51
|
Huang XY, Chen JX, Ren Y, Fan LC, Xiang W, He XJ. Exosomal miR-122 promotes adipogenesis and aggravates obesity through the VDR/SREBF1 axis. Obesity (Silver Spring) 2022; 30:666-679. [PMID: 35170865 DOI: 10.1002/oby.23365] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE This study examined the effects of miR-122-enriched exosomes on the expression of vitamin D3 receptor (VDR) and sterol regulatory element-binding transcription factor 1 (SREBF1) and their roles during adipogenesis. METHODS The roles of miR-122, SREBF1, and VDR were investigated during adipogenesis. The relationships between VDR and miR-122 or SREBF1 were assessed by dual-luciferase reporter and chromatin immunoprecipitation assays. The potential role of miR-122/VDR/SREBF1 was evaluated in high-fat diet-induced obese male mice. RESULTS High levels of miR-122 were found only in adipose tissue-derived exosomes (Exo-AT) and Exo-AT-treated cells. Overexpression of miR-122 promoted adipogenesis, and inhibition of miR-122 prevented adipogenesis by regulating VDR, SREBF1, peroxisome proliferator-activated receptor gamma, lipoprotein lipase, and adiponectin. Knockdown of Srebf1 or overexpression of VDR could inhibit adipogenesis. However, exosomal miR-122 could reverse their inhibitory effects. The dual-luciferase reporter assay and chromatin immunoprecipitation assays confirmed that VDR was a direct target of miR-122. It could bind to the BS1 region of the SREBF1 promoter and inhibit SREBF1 expression. Moreover, miR-122 inhibition could alleviate obesity in high-fat diet-induced obese male mice, possibly through upregulating the VDR/SREBF1 axis. CONCLUSION MiR-122-enriched Exo-AT promoted adipogenesis by regulating the VDR/SREBF1 axis.
Collapse
Affiliation(s)
- Xiao-Yan Huang
- Department of Genetics, Metabolism and Endocrinology, Hainan Women and Children's Medical Center, Haikou, Hainan Province, China
| | - Ji-Xiong Chen
- Department of Medical Care Center, Hainan Provincial People's Hospital, Haikou, Hainan Province, China
| | - Yi Ren
- Department of Pediatrics, Haikou Maternal and Child Health Hospital, Haikou, Hainan Province, China
| | - Li-Chun Fan
- Department of Child Healthcare, Hainan Women and Children's Medical Center, Haikou, Hainan Province, China
| | - Wei Xiang
- Department of Child Healthcare, Hainan Women and Children's Medical Center, Haikou, Hainan Province, China
- NHC Key Laboratory of Control of Tropical Diseases, Hainan Medical University, Haikou, Hainan Province, China
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan Province, China
| | - Xiao-Jie He
- Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
- Laboratory of Pediatrics Nephrology, Institute of Pediatrics, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
52
|
Piotrowska A, Beserra FP, Wierzbicka JM, Nowak JI, Żmijewski MA. Vitamin D Enhances Anticancer Properties of Cediranib, a VEGFR Inhibitor, by Modulation of VEGFR2 Expression in Melanoma Cells. Front Oncol 2022; 11:763895. [PMID: 35004285 PMCID: PMC8740239 DOI: 10.3389/fonc.2021.763895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/01/2021] [Indexed: 01/12/2023] Open
Abstract
Regardless of the recent groundbreaking introduction of personalized therapy, melanoma continues to be one of the most lethal skin malignancies. Still, a substantial proportion of patients either fail to respond to the therapy or will relapse over time, representing a challenging clinical problem. Recently, we have shown that vitamin D enhances the effectiveness of classical chemotherapeutics in the human malignant melanoma A375 cell line. In search for new combination strategies and adjuvant settings to improve melanoma patient outcomes in the current study, the effects of cediranib (AZD2171), an oral tyrosine kinase inhibitor of VEGFR1-3, PDGFR, and c-KIT, used in combination either with 1,25(OH)2D3 or with low-calcemic analog calcipotriol were tested on four human malignant melanoma cell lines (A375, MNT-1, RPMI-7951, and SK-MEL-28). Melanoma cells were pretreated with vitamin D and subsequently exposed to cediranib. We observed a marked decrease in melanoma cell proliferation (A375 and SK-MEL-28), G2/M cell cycle arrest, and a significant decrease in melanoma cell mobility in experimental conditions used (A375). Surprisingly, concurrently with a very desirable decrease in melanoma cell proliferation and mobility, we noticed the upregulation of VEGFR2 at both protein and mRNA levels. No effect of vitamin D was observed in MNT-1 and RPMI-7951 melanoma cells. It seems that vitamin D derivatives enhance cediranib efficacy by modulation of VEGFR2 expression in melanoma cells expressing VEGFR2. In conclusion, our experiments demonstrated that vitamin D derivatives hold promise as novel adjuvant candidates to conquer melanoma, especially in patients suffering from vitamin D deficiency. However, further extensive research is indispensable to reliably assess their potential benefits for melanoma patients.
Collapse
Affiliation(s)
- Anna Piotrowska
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | | | | - Joanna Irena Nowak
- Department of Histology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | | |
Collapse
|
53
|
Ren S, Wang X, Jin G. Conjugate of ibrutinib with a TLR7 agonist suppresses melanoma progression and enhances antitumor immunity. Int J Biol Sci 2022; 18:166-179. [PMID: 34975325 PMCID: PMC8692160 DOI: 10.7150/ijbs.64094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
The use of large molecules for immunotherapy has led to exciting developments in cancer treatment, such as the development of PD-1/PD-L1 antibodies. However, small molecule targeted therapies still lack effective immune-functional classes. Ideal anticancer drugs should simultaneously generate immune memory when killing cancer cells to prevent tumor relapse and metastasis. To this end, we carried out a rationally designed strategy to develop novel classes of small molecule compounds with bifunctional targeting and immunostimulatory abilities by conjugating targeting compounds with TLR7 agonists, generating immune-targeting conjugates (ImmunTacs). GY161, as a representative ImmunTac, was synthesized via chemical conjugation of ibrutinib with a TLR7 agonist. In vitro, GY161 stimulated the production of cytokines by mouse spleen lymphocytes, promoted the maturation of dendritic cells (DCs), and inhibited the growth and induced the apoptosis of B16 melanoma cells by regulating the c-Met/β-catenin pathway. In vivo, GY161 enhanced the frequency of CD8+ T cells in spleens and tumors, suppressed the growth of B16 melanoma cell-derived tumors and prolonged the survival time of mice. In summary, GY161 could prevent melanoma progression through direct tumor killing and by triggering specific immunity. These results strongly suggest that ImmunTacs are a reliable and promising strategy for developing small molecule immunogenic anticancer drugs.
Collapse
Affiliation(s)
- Sumei Ren
- School of Pharmaceutical Sciences, Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaodong Wang
- School of Pharmaceutical Sciences, Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Guangyi Jin
- School of Pharmaceutical Sciences, Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China
| |
Collapse
|
54
|
Kim MJ, Kim D, Koo JS, Lee JH, Nam KH. Vitamin D Receptor Expression and its Clinical Significance in Papillary Thyroid Cancer. Technol Cancer Res Treat 2022; 21:15330338221089933. [PMID: 35379049 PMCID: PMC8988685 DOI: 10.1177/15330338221089933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective: This study aimed to evaluate the association between vitamin D receptor (an essential component in the vitamin D signaling pathway) and serum vitamin D as well as its clinical significance in papillary thyroid cancer. Methods: This prospective cohort study comprised patients with thyroid tumors who visited our hospital, from 2017 to 2018. The level of vitamin D receptor expression from thyroid tissue was measured in patients with thyroid tumor and evaluated for correlation with serum vitamin D levels and clinicopathologic characteristics of papillary thyroid cancer. Data from 501 patients with papillary thyroid cancer from The Cancer Genome Atlas database were analyzed. Results: Increased vitamin D receptor protein and mRNA expression were observed in papillary thyroid cancer compared to those in normal and benign tissues. Lower vitamin D receptor protein expression was associated with high TNM stage papillary thyroid cancer and low p21 protein expression. Lower relative vitamin D receptor mRNA expression in papillary thyroid cancer was associated with low serum 25-hydroxyvitamin D level. The Cancer Genome Atlas database showed a positive correlation among mRNA expression of vitamin D receptor, CYP24A1, and p21. Conclusions: An association between decreased vitamin D receptor protein expression and advanced stage papillary thyroid cancer, and a correlation between low vitamin D receptor mRNA expression with low serum 25-hydroxyvitamin D level was observed. Low vitamin D receptor expression in papillary thyroid cancer was shown to positively correlate with low serum vitamin D level and disease aggressiveness.
Collapse
Affiliation(s)
- Min Jhi Kim
- Department of Surgery, CHA Ilsan Medical Center, 65470CHA University School of Medicine, Goyang-si, Gyeonggi-do, South Korea.,Department of Surgery, Graduate School, 37991Yonsei University College of Medicine, Seoul, South Korea
| | - Daham Kim
- Department of Internal Medicine, Institute of Endocrine Research, 37991Yonsei University College of Medicine, Seoul, South Korea
| | - Ja Seung Koo
- Department of Pathology, 37991Yonsei University College of Medicine, Seoul, South Korea
| | - Ju Hee Lee
- Department of Dermatology, 37991Yonsei University College of Medicine, Seoul, South Korea
| | - Kee-Hyun Nam
- Department of Surgery, 37991Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
55
|
Sirakov M, Claret L, Plateroti M. Thyroid Hormone Nuclear Receptor TRα1 and Canonical WNT Pathway Cross-Regulation in Normal Intestine and Cancer. Front Endocrinol (Lausanne) 2021; 12:725708. [PMID: 34956074 PMCID: PMC8705541 DOI: 10.3389/fendo.2021.725708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022] Open
Abstract
A pivotal role of thyroid hormones and their nuclear receptors in intestinal development and homeostasis have been described, whereas their involvement in intestinal carcinogenesis is still controversial. In this perspective article we briefly summarize the recent advances in this field and present new data regarding their functional interaction with one of the most important signaling pathway, such as WNT, regulating intestinal development and carcinogenesis. These complex interactions unveil new concepts and will surely be of importance for translational research.
Collapse
Affiliation(s)
- Maria Sirakov
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Leo Claret
- Université de Strasbourg, Inserm, Interface de Recherche fondamentale et Appliquée en Cancérologie (IRFAC)/Unité Mixte de Recherche (UMR)-S1113, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Michelina Plateroti
- Université de Strasbourg, Inserm, Interface de Recherche fondamentale et Appliquée en Cancérologie (IRFAC)/Unité Mixte de Recherche (UMR)-S1113, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| |
Collapse
|
56
|
Du M, Shen P, Tan R, Wu D, Tu S. Aloe-emodin inhibits the proliferation, migration, and invasion of melanoma cells via inactivation of the Wnt/beta-catenin signaling pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1722. [PMID: 35071416 PMCID: PMC8743696 DOI: 10.21037/atm-21-5437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/18/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Aloe-emodin is reported as a potential cancer therapeutic agent due to its inhibition of the proliferation, migration, and invasion of cancer cells. This study aimed to confirm the effects of aloe-emodin on the progression of melanoma and identify the underlying molecular mechanisms. METHODS The effects of aloe-emodin treatment (concentrations ranging from 0 to 25 µg, 48 h) on proliferation, apoptosis, distribution of cell cycle, migration, and invasion were detected by performing Cell Counting Kit-8 (CCK-8) assay, colony formation assay, flow cytometry, wound healing assay, and Transwell invasion experiments. Rescue experiments were carried out by overexpression of β-catenin to verify the role of β-catenin in the inhibition of melanoma by aloe-emodin. The analysis was carried out at the animal level by constructing tumor-bearing nude mice model. RESULTS The results showed that aloe-emodin prominently reduced the proliferation, migration, and invasion of melanoma cells. Additionally, it was found that aloe-emodin significantly enhanced the cell apoptosis and induced G2 phase arrest of melanoma cells via enhancing the expressions of cleaved-caspase3, bax, and reducing cyclinD1, c-myc, and bcl-2. In addition, aloe-emodin could also inhibit Wnt3a levels, and promote GSK3-beta and beta-catenin phosphorylation. In vivo experiments also showed that overexpression of beta-catenin reversed the effects of aloe-emodin on tumor growth. CONCLUSIONS In conclusion, our findings indicated that aloe-emodin might prominently inhibit the tumor growth and metastasis of melanoma via the Wnt/beta-catenin signaling pathway in vitro. Therefore, aloe-emodin may serve as a potential drug for the clinical treatment of melanoma.
Collapse
Affiliation(s)
- Maotao Du
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Dermatology and Plastic Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pan Shen
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ranjing Tan
- Department of Dermatology and Plastic Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dengyan Wu
- Department of Dermatology and Plastic Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shenghao Tu
- Department of Integrated Chinese Traditional and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
57
|
In Vitro Non-Genomic Effects of Calcifediol on Human Preosteoblastic Cells. Nutrients 2021; 13:nu13124227. [PMID: 34959778 PMCID: PMC8707877 DOI: 10.3390/nu13124227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 11/24/2022] Open
Abstract
Several recent studies have demonstrated that the direct precursor of vitamin D3, the calcifediol [25(OH)D3], through the binding to the nuclear vitamin D receptor (VDR), is able to regulate the expression of many genes involved in several cellular processes. Considering that itself may function as a VDR ligand, although with a lower affinity, respect than the active form of vitamin D, we have assumed that 25(OH)D3 by binding the VDR could have a vitamin’s D3 activity such as activating non-genomic pathways, and in particular we selected mesenchymal stem cells derived from human adipose tissue (hADMSCs) for the in vitro assessment of the intracellular Ca2+ mobilization in response to 25(OH)D3. Our result reveals the ability of 25(OH)D3 to activate rapid, non-genomic pathways, such as an increase of intracellular Ca2+ levels, similar to what observed with the biologically active form of vitamin D3. hADMSCs loaded with Fluo-4 AM exhibited a rapid and sustained increase in intracellular Ca2+ concentration as a result of exposure to 10−5 M of 25(OH)D3. In this work, we show for the first time the in vitro ability of 25(OH)D3 to induce a rapid increase of intracellular Ca2+ levels in hADMSCs. These findings represent an important step to better understand the non-genomic effects of vitamin D3 and its role in endocrine system.
Collapse
|
58
|
Becker AL, Carpenter EL, Slominski AT, Indra AK. The Role of the Vitamin D Receptor in the Pathogenesis, Prognosis, and Treatment of Cutaneous Melanoma. Front Oncol 2021; 11:743667. [PMID: 34692525 PMCID: PMC8526885 DOI: 10.3389/fonc.2021.743667] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/15/2021] [Indexed: 01/08/2023] Open
Abstract
Melanoma is the malignant transformation of melanocytes and represents the most lethal form of skin cancer. While early-stage melanoma localized to the skin can be cured with surgical excision, metastatic melanoma often requires a multi-pronged approach and even then can exhibit treatment resistance. Understanding the molecular mechanisms involved in the pathogenesis of melanoma could lead to novel diagnostic, prognostic, and therapeutic strategies to ultimately decrease morbidity and mortality. One emerging candidate that may have value as both a prognostic marker and in a therapeutic context is the vitamin D receptor (VDR). VDR is a nuclear steroid hormone receptor activated by 1,25 dihydroxy-vitamin D3 [calcitriol, 1,25(OH)2D3]. While 1,25 dihydroxy-vitamin D3 is typically thought of in relation to calcium metabolism, it also plays an important role in cell proliferation, differentiation, programmed-cell death as well as photoprotection. This review discusses the role of VDR in the crosstalk between keratinocytes and melanocytes during melanomagenesis and summarizes the clinical data regarding VDR polymorphisms, VDR as a prognostic marker, and potential uses of vitamin D and its analogs as an adjuvant treatment for melanoma.
Collapse
Affiliation(s)
- Alyssa L. Becker
- Department of Pharmaceutical Sciences, College of Pharmacy, OSU, Corvallis, OR, United States
- John A. Burns School of Medicine at the University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Evan L. Carpenter
- Department of Pharmaceutical Sciences, College of Pharmacy, OSU, Corvallis, OR, United States
| | - Andrzej T. Slominski
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL, United States
- Cancer Chemoprevention Program, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Arup K. Indra
- Department of Pharmaceutical Sciences, College of Pharmacy, OSU, Corvallis, OR, United States
- Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR, United States
- Department of Biochemistry and Biophysics, Oregon State University (OSU), Corvallis, OR, United States
- Linus Pauling Science Center, Oregon State University (OSU), Corvallis, OR, United States
- Department of Dermatology, Oregon Health & Science University (OHSU), Portland, OR, United States
| |
Collapse
|
59
|
Wu M, Zou L, Jiang L, Zhao Z, Liu J. Osteoinductive and antimicrobial mechanisms of graphene-based materials for enhancing bone tissue engineering. J Tissue Eng Regen Med 2021; 15:915-935. [PMID: 34469046 DOI: 10.1002/term.3239] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 02/05/2023]
Abstract
Graphene-based materials (GMs) have great application prospects in bone tissue engineering due to their osteoinductive ability and antimicrobial activity. GMs induce osteogenic differentiation through several mechanisms and pathways in bone tissue engineering. First of all, the surface and high hardness of the porous folds of graphene or graphene oxide (GO) can generate mechanical stimulation to initiate a cascade of reactions that promote osteogenic differentiation without any chemical inducers. In addition, change of the extracellular matrix (ECM), regulation of macrophage polarization, the oncostatin M (OSM) signaling pathway, the MAPK signaling pathway, the BMP signaling pathway, the Wnt/β-catenin signaling pathway, and other pathways are involved in GMs' regulation of osteogenesis. In bone tissue engineering, GMs prevent the formation of microbial biofilms mainly through preventing microbial adhesion and killing them. The former is mainly achieved by reducing surface free energy (SFE) and increasing hydrophobicity. The latter mainly includes oxidative stress and photothermal/photodynamic effects. Graphene and its derivatives (GDs) are mainly combined with bioactive ceramic materials, metal materials and macromolecular polymers to play an antimicrobial effect in bone tissue engineering. Concentration, number of layers, and type of GDs often affect the antimicrobial activity of GMs. In this paper, we reviewed relevant osteoinductive and antimicrobial mechanisms of GMs and their applications in bone tissue engineering.
Collapse
Affiliation(s)
- Mengsong Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linli Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
60
|
Li Q, Li Y, Jiang H, Xiao Z, Wu X, Zhang H, Zhao Y, Du F, Chen Y, Wu Z, Li J, Hu W, Cho CH, Shen J, Li M. Vitamin D suppressed gastric cancer cell growth through downregulating CD44 expression in vitro and in vivo. Nutrition 2021; 91-92:111413. [PMID: 34450383 DOI: 10.1016/j.nut.2021.111413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Vitamin D deficiency was found to be associated with increased risk for gastric cancer (GC). We previously found that vitamin D inhibited GC cell growth in vitro. However, the in vivo antitumor effect of vitamin D in GC as well as the underlying mechanisms are not well understood. The aim of this study was to investigate the anticancer effect of vitamin D on GC both in vitro and in vivo. METHODS Human GC cells MKN45, MKN28, and KATO III were used. The expressions of vitamin D receptor (VDR) and CD44 were downregulated by using predesigned siRNA molecules. Cell viability was evaluated by methyl thiazolyl tetrazolium assay. Soft agar assay was used for colony formation of GC cells. Flow cytometry was used to assess CD44-positive cell population. CD44high cancer cells were enriched by using anti-CD44-conjugated magnetic microbeads. Quantitative real-time polymerase chain reaction and Western blot were performed to detect gene and protein expressions, respectively. Clinical samples were collected for evaluation of the correlation of VDR and CD44 expression. Orthotopic tumor-bearing mice were established to evaluate the antitumor effect of vitamin D. RESULTS The results showed that the active form of vitamin D, 1,25(OH)2D3, had a remarkable inhibitory effect in CD44-expressing human GC MKN45 and KATO III cells, but not in CD44-null MKN28 cells. The gene expressions of CD44 and VDR in GC cell lines and GC patient tissues were positively correlated. Furthermore, 1,25(OH)2D3 suppressed MKN45 and KATO III cell growth through VDR-induced suppression of CD44. Additionally, we demonstrated that 1,25(OH)2D3 inhibited Wnt/β-catenin signaling pathway, which might lead to the downregulation of CD44. In an orthotopic GC nude mice model, both oral intake of vitamin D and intraperitoneal injection with 1,25(OH)2D3 could significantly inhibit orthotopic GC growth and CD44 expression in vivo. CONCLUSION To our knowledge, this study provided the first evidence that vitamin D suppressed GC cell growth both in vitro and in vivo through downregulating CD44. The present study sheds light on repurposing vitamin D as a potential therapeutic agent for GC prevention and treatment.
Collapse
Affiliation(s)
- Qianxiu Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China
| | - Yifan Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China
| | - Houxiang Jiang
- Nanchong Key Laboratory of Individualized Drug Therapy, Department of Pharmacy, Nanchong Central Hospital, The Second Clinical Medical College, North Sichuan Medical College, Sichuan, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China
| | - Hanyu Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; Department of Gastrointestinal Surgery, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wanna Medical College), Anhui, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China
| | - Yu Chen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China
| | - Zhigui Wu
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Sichuan, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M) Affiliated to Southwest Medical University, Sichuan, China
| | - Wei Hu
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Guangdong, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China.
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China; South Sichuan Institute of Translational Medicine, Sichuan, China.
| |
Collapse
|
61
|
Bi O, Anene CA, Nsengimana J, Shelton M, Roberts W, Newton-Bishop J, Boyne JR. SFPQ promotes an oncogenic transcriptomic state in melanoma. Oncogene 2021; 40:5192-5203. [PMID: 34218270 PMCID: PMC8376646 DOI: 10.1038/s41388-021-01912-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
The multifunctional protein, splicing factor, proline- and glutamine-rich (SFPQ) has been implicated in numerous cancers often due to interaction with coding and non-coding RNAs, however, its role in melanoma remains unclear. We report that knockdown of SFPQ expression in melanoma cells decelerates several cancer-associated cell phenotypes, including cell growth, migration, epithelial to mesenchymal transition, apoptosis, and glycolysis. RIP-seq analysis revealed that the SFPQ-RNA interactome is reprogrammed in melanoma cells and specifically enriched with key melanoma-associated coding and long non-coding transcripts, including SOX10, AMIGO2 and LINC00511 and in most cases SFPQ is required for the efficient expression of these genes. Functional analysis of two SFPQ-enriched lncRNA, LINC00511 and LINC01234, demonstrated that these genes independently contribute to the melanoma phenotype and a more detailed analysis of LINC00511 indicated that this occurs in part via modulation of the miR-625-5p/PKM2 axis. Importantly, analysis of a large clinical cohort revealed that elevated expression of SFPQ in primary melanoma tumours may have utility as a prognostic biomarker. Together, these data suggest that SFPQ is an important driver of melanoma, likely due to SFPQ-RNA interactions promoting the expression of numerous oncogenic transcripts.
Collapse
Affiliation(s)
- O Bi
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - C A Anene
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - J Nsengimana
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, UK
| | - M Shelton
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK
| | - W Roberts
- School of Clinical and Applied Science, Leeds Beckett University, Leeds, UK
| | | | - J R Boyne
- School of Applied Sciences, University of Huddersfield, Huddersfield, UK.
| |
Collapse
|
62
|
Knocking out the Vitamin D Receptor Enhances Malignancy and Decreases Responsiveness to Vitamin D3 Hydroxyderivatives in Human Melanoma Cells. Cancers (Basel) 2021; 13:cancers13133111. [PMID: 34206371 PMCID: PMC8269360 DOI: 10.3390/cancers13133111] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Active forms of vitamin D3, including 1,25(OH)2D3, 20(OH)D3 and 1,20(OH)2D3, inhibited cell proliferation, migration rate and the ability to form colonies and spheroids in the wild-type melanoma cell line, while cells with the vitamin D receptor (VDR) silenced showed an increased but not complete resistance to their action. Furthermore, silencing of the VDR in melanoma cells enhanced their proliferation as well as spheroid and colony formation and increased their migration rate. Previous clinicopathological studies have shown an inverse correlation between VDR expression, melanoma progression and poor outcome of the disease. Thus, the expression of VDR is not only necessary for the inhibition of melanoma growth by active forms of vitamin D, but the VDR can also function as a melanoma tumor suppressor gene. Abstract Vitamin D3 is not only involved in calcium and phosphate metabolism in humans, but it can also affect proliferation and differentiation of normal and cancer cells, including melanoma. The mechanism of the anti-cancer action of vitamin D3 is not fully understood. The nuclear vitamin D receptor (VDR) is crucial for the phenotypic effects of vitamin D hydroxyderivatives. VDR expression shows an inverse correlation with melanoma progression and poor outcome of the disease. In this study we knocked out the VDR in a human melanoma cell line using CRISPR methodology. This enhanced the proliferation of melanoma cells grown in monolayer culture, spheroids or colonies and their migration. Activated forms of vitamin D, including classical 1,25(OH)2D3, 20(OH)D3 and 1,20(OH)2D3, inhibited cell proliferation, migration rate and the ability to form colonies and spheroids in the wild-type melanoma cell line, while VDR KO cells showed a degree of resistance to their action. These results indicate that expression of VDR is important for the inhibition of melanoma growth induced by activated forms of vitamin D. In conclusion, based on our previous clinicopathological analyses and the current study, we suggest that the VDR can function as a melanoma tumor suppressor gene.
Collapse
|
63
|
Cai J, Cui Y, Yang J, Wang S. Epithelial-mesenchymal transition: When tumor cells meet myeloid-derived suppressor cells. Biochim Biophys Acta Rev Cancer 2021; 1876:188564. [PMID: 33974950 DOI: 10.1016/j.bbcan.2021.188564] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous myeloid cell population characterized by protumoral functions in the tumor immune network. An increasing number of studies have focused on the biological functions of MDSCs in tumor immunity. Epithelial-mesenchymal transition (EMT) is a cellular plasticity process accompanied by a loss of epithelial phenotypes and an acquisition of mesenchymal phenotypes. In general, tumor cells that undergo EMT are more likely to invade and metastasize. Recently, extensive evidence suggests that EMT is closely related to a highly immunosuppressive environment. This review will summarize the immunosuppressive capacities of MDSC subsets and their distinct role in tumor EMT and further discuss immunotherapy for tumor EMT by targeting MDSCs.
Collapse
Affiliation(s)
- Jingshan Cai
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yudan Cui
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jun Yang
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China.
| | - Shengjun Wang
- Department of Laboratory Medicine, the Affiliated People's Hospital, Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
64
|
McCray T, Pacheco JV, Loitz CC, Garcia J, Baumann B, Schlicht MJ, Valyi-Nagy K, Abern MR, Nonn L. Vitamin D sufficiency enhances differentiation of patient-derived prostate epithelial organoids. iScience 2021; 24:101974. [PMID: 33458620 PMCID: PMC7797919 DOI: 10.1016/j.isci.2020.101974] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/11/2020] [Accepted: 12/17/2020] [Indexed: 12/30/2022] Open
Abstract
Vitamin D is an essential steroid hormone that regulates systemic calcium homeostasis and cell fate decisions. The prostate gland is hormonally regulated, requiring steroids for proliferation and differentiation of secretory luminal cells. Vitamin D deficiency is associated with an increased risk of lethal prostate cancer, which exhibits a dedifferentiated pathology, linking vitamin D sufficiency to epithelial differentiation. To determine vitamin D regulation of prostatic epithelial differentiation, patient-derived benign prostate epithelial organoids were grown in vitamin D-deficient or -sufficient conditions. Organoids were assessed by phenotype and single-cell RNA sequencing. Mechanistic validation demonstrated that vitamin D sufficiency promoted organoid growth and accelerated differentiation by inhibiting canonical Wnt activity and suppressing Wnt family member DKK3. Wnt and DKK3 were also reduced by vitamin D in prostate tissue explants by spatial transcriptomics. Wnt dysregulation is a known contributor to aggressive prostate cancer, thus findings further link vitamin D deficiency to lethal disease.
Collapse
Affiliation(s)
- Tara McCray
- Department of Pathology, University of Illinois at Chicago, 840 S Wood Street, Chicago, IL 60612, USA
| | - Julian V. Pacheco
- Department of Pathology, University of Illinois at Chicago, 840 S Wood Street, Chicago, IL 60612, USA
| | - Candice C. Loitz
- Department of Pathology, University of Illinois at Chicago, 840 S Wood Street, Chicago, IL 60612, USA
| | - Jason Garcia
- Department of Pathology, University of Illinois at Chicago, 840 S Wood Street, Chicago, IL 60612, USA
| | - Bethany Baumann
- Department of Pathology, University of Illinois at Chicago, 840 S Wood Street, Chicago, IL 60612, USA
| | - Michael J. Schlicht
- Department of Pathology, University of Illinois at Chicago, 840 S Wood Street, Chicago, IL 60612, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| | - Klara Valyi-Nagy
- Department of Pathology, University of Illinois at Chicago, 840 S Wood Street, Chicago, IL 60612, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| | - Michael R. Abern
- University of Illinois Cancer Center, Chicago, IL 60612, USA
- Department of Urology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Larisa Nonn
- Department of Pathology, University of Illinois at Chicago, 840 S Wood Street, Chicago, IL 60612, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
65
|
Lu Y, Chen J, He X, Xu S, Chen YE, Gao J, Hou S. Combined Administration of Vitamin D 3 and Geniposide Is Less Effective than Single Use of Vitamin D 3 or Geniposide in the Treatment of Ulcerative Colitis. Front Pharmacol 2021; 12:714065. [PMID: 34650431 PMCID: PMC8505666 DOI: 10.3389/fphar.2021.714065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/04/2021] [Indexed: 02/05/2023] Open
Abstract
With the increasing incidence of ulcerative colitis (UC) in China, Chinese medicinal herbs or relatively active compounds are widely applied in treating UC. These medicines may be combined with other therapeutic agents such as vitamin D3. Nevertheless, the efficacy of these combinations for UC is unclear. Geniposide is an active component in many Chinese herbal medicines. It could ameliorate dextran sulfate sodium (DSS)-induced colitis in mice. This study was designed to determine the efficacy and mechanism of the single use and combination of geniposide and vitamin D3 on a mouse model of acute colitis. Data showed that a single administration of geniposide (2 mg/kg) or vitamin D3 (4 IU/day) could significantly improve the symptoms of UC and relieve colon damage. Geniposide and vitamin D could significantly decrease the levels of TNF-α and IL-6 in serum and colon, and increase the level of IL-10 in the colon. However, the combined treatment of geniposide (2 mg/kg) and vitamin D3 (4 IU/day) exerted less beneficial effects on UC in mice, indicating by less improvement of UC symptoms, colon damage, and inflammatory infiltration. The combination only downregulated the level of TNF-α in serum and IL-6 in the colon. Our data further demonstrated that geniposide could inhibit the activation of p38 MAPK and then restrict the vitamin D receptor signaling stimulated by vitamin D3. These results implied that the combination of geniposide and vitamin D3 might not be an ideal combined treatment for acute colitis, and the combination of vitamin D supplementary and geniposide (or herbal medicines rich in geniposide) need more evaluation before being applied to treat UC in clinic.
Collapse
Affiliation(s)
- Yingyu Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianqiang Chen
- The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Xueling He
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuoxi Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yong-er Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Gao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Jie Gao, ; Shaozhen Hou,
| | - Shaozhen Hou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Jie Gao, ; Shaozhen Hou,
| |
Collapse
|
66
|
Story MJ. Zinc, ω-3 polyunsaturated fatty acids and vitamin D: An essential combination for prevention and treatment of cancers. Biochimie 2020; 181:100-122. [PMID: 33307154 DOI: 10.1016/j.biochi.2020.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 11/14/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Zinc, ω-3 polyunsaturated fatty acids (PUFAs) and vitamin D are essential nutrients for health, maturation and general wellbeing. Extensive literature searches have revealed the widespread similarity in molecular biological properties of zinc, ω-3 PUFAs and vitamin D, and their similar anti-cancer properties, even though they have different modes of action. These three nutrients are separately essential for good health, especially in the aged. Zinc, ω-3 PUFAs and vitamin D are inexpensive and safe as they are fundamentally natural and have the properties of correcting and inhibiting undesirable actions without disturbing the normal functions of cells or their extracellular environment. This review of the anticancer properties of zinc, ω-3 PUFAs and vitamin D is made in the context of the hallmarks of cancer. The anticancer properties of zinc, ω-3 PUFAs and vitamin D can therefore be used beneficially through combined treatment or supplementation. It is proposed that sufficiency of zinc, ω-3 PUFAs and vitamin D is a necessary requirement during chemotherapy treatment and that clinical trials can have questionable integrity if this sufficiency is not checked and maintained during efficacy trials.
Collapse
Affiliation(s)
- Michael J Story
- Story Pharmaceutics Pty Ltd, PO Box 6086, Linden Park, South Australia, 5065, Australia.
| |
Collapse
|
67
|
Wnt and Vitamin D at the Crossroads in Solid Cancer. Cancers (Basel) 2020; 12:cancers12113434. [PMID: 33227961 PMCID: PMC7699248 DOI: 10.3390/cancers12113434] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The Wnt/β-catenin signaling pathway is aberrantly activated in most colorectal cancers and less frequently in a variety of other solid neoplasias. Many epidemiological and experimental studies and some clinical trials suggest an anticancer action of vitamin D, mainly against colorectal cancer. The aim of this review was to analyze the literature supporting the interference of Wnt/β-catenin signaling by the active vitamin D metabolite 1α,25-dihydroxyvitamin D3. We discuss the molecular mechanisms of this antagonism in colorectal cancer and other cancer types. Additionally, we summarize the available data indicating a reciprocal inhibition of vitamin D action by the activated Wnt/β-catenin pathway. Thus, a complex mutual antagonism between Wnt/β-catenin signaling and the vitamin D system seems to be at the root of many solid cancers. Abstract Abnormal activation of the Wnt/β-catenin pathway is common in many types of solid cancers. Likewise, a large proportion of cancer patients have vitamin D deficiency. In line with these observations, Wnt/β-catenin signaling and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), the active vitamin D metabolite, usually have opposite effects on cancer cell proliferation and phenotype. In recent years, an increasing number of studies performed in a variety of cancer types have revealed a complex crosstalk between Wnt/β-catenin signaling and 1,25(OH)2D3. Here we review the mechanisms by which 1,25(OH)2D3 inhibits Wnt/β-catenin signaling and, conversely, how the activated Wnt/β-catenin pathway may abrogate vitamin D action. The available data suggest that interaction between Wnt/β-catenin signaling and the vitamin D system is at the crossroads in solid cancers and may have therapeutic applications.
Collapse
|
68
|
Koni M, Pinnarò V, Brizzi MF. The Wnt Signalling Pathway: A Tailored Target in Cancer. Int J Mol Sci 2020; 21:E7697. [PMID: 33080952 PMCID: PMC7589708 DOI: 10.3390/ijms21207697] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the greatest public health challenges. According to the World Health Organization (WHO), 9.6 million cancer deaths have been reported in 2018. The most common cancers include lung, breast, colorectal, prostate, skin (non-melanoma) and stomach cancer. The unbalance of physiological signalling pathways due to the acquisition of mutations in tumour cells is considered the most common cancer driver. The Wingless-related integration site (Wnt)/β-catenin pathway is crucial for tissue development and homeostasis in all animal species and its dysregulation is one of the most relevant events linked to cancer development and dissemination. The canonical and the non-canonical Wnt/β-catenin pathways are known to control both physiological and pathological processes, including cancer. Herein, the impact of the Wnt/β-catenin cascade in driving cancers from different origin has been examined. Finally, based on the impact of Extracellular Vesicles (EVs) on tumour growth, invasion and chemoresistance, and their role as tumour diagnostic and prognostic tools, an overview of the current knowledge linking EVs to the Wnt/β-catenin pathway is also discussed.
Collapse
Affiliation(s)
| | | | - Maria Felice Brizzi
- Department of Medical Sciences, University of Turin, Corso Dogliotti 14, 10126 Turin, Italy; (M.K.); (V.P.)
| |
Collapse
|
69
|
Gupta M, Maamoun W, Maher M, Jaffe W. Ensuring universal assessment and management of vitamin D status in melanoma patients at secondary care level: a service improvement project. Br J Hosp Med (Lond) 2020; 81:1-5. [PMID: 33135930 DOI: 10.12968/hmed.2020.0128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND/AIMS Melanoma is the most aggressive skin malignancy with an ever-increasing caseload, especially in the western world. Recently developed immunotherapeutic modalities have substantially improved the prognosis of advanced melanoma. The association between serum levels of vitamin D and prognosis of melanoma has been a focus of ongoing research, with some evidence of vitamin D's potential as an adjunctive modality to immunotherapy. The National Institute for Health and Care Excellence guidelines clearly recommend that assessment of vitamin D levels and relevant advice should be an inherent aspect of the management of patients with melanoma at the secondary care level. METHOD A service improvement project was conducted to ensure full compliance of practice in the authors' skin unit with the current National Institute for Health and Care Excellence guidelines on the management of vitamin D status in patients with melanoma. RESULTS After two reaudits the unit's practice complied with National Institute for Health and Care Excellence guidelines by using a multidisciplinary team approach. CONCLUSIONS The authors propose that the simple and reliable pathway used to achieve and sustain the results could be easily adopted to ensure universal adherence to these guidelines.
Collapse
Affiliation(s)
- Madhumita Gupta
- Department of Plastic Surgery, University Hospitals of North Midlands NHS Trust, Stoke on Trent, UK
| | - Wareth Maamoun
- Department of Plastic Surgery, University Hospitals of North Midlands NHS Trust, Stoke on Trent, UK
| | - Mohamed Maher
- Department of Plastic Surgery, University Hospitals of North Midlands NHS Trust, Stoke on Trent, UK
| | - Wayne Jaffe
- Department of Plastic Surgery, University Hospitals of North Midlands NHS Trust, Stoke on Trent, UK
| |
Collapse
|
70
|
Scopel R, Falcão MA, Cappellari AR, Morrone FB, Guterres SS, Cassel E, Kasko AM, Vargas RMF. Lipid-polymer hybrid nanoparticles as a targeted drug delivery system for melanoma treatment. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1809406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Rodrigo Scopel
- Faculdade de Engenharia, Laboratório de Operações Unitárias, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Manuel A. Falcão
- Faculdade de Engenharia, Laboratório de Operações Unitárias, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Angélica Regina Cappellari
- Laboratório de Farmacologia Aplicada, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda B. Morrone
- Laboratório de Farmacologia Aplicada, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Silvia S. Guterres
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Eduardo Cassel
- Faculdade de Engenharia, Laboratório de Operações Unitárias, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| | - Andrea M. Kasko
- Department of Bioengineering, University of California, Los Angeles, California, USA
- California Nanosystems Institute, Los Angeles, California, USA
| | - Rubem M. F. Vargas
- Faculdade de Engenharia, Laboratório de Operações Unitárias, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
71
|
Zmijewski MA, Carlberg C. Vitamin D receptor(s): In the nucleus but also at membranes? Exp Dermatol 2020; 29:876-884. [PMID: 32654294 DOI: 10.1111/exd.14147] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/10/2020] [Accepted: 06/25/2020] [Indexed: 12/11/2022]
Abstract
The genomic actions of the vitamin D are mediated via its biologically most potent metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2 D3 ) and the transcription factor vitamin D receptor (VDR). Activation of VDR by 1,25(OH)2 D3 leads to change in the expression of more 1000 genes in various human tissues. Based on (epi)genome, transcriptome and crystal structure data the molecular details of this nuclear vitamin D signalling pathway are well understood. Vitamin D is known for its role on calcium homeostasis and bone formation, but it also modulates energy metabolism, innate and adaptive immunity as well as cellular growth, differentiation and apoptosis. The observation of rapid, non-genomic effects of 1,25(OH)2 D3 at cellular membranes and in the cytosol initiated the question, whether there are alternative vitamin D-binding proteins in these cellular compartments. So far, the best candidate is the enzyme PDIA3 (protein disulphide isomerase family A member 3), which is found at various subcellular locations. Furthermore, also VDR seems to play a role in membrane-based responses to vitamin D. In this viewpoint, we will dispute whether these rapid, non-genomic pathways are a meaningful addition to the genome-wide effects of vitamin D.
Collapse
Affiliation(s)
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
72
|
Gómez-Oliva R, Geribaldi-Doldán N, Domínguez-García S, Carrascal L, Verástegui C, Nunez-Abades P, Castro C. Vitamin D deficiency as a potential risk factor for accelerated aging, impaired hippocampal neurogenesis and cognitive decline: a role for Wnt/β-catenin signaling. Aging (Albany NY) 2020; 12:13824-13844. [PMID: 32554862 PMCID: PMC7377904 DOI: 10.18632/aging.103510] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Vitamin D is an essential fat-soluble vitamin that participates in several homeostatic functions in mammalian organisms. Lower levels of vitamin D are produced in the older population, vitamin D deficiency being an accelerating factor for the progression of the aging process. In this review, we focus on the effect that vitamin D exerts in the aged brain paying special attention to the neurogenic process. Neurogenesis occurs in the adult brain in neurogenic regions, such as the dentate gyrus of the hippocampus (DG). This region generates new neurons that participate in cognitive tasks. The neurogenic rate in the DG is reduced in the aged brain because of a reduction in the number of neural stem cells (NSC). Homeostatic mechanisms controlled by the Wnt signaling pathway protect this pool of NSC from being depleted. We discuss in here the crosstalk between Wnt signaling and vitamin D, and hypothesize that hypovitaminosis might cause failure in the control of the neurogenic homeostatic mechanisms in the old brain leading to cognitive impairment. Understanding the relationship between vitamin D, neurogenesis and cognitive performance in the aged brain may facilitate prevention of cognitive decline and it can open a door into new therapeutic fields by perspectives in the elderly.
Collapse
Affiliation(s)
- Ricardo Gómez-Oliva
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
| | - Noelia Geribaldi-Doldán
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain.,Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - Samuel Domínguez-García
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
| | - Livia Carrascal
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain.,Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Cristina Verástegui
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain.,Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - Pedro Nunez-Abades
- Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain.,Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | - Carmen Castro
- Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz, Cádiz, Spain
| |
Collapse
|
73
|
Power R, Lowery MA, Reynolds JV, Dunne MR. The Cancer-Immune Set Point in Oesophageal Cancer. Front Oncol 2020; 10:891. [PMID: 32582553 PMCID: PMC7287212 DOI: 10.3389/fonc.2020.00891] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has achieved long-term disease control in a proportion of cancer patients, but determinants of clinical benefit remain unclear. A greater understanding of antitumor immunity on an individual basis is needed to facilitate a precision oncology approach. A conceptual framework called the "cancer-immune set point" has been proposed to describe the equilibrium between factors that promote or suppress anticancer immunity and can serve as a basis to understand the variability in clinical response to immune checkpoint blockade. Oesophageal cancer has a high mutational burden, develops from pre-existing chronic inflammatory lesions and is therefore anticipated to be sensitive to immune checkpoint inhibition. However, both tumour- and patient-specific factors including the immune microenvironment, the microbiome, obesity, and host genetics contribute to an immune set point that confers a lower-than-expected response to checkpoint blockade. Immunotherapy is therefore currently confined to latter lines of treatment of advanced disease, with no reliable predictive biomarker of response. In this review, we examine oesophageal cancer in the context of the cancer-immune set point, discuss factors that contribute to response to immunotherapeutic intervention, and propose areas requiring further investigation to improve treatment response.
Collapse
Affiliation(s)
- Robert Power
- Department of Surgery, Trinity College Dublin, Dublin, Ireland
- Trinity St. James Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Maeve A. Lowery
- Department of Surgery, Trinity College Dublin, Dublin, Ireland
- Trinity St. James Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - John V. Reynolds
- Department of Surgery, Trinity College Dublin, Dublin, Ireland
- Trinity St. James Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - Margaret R. Dunne
- Department of Surgery, Trinity College Dublin, Dublin, Ireland
- Trinity St. James Cancer Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
74
|
Arakawa M, Wagatsuma A. 1α, 25(OH) 2D 3 regulates agrin-induced acetylcholine receptor clustering through upregulation of rapsyn expression in C2C12 myotubes. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30293-X. [PMID: 32081417 DOI: 10.1016/j.bbrc.2020.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/26/2022]
Abstract
The active form of vitamin D (1α, 25-dihydroxyvitamin D3 [1α, 25(OH)2D3], referred to as 1,25D) has been suggested to play a pivotal role in skeletal muscle function and metabolism. However, the mechanisms through which 1,25D functions in this tissue remain to be elucidated. Recent studies have shown that vitamin D signaling regulates neuromuscular maintenance and improves locomotion in mice. In the present study, we examined the effects of 1,25D on neuromuscular synaptogenesis by measuring clustering of acetylcholine receptors (AChRs) in C2C12 myotubes. 1,25D treatment enhanced the agrin-induced AChR clustering in myotubes compared to treatment with agrin alone. Furthermore, siRNA-mediated knockdown of the vitamin D receptor (VDR) decreased the agrin-induced AChR clustering. 1,25D increased the expression of rapsyn, which is necessary for AChR clustering, while demonstrating no effect on other neuromuscular junction-related genes. In addition, rapsyn expression was dependent on 1,25D-VDR signaling. These results suggest that 1,25D-VDR signaling may regulate rapsin expression, resulting in the up-regulation of agrin-induced AChR clustering.
Collapse
Affiliation(s)
- Masayuki Arakawa
- Laboratory of Virology, Institute of Microbial Chemistry, 5-14-23 Kamiosaki, Shinagawa-ku, Tokyo, 141-0021, Japan
| | - Akira Wagatsuma
- Laboratory of Muscle Biology, Tokyo Woman's Christian University, 2-6-1 Zempukuji, Suginami-ku, Tokyo, 167-8585, Japan.
| |
Collapse
|
75
|
Vitamin D and Ovarian Cancer: Systematic Review of the Literature with a Focus on Molecular Mechanisms. Cells 2020; 9:cells9020335. [PMID: 32024052 PMCID: PMC7072673 DOI: 10.3390/cells9020335] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 12/18/2022] Open
Abstract
Vitamin D is a lipid soluble vitamin involved primarily in calcium metabolism. Epidemiologic evidence indicates that lower circulating vitamin D levels are associated with a higher risk of ovarian cancer and that vitamin D supplementation is associated with decreased cancer mortality. A vast amount of research exists on the possible molecular mechanisms through which vitamin D affects cancer cell proliferation, cancer progression, angiogenesis, and inflammation. We conducted a systematic review of the literature on the effects of vitamin D on ovarian cancer cell.
Collapse
|