleotropic effects contributing significantly to tumor aggressiveness and therapy resistance. Indeed, the generated hypoxic stress has a strong impact on tumor cell biology. For example, it may contribute to increasing tumor heterogeneity, help cells gain new functional properties and/or select certain cell subpopulations, facilitating the emergence of therapeutic resistant cancer clones, including cancer stem cells coincident with tumor relapse and progression. It controls tumor immunogenicity, immune plasticity, and promotes the differentiation and expansion of immune-suppressive stromal cells. In this context, manipulation of the hypoxic microenvironment may be considered for preventing or reverting the malignant transformation. Here, we review the current knowledge on how hypoxic stress in tumor microenvironments impacts on tumor heterogeneity, plasticity and resistance, with a special interest in the impact on immune resistance and tumor immunogenicity.
Collapse
Affiliation(s)
- Stéphane Terry
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| | - Rania Faouzi Zaarour
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Goutham Hassan Venkatesh
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Amirtharaj Francis
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Walid El-Sayed
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Stéphanie Buart
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| | - Pamela Bravo
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| | - Jérome Thiery
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| |
Collapse
|