51
|
Jin J, Li Y, Zhao Q, Chen Y, Fu S, Wu J. Coordinated regulation of immune contexture: crosstalk between STAT3 and immune cells during breast cancer progression. Cell Commun Signal 2021; 19:50. [PMID: 33957948 PMCID: PMC8101191 DOI: 10.1186/s12964-021-00705-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022] Open
Abstract
Recent insights into the molecular and cellular mechanisms underlying cancer development have revealed the tumor microenvironment (TME) immune cells to functionally affect the development and progression of breast cancer. However, insufficient evidence of TME immune modulators limit the clinical application of immunotherapy for advanced and metastatic breast cancers. Intercellular STAT3 activation of immune cells plays a central role in breast cancer TME immunosuppression and distant metastasis. Accumulating evidence suggests that targeting STAT3 and/or in combination with radiotherapy may enhance anti-cancer immune responses and rescue the systemic immunologic microenvironment in breast cancer. Indeed, apart from its oncogenic role in tumor cells, the functions of STAT3 in TME of breast cancer involve multiple types of immunosuppression and is associated with tumor cell metastasis. In this review, we summarize the available information on the functions of STAT3-related immune cells in TME of breast cancer, as well as the specific upstream and downstream targets. Additionally, we provide insights about the potential immunosuppression mechanisms of each type of evaluated immune cells. Video abstract.
Collapse
Affiliation(s)
- Jing Jin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Yi Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Qijie Zhao
- Department of Radiologic Technology, Center of Excellence for Molecular Imaging (CEMI), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Pathophysiology, College of Basic Medical Science, Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000 Sichuan People’s Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000 Sichuan People’s Republic of China
| | - Shaozhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
| | - JingBo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000 Sichuan People’s Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000 Sichuan People’s Republic of China
- Academician (Expert) Workstation of Sichuan Province, Luzhou, 646000 Sichuan People’s Republic of China
| |
Collapse
|
52
|
Petroni G, Buqué A, Zitvogel L, Kroemer G, Galluzzi L. Immunomodulation by targeted anticancer agents. Cancer Cell 2021; 39:310-345. [PMID: 33338426 DOI: 10.1016/j.ccell.2020.11.009] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023]
Abstract
At odds with conventional chemotherapeutics, targeted anticancer agents are designed to inhibit precise molecular alterations that support oncogenesis or tumor progression. Despite such an elevated degree of molecular specificity, many clinically employed and experimental targeted anticancer agents also mediate immunostimulatory or immunosuppressive effects that (at least in some settings) influence therapeutic efficacy. Here, we discuss the main immunomodulatory effects of targeted anticancer agents and explore potential avenues to harness them in support of superior clinical efficacy.
Collapse
Affiliation(s)
- Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Laurence Zitvogel
- Gustave Roussy Cancer Center, Villejuif, France; INSERM U1015, Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France; Faculty of Medicine, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre le Cancer, Centre de Recherche des Cordeliers, INSERM U1138, Université de Paris, Sorbonne Université, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT, USA; Université de Paris, Paris, France.
| |
Collapse
|
53
|
Du R, Huang C, Liu K, Li X, Dong Z. Targeting AURKA in Cancer: molecular mechanisms and opportunities for Cancer therapy. Mol Cancer 2021; 20:15. [PMID: 33451333 PMCID: PMC7809767 DOI: 10.1186/s12943-020-01305-3] [Citation(s) in RCA: 299] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Aurora kinase A (AURKA) belongs to the family of serine/threonine kinases, whose activation is necessary for cell division processes via regulation of mitosis. AURKA shows significantly higher expression in cancer tissues than in normal control tissues for multiple tumor types according to the TCGA database. Activation of AURKA has been demonstrated to play an important role in a wide range of cancers, and numerous AURKA substrates have been identified. AURKA-mediated phosphorylation can regulate the functions of AURKA substrates, some of which are mitosis regulators, tumor suppressors or oncogenes. In addition, enrichment of AURKA-interacting proteins with KEGG pathway and GO analysis have demonstrated that these proteins are involved in classic oncogenic pathways. All of this evidence favors the idea of AURKA as a target for cancer therapy, and some small molecules targeting AURKA have been discovered. These AURKA inhibitors (AKIs) have been tested in preclinical studies, and some of them have been subjected to clinical trials as monotherapies or in combination with classic chemotherapy or other targeted therapies.
Collapse
Affiliation(s)
- Ruijuan Du
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China. .,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China.
| | - Chuntian Huang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China. .,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China. .,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China.
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China. .,China-US (Henan) Hormel Cancer Institute, No. 127, Dongming Road, Jinshui District, Zhengzhou, 450008, Henan, China. .,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China. .,State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, Zhengzhou, Henan, China. .,College of medicine, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
54
|
Developmental pathways of myeloid-derived suppressor cells in neoplasia. Cell Immunol 2020; 360:104261. [PMID: 33373817 DOI: 10.1016/j.cellimm.2020.104261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 02/07/2023]
Abstract
Immunotherapy has become a major weapon against the war on cancer. This has culminated from decades of seminal work that led to the discovery of innovative approaches to drive adaptive immunity. Notably, was the discovery of immune checkpoint inhibitory receptors on T cells, and the subsequent development of monoclonal antibodies that target those receptors, known as immune checkpoint inhibitors (ICIs). Blocking those receptors using ICIs leads to sustained effector function, which has translated to enhanced antitumor responses across multiple human cancer types. However, these treatments are effective in subsets of patients, implicating significant barriers limiting therapeutic potential. While numerous mechanisms may hinder immunotherapy potency, one prominent mechanism is the production of myeloid-derived suppressor cells (MDSCs). MDSCs comprise monocytic and granulocytic cell types and mediate pro-tumorigenic and immune suppressive activities. Here, we summarize several pathways by which MDSCs arise in cancer, providing a conceptual framework for identifying unique combination therapeutic interventions.
Collapse
|
55
|
Zhang X, Yang L, Chen W, Kong M. Identification of Potential Hub Genes and Therapeutic Drugs in Malignant Pleural Mesothelioma by Integrated Bioinformatics Analysis. Oncol Res Treat 2020; 43:656-671. [PMID: 33032291 DOI: 10.1159/000510534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/28/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Malignant pleural mesothelioma (MPM) is closely linked to asbestos exposure and is an extremely aggressive tumor with poor prognosis. OBJECTIVE Our study aimed to elucidate hub genes and potential drugs in MPM by integrated bioinformatics analysis. METHODS GSE42977 was download from the Gene Expression Omnibus (GEO) database; the differentially expressed genes (DEGs) with adj.p value <0.05 and |logFC| ≥2 were identified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed by DAVID database. The STRING database was used to construct a protein-protein interaction network, and modules analysis and hub genes acquisition were performed by Cytoscape. The Gene Expression Profiling Interactive Analysis (GEPIA) database was used to assess the impact of hub genes on the prognosis of MPM patients. The Drug-Gene Interaction database (DGIdb) was used to select the related drugs. RESULTS A total of 169 upregulated and 70 downregulated DEGs were identified. These DEGs are enriched in the pathway of extracellular matrix-receptor interaction, focal adhesion, PI3K-Akt signaling pathway, and PPAR signaling pathway. Finally, 10 hub genes (CDC20, CDK1, UBE2C, TOP2A, CCNB2, NUSAP1, KIF20A, AURKA, CEP55, and ASPM) were identified, which are considered to be closely related to the poor prognosis of MPM. In addition, 119 related drugs that may have a therapeutic effect on MPM were filtered out. CONCLUSION These discovered genes and small-molecule drugs provide some new ideas for further research on MPM.
Collapse
Affiliation(s)
| | - Liu Yang
- School of Medicine, Shihezi University, Shihezi, China
| | - Wei Chen
- Department of Anaesthetic Operating Room, Provincial Otolaryngology Hospital Affiliated to Shandong University, Shandong Provincial Western Hospital, Jinan, China
| | - Ming Kong
- Department of Thoracic Surgery, Provincial Otolaryngology Hospital Affiliated to Shandong University, Shandong Provincial Western Hospital, Jinan, China,
| |
Collapse
|
56
|
Abstract
Small cell lung cancer (SCLC) is an aggressive malignancy. Until recently the standard of care for newly diagnosed patients with extensive-stage disease was chemotherapy consisting of etoposide plus a platinum (EP). The median overall survival (OS) was only about 10 months with this systemic therapy. Immune checkpoint inhibitors were first evaluated as second or subsequent line treatments in extensive stage disease and later in combination with EP in the first-line setting. Recently two randomized phase III trials have demonstrated statistically improved OS with addition of a programmed death ligand-1 (PD-L1) inhibitor to EP. As a result, the standard of care for newly diagnosed patients with extensive-stage SCLC has changed for the first time in decades. However, many patients do not derive benefit from the addition of a PD-L1 inhibitor to EP. In this review we discuss first-line trials of chemoimmunotherapy in extensive stage SCLC and summarize data on second and subsequent line treatment with immune checkpoint inhibitors in immunotherapy-naïve patients. Additionally, we discuss potential biomarkers that could be utilized to select for which patients derive benefit from addition of a PD-L1 inhibitor to EP and propose ways to improve on first-line chemoimmunotherapy.
Collapse
Affiliation(s)
- Jose M Pacheco
- Division of Medical Oncology, Department of Internal Medicine, University of Colorado Cancer Center, Aurora Colorado, USA
| |
Collapse
|
57
|
The Premature Senescence in Breast Cancer Treatment Strategy. Cancers (Basel) 2020; 12:cancers12071815. [PMID: 32640718 PMCID: PMC7408867 DOI: 10.3390/cancers12071815] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/19/2020] [Accepted: 06/30/2020] [Indexed: 01/10/2023] Open
Abstract
Cellular senescence is a permanent blockade of cell proliferation. In response to therapy-induced stress, cancer cells undergo apoptosis or premature senescence. In apoptosis-resistant cancer cells or at lower doses of anticancer drugs, therapy-induced stress leads to premature senescence. The role of this senescence in cancer treatment is discussable. First of all, the senescent cells lose the ability to proliferate, migrate, and invade. In addition, the senescent cells secrete a set of proteins (inflammatory cytokines, chemokines, growth factors) known as the senescence-associated secretory phenotype (SASP), which influences non-senescent normal cells and non-senescent cancer cells in the tumor microenvironment and triggers tumor promotion and recurrence. Recently, many studies have examined senescence induction through breast cancer therapy and potentially using this phenomenon to treat this cancer. This review summarizes the recent in vitro, in vivo, and clinical studies investigating senescence in breast cancer treatments. Senescence inductors, senolytics, as well as their action mechanism are discussed herein. Potential SASP-modulating treatment strategies are also described.
Collapse
|
58
|
Han J, Jiang Z, Wang C, Chen X, Li R, Sun N, Liu X, Wang H, Hong L, Zheng K, Yang J, Ikezoe T. Inhibition of Aurora-A Promotes CD8 + T-Cell Infiltration by Mediating IL10 Production in Cancer Cells. Mol Cancer Res 2020; 18:1589-1602. [PMID: 32591441 DOI: 10.1158/1541-7786.mcr-19-1226] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/17/2020] [Accepted: 06/23/2020] [Indexed: 11/16/2022]
Abstract
Intratumoral tumor-specific activated CD8+ T cells with functions in antitumor immune surveillance predict metastasis and clinical outcome in human colorectal cancer. Intratumoral CD8+ T cells also affect treatment with immune checkpoint inhibitors. Interestingly, inhibition of Aurora kinase A (Aurora-A) by its selective inhibitor alisertib obviously induced infiltration of CD8+ T cells. However, the mechanisms by which inhibition of Aurora-A promotes infiltration of intratumoral CD8+ T cells remain unclear. Our recent results demonstrated that conditional deletion of the AURKA gene or blockade of Aurora-A by alisertib slowed tumor growth in association with an increase in the infiltration of intratumoral CD8+ T cells as well as the mRNA levels of their IL10 receptor α (IL10Rα). The antitumor effects of targeting Aurora-A were attenuated in the absence of CD8+ T cells. In addition, antibody-mediated blockade of IL10Rα dramatically decreased the percentage of intratumoral CD8+ T cells. In further experiments, we found that the levels of IL10 were elevated in the serum of azoxymethane/dextran sodium sulfate-treated AURKAflox/+;VillinCre+ mice. Unexpectedly, we found that in addition to Aurora-A's mitotic role, inhibition of Aurora-A elevated IL10 transcription, which in turn increased the IL10Rα mRNA levels in CD8+ T cells. Thus, inhibition of Aurora-A could be a useful treatment strategy for recruiting tumor-specific intratumoral CD8+ T cells. IMPLICATIONS: Understanding the mechanisms by which inhibition of Aurora-A promotes CD8+ T-cell infiltration and activation, as mediated by the IL10 pathway could provide a potential strategy for tumor immunotherapy.
Collapse
Affiliation(s)
- Jing Han
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhen Jiang
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.,National Experimental Demonstration Center for Basic Medicine Education, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Chennan Wang
- Heilongjiang Province Key Laboratory of Microecology and Immunity, Heilongjiang, China.,The Department of Pathological Anatomy, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Xin Chen
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rongqing Li
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Na Sun
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangye Liu
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hui Wang
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Li Hong
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing Yang
- Jiangsu Province Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China. .,Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Takayuki Ikezoe
- The Department of Hematology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
59
|
Sun H, Wang H, Wang X, Aoki Y, Wang X, Yang Y, Cheng X, Wang Z, Wang X. Aurora-A/SOX8/FOXK1 signaling axis promotes chemoresistance via suppression of cell senescence and induction of glucose metabolism in ovarian cancer organoids and cells. Am J Cancer Res 2020; 10:6928-6945. [PMID: 32550913 PMCID: PMC7295065 DOI: 10.7150/thno.43811] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Rationale: Cisplatin derivatives are first-line chemotherapeutic agents for epithelial ovarian cancer. However, chemoresistance remains a major hurdle for successful therapy and the underlying molecular mechanisms are poorly understood at present. Methods: RNA sequencing of organoids (PDO) established from cisplatin-sensitive and -resistant ovarian cancer tissue samples was performed. Glucose metabolism, cell senescence, and chemosensitivity properties were subsequently examined. Immunoprecipitation, mass spectrometry, Fӧrster resonance energy transfer-fluorescence lifetime imaging (FRET-FLIM), luciferase reporter assay, ChIP and animal experiments were conducted to gain insights into the specific functions and mechanisms of action of the serine/threonine kinase, Aurora-A, in ovarian cancer. Results: Aurora-A levels were significantly enhanced in cisplatin-resistant PDO. Furthermore, Aurora-A promoted chemoresistance through suppression of cell senescence and induction of glucose metabolism in ovarian cancer organoids and cells. Mechanistically, Aurora-A bound directly to the transcription factor sex determining region Y-box 8 (SOX8) and phosphorylated the Ser327 site, in turn, regulating genes related to cell senescence and glycolysis, including hTERT, P16, LDHA and HK2, through enhancement of forkhead-box k1 (FOXK1) expression. Conclusions: Aurora-A regulates cell senescence and glucose metabolism to induce cisplatin resistance by participating in the SOX8/FOXK1 signaling axis in ovarian cancer. Our collective findings highlight a novel mechanism of cisplatin resistance and present potential therapeutic targets to overcome chemoresistance in ovarian cancer.
Collapse
|
60
|
Rébé C, Ghiringhelli F. STAT3, a Master Regulator of Anti-Tumor Immune Response. Cancers (Basel) 2019; 11:E1280. [PMID: 31480382 PMCID: PMC6770459 DOI: 10.3390/cancers11091280] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/27/2022] Open
Abstract
Immune cells in the tumor microenvironment regulate cancer growth. Thus cancer progression is dependent on the activation or repression of transcription programs involved in the proliferation/activation of lymphoid and myeloid cells. One of the main transcription factors involved in many of these pathways is the signal transducer and activator of transcription 3 (STAT3). In this review we will focus on the role of STAT3 and its regulation, e.g. by phosphorylation or acetylation in immune cells and how it might impact immune cell function and tumor progression. Moreover, we will review the ability of STAT3 to regulate checkpoint inhibitors.
Collapse
Affiliation(s)
- Cédric Rébé
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231,University of Bourgogne Franche-Comté, F-21000 Dijon, France.
| | - François Ghiringhelli
- Platform of Transfer in Cancer Biology, Centre Georges François Leclerc, INSERM LNC UMR1231,University of Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
61
|
Rivoltini L, Vernieri C, Huber V. The AURORA of a New Way to Value Myeloid Immunosuppression in Cancer. Cancer Res 2019; 79:3169-3171. [PMID: 31262832 DOI: 10.1158/0008-5472.can-19-1081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022]
Abstract
Inhibiting myeloid-derived suppressor cells (MDSC) might be the ultimate barrier to break down tumor defenses and recover the preexisting T-cell immunity required to respond to immunotherapy. However, selectively intercepting MDSCs to prove their etiologic role in cancer progression is not an easy task. In this issue of Cancer Research, Yin and colleagues demonstrate unequivocally that the Aurora A kinase inhibitor, alisertib, specifically neutralizes MDSCs and triggers the rapid accrual of cytotoxic T cells, with consequent tumor clearance potentiated by PD-L1 blockade. Translating this approach into the clinic might rescue tumor immunity in immune-desert landscapes.See related article by Yin et al., p. 3431.
Collapse
Affiliation(s)
- Licia Rivoltini
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| | - Claudio Vernieri
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Veronica Huber
- Unit of Immunotherapy of Human Tumors, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
62
|
Chrétien S, Zerdes I, Bergh J, Matikas A, Foukakis T. Beyond PD-1/PD-L1 Inhibition: What the Future Holds for Breast Cancer Immunotherapy. Cancers (Basel) 2019; 11:E628. [PMID: 31060337 PMCID: PMC6562626 DOI: 10.3390/cancers11050628] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/14/2022] Open
Abstract
Cancer immunotherapy has altered the management of human malignancies, improving outcomes in an expanding list of diseases. Breast cancer - presumably due to its perceived low immunogenicity - is a late addition to this list. Furthermore, most of the focus has been on the triple negative subtype because of its higher tumor mutational load and lymphocyte-enriched stroma, although emerging data show promise on the other breast cancer subtypes as well. To this point the clinical use of immunotherapy is limited to the inhibition of two immune checkpoints, Programmed Cell Death Protein 1 (PD-1) and Cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4). Consistent with the complexity of the regulation of the tumor - host interactions and their lack of reliance on a single regulatory pathway, combinatory approaches have shown improved efficacy albeit at the cost of increased toxicity. Beyond those two checkpoints though, a large number of co-stimulatory or co-inhibitory molecules play major roles on tumor evasion from immunosurveillance. These molecules likely represent future targets of immunotherapy provided that the promise shown in early data is translated into improved patient survival in randomized trials. The biological role, prognostic and predictive implications regarding breast cancer and early clinical efforts on exploiting these immune-related therapeutic targets are herein reviewed.
Collapse
Affiliation(s)
- Sebastian Chrétien
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Ioannis Zerdes
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Jonas Bergh
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Alexios Matikas
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| | - Theodoros Foukakis
- Department of Oncology - Pathology, Karolinska Institutet, Stockholm, 171 76, Sweden.
| |
Collapse
|