51
|
Zhou HM, Zhao LM. Wnt signaling pathway-derived score for predicting therapeutic resistance and tumor microenvironment in lung adenocarcinoma. Front Pharmacol 2023; 13:1091018. [PMID: 36703749 PMCID: PMC9871237 DOI: 10.3389/fphar.2022.1091018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer. Due to tumor heterogeneity, understanding the pathological mechanism of tumor progression helps to improve the diagnosis process and clinical treatment strategies of LUAD patients. Methods: The transcriptome pattern, mutant expression and complete clinical information were obtained from the cancer genome atlas (TCGA) database and microarray data from gene expression omnibus (GEO) database. Firstly, we used single sample Gene Set Enrichment Analysis (ssGSEA) to estimate the activation of Wnt signaling pathway in each sample. Consensus clustering algorithm was used to classify LUAD samples into different subgroups according to the transcription patterns of 152 Wnt signaling pathway related genes. Then, ESTIMATE, ssGSEA and Gene Set Variation Analysis (GSVA) algorithms were used to assess the biological pathways and immunocytes infiltration between different subtypes. LASSO-COX algorithm was conducted to construct prognostic model. Kaplan-Meier and multivariate Cox analysis were performed to evaluate the predictive performance of risk model. Gene features were further confirmed using external datasets. Finally, we conducted vitro assay for validating hub gene (LEF1). Results: Based on the transcription patterns of 152 Wnt signaling pathway related genes, four different subtypes of LUAD patients were screened out by consensus clustering algorithm. Subsequently, it was found that patients with cluster A and B had massive immunocytes infiltration, and the survival rate of patients with cluster B was better than that of other subgroups. According to the coefficients in the LASSO- Cox model and the transcriptome patterns of these 18 genes, the risk score was constructed for each sample. The degree of malignancy of LUAD patients with high-risk subgroup was remarkable higher than that of patients with low-risk subgroup (p < 0.001). Subsequently, five top prognostic genes (AXIN1, CTNNB1, LEF1, FZD2, FZD4.) were screened, and their expression values were different between cancer and normal tissues. FZD2 and LEF1 were negatively related to ImmunoScore, and AXIN1 was negatively related to ImmunoScore. The significant correlation between LUAD patient risk score and overall survival (OS) was verified in external datasets. In the A549 cell line, knockdown of LEF1 can reduce the invasive and proliferation ability of LUAD cells. Conclusion: A innovative 18 genes predictive feature based on transcriptome pattern was found in patients with lung adenocarcinoma. These investigations further promote the insight of the prognosis of lung adenocarcinoma and may contribute to disease management at risk stratification.
Collapse
Affiliation(s)
- Hao-min Zhou
- Department of Intensive Care Unit, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Li-mei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China,*Correspondence: Li-mei Zhao,
| |
Collapse
|
52
|
Zhang B, Wang S, Fu Z, Gao Q, Yang L, Lei Z, Shi Y, Le K, Xiong J, Liu S, Zhang J, Su J, Chen J, Liu M, Niu B. Single-cell RNA sequencing reveals intratumoral heterogeneity and potential mechanisms of malignant progression in prostate cancer with perineural invasion. Front Genet 2023; 13:1073232. [PMID: 36712886 PMCID: PMC9875799 DOI: 10.3389/fgene.2022.1073232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Prostate cancer (PCa) is the second most common cancer among men worldwide. Perineural invasion (PNI) was a prominent characteristic of PCa, which was recognized as a key factor in promoting PCa progression. As a complex and heterogeneous disease, its true condition is difficult to explain thoroughly with conventional bulk RNA sequencing. Thus, an improved understanding of PNI-PCa progression at the single-cell level is needed. Methods: In this study, we performed scRNAseq on tumor tissues of three PNI-PCa patients. Principal component analysis (PCA) and Uniform manifold approximation and projection (UMAP) were used to reduce dimensionality and visualize the cellular composition of tumor tissues. The differently expressed genes among each cluster were identified by EdgeR. GO enrichment analysis was used to understand the roles of genes within the clusters. Pseudotime cell trajectory was used to reveal the molecular pathways underlying cell fate decisions and identify genes whose expression changed as the cells underwent transition. We applied CellPhoneDB to identify cell-cell interactions among the epithelial and neural cells in PNI-PCa. Results: Analysis of the ∼17,000 single-cell transcriptomes in three PNI prostate cancer tissues, we identified 12 major cell clusters, including neural cells and two epithelial subtypes with different expression profiles. We found that basal/intermediate epithelial cell subtypes highly expressed PCa progression-related genes, including PIGR, MMP7, and AGR2. Pseudotime trajectory analysis showed that luminal epithelial cells could be the initiating cells and transition to based/intermediate cells. Gene ontology (GO) enrichment analysis showed that pathways related to cancer progressions, such as lipid catabolic and fatty acid metabolic processes, were significantly enriched in basal/intermediate cells. Our analysis also suggested that basal/intermediate cells communicate closely with neural cells played a potential role in PNI-PCa progression. Conclusion: These results provide our understanding of PNI-PCa cellular heterogeneity and characterize the potential role of basal/intermediate cells in the PNI-PCa progression.
Collapse
Affiliation(s)
- Bao Zhang
- Department of Urology, Aerospace Center Hospital, Beijing, China,*Correspondence: Bao Zhang, ; Beifang Niu,
| | - Shenghan Wang
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Zhichao Fu
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China
| | - Qiang Gao
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Lin Yang
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Zhentao Lei
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Yuqiang Shi
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Kai Le
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Jie Xiong
- Department of Urology, Aerospace Center Hospital, Beijing, China
| | - Siyao Liu
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China
| | - Jiali Zhang
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China
| | - Junyan Su
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China
| | - Jing Chen
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China
| | - Mengyuan Liu
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China,Computer Network Information Center, Chinese Academy of Sciences, Beijing, China
| | - Beifang Niu
- ChosenMed Technology (Beijing) Co., Ltd., Beijing, China,Computer Network Information Center, Chinese Academy of Sciences, Beijing, China,University of the Chinese Academy of Sciences, Beijing, China,*Correspondence: Bao Zhang, ; Beifang Niu,
| |
Collapse
|
53
|
ENO1 Promotes OSCC Migration and Invasion by Orchestrating IL-6 Secretion from Macrophages via a Positive Feedback Loop. Int J Mol Sci 2023; 24:ijms24010737. [PMID: 36614179 PMCID: PMC9821438 DOI: 10.3390/ijms24010737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) has a five-year survival rate of less than 50% due to its susceptibility to invasion and metastasis. Crosstalk between tumor cells and macrophages has been proven to play a critical role in tumor cell migration and invasion. However, the specific mechanisms by which tumor cells interact with macrophages have not been fully elucidated. This study sought to investigate the regulatory mechanism of tumor cell-derived alpha-enolase (ENO1) in the interaction between tumor cells and macrophages during OSCC progression. Small interfering RNA (siRNA) transfection and recombinant human ENO1 (rhENO1) stimulation were used to interfere with the interaction between tumor cells and macrophages. Our results showed that ENO1 was expressed higher in CAL27 cells than in HaCaT cells and regulated lactic acid release in CAL27 cells. Conditioned medium of macrophages (Macro-CM) significantly up-regulated the ENO1 mRNA expression and protein secretion in CAL27 cells. ENO1 promoted the migration and invasion of tumor cells by facilitating the epithelial-mesenchymal transition (EMT) through macrophages. ENO1 orchestrated the IL-6 secretion of macrophages via tumor cell-derived lactic acid and the paracrine ENO1/Toll-like receptor (TLR4) signaling pathway. In turn, IL-6 promoted the migration and invasion of tumor cells. Collectively, ENO1 promotes tumor cell migration and invasion by orchestrating IL-6 secretion of macrophages via a dual mechanism, thus forming a positive feedback loop to promote OSCC progression. ENO1 might be a promising therapeutic target which is expected to control OSCC progression.
Collapse
|
54
|
Huang QH, Zhang J, Cho WCS, Huang Y, Yang W, Zuo Z, Xian YF, Lin ZX. Brusatol suppresses the tumor growth and metastasis of colorectal cancer via upregulating ARRDC4 expression through modulating PI3K/YAP1/TAZ Pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154567. [PMID: 36610120 DOI: 10.1016/j.phymed.2022.154567] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/31/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most commonly diagnosed cancers with high metastasis and lethality. Arrestin domain-containing 4 (ARRDC4) is involved in inhibiting cancer glycolytic phenotypes. Brusatol (BR), extracted from Bruceae Fructus, exerts good anti-cancer effects against a number of cancers. PURPOSE In the present study, we aimed to explore the efficacy of BR on inhibiting CRC metastasis and elucidate the underlying mechanisms involving the upregulation of the ARRDC4 expression. METHODS Cell viability, colony formation, wound healing and transwell assay were used to detect the anti-proliferative and anti-metastatic effects of BR against CRC in vitro. Microarray analysis was performed to find out differential genes in CRC cells after treatment with BR. Analysis of the CRC patients tumor samples and GEPIA database were first conducted to identify the expression of ARRDC4 on CRC. Stable overexpression and knockdown of ARRDC4 CRC cells were established by lentiviral transfection. The role of ARRDC4 in mediating the anti-metastatic effects of BR on CRC was measured using qRT-PCR, western blotting, immunohistochemical and immunofluorescence analysis. Orthotopic xenograft and pulmonary metastasis mouse models of CRC were established to determine the anti-cancer and anti-metastatic effects of ARRDC4 and BR. RESULTS BR markedly suppressed the cell proliferation, migration, invasion and inhibited tumor growth and tumor metastasis. Microarray analysis demonstrated that BR treatment markedly increased the gene expression of ARRDC4 in CRC cells. ARRDC4 was significantly repressed in CRC in the clinical samples and GEPIA analysis. ARRDC4 overexpression plus BR produced better inhibitory effects on CRC metastasis than BR treatment alone, while ARRDC4 knockdown could partially eliminate the inhibitory effects of BR against CRC metastasis. BR exerted anti-metastatic effects against CRC via upregulating ARRDC4 and inhibiting epithelial-mesenchymal transition (EMT) processing through modulating PI3K/Hippo pathway. CONCLUSION This study reported for the first time that BR is a potent ARRDC4 agonist, and is worthy of further development into a new therapeutic strategy for CRC.
Collapse
Affiliation(s)
- Qiong-Hui Huang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - Juan Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - William Chi Shing Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, PR China
| | - Yanfeng Huang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - Wen Yang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China.
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China.
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, PR China; Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| |
Collapse
|
55
|
Zhang G, Zhao X, Liu W. NEDD4L inhibits glycolysis and proliferation of cancer cells in oral squamous cell carcinoma by inducing ENO1 ubiquitination and degradation. Cancer Biol Ther 2022; 23:243-253. [PMID: 35316145 PMCID: PMC8942561 DOI: 10.1080/15384047.2022.2054244] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Glycolysis contributes to cell metabolism and facilitates cell proliferation of oral squamous cell carcinoma (OSCC), the most common type of oral cancer. Understanding the regulatory mechanisms involved in the glycolysis of OSCC cells may provide important therapeutic inspirations. Immunohistochemistry was used to examine protein localization patterns in human OSCC tissues and Western blot was conducted to gauge protein level. Lentivirus transduction was used to overexpress or silence genes of interest. Cell proliferation was assessed by Cell Counting Kit (CCK)-8 assay while glycolysis was examined via measurement of extracellular acidification rate, oxygen consumption rate, and lactate and ATP production. In vivo cancer development was evaluated with a mouse tumor growth model. OSCC tissues displayed reduced expression of NEDD4L compared with normal tissues. NEDD4L expression positively correlated with 5-year patient survival rate, indicating that NEDD4L may be a prognosis marker for OSCC. NEDD4L overexpression suppressed proliferation, cell cycle transition, and glycolysis in OSCC cells, and inhibited in vivo tumor growth. UbiBrowser identified ENO1, an enzyme that catalyzes glycolysis, as a substrate of NEDD4L. Overexpression of NEDD4L resulted in the ubiquitination and subsequent degradation of ENO1 whereas overexpression of ENO1 reversed the functional effects of NEDD4L overexpression, restoring proliferation, cell cycle transition, and glycolysis in OSCC cells. NEDD4L elicits tumor-suppressive functions via inhibition of OSCC cell proliferation, cell cycle transition, and glycolysis by stimulating ENO1 ubiquitination and degradation. Our results unraveled a signaling axis important for OSCC cell survival and metabolism, which can serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Guangping Zhang
- Department of Oral and Maxillofacial Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xin Zhao
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, Liaoning, China
| | - Weixian Liu
- Department of Oral and Maxillofacial Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
56
|
Gu J, Zhong K, Wang L, Ni H, Zhao Y, Wang X, Yao Y, Jiang L, Wang B, Zhu X. ENO1 contributes to 5-fluorouracil resistance in colorectal cancer cells via EMT pathway. Front Oncol 2022; 12:1013035. [PMID: 36620599 PMCID: PMC9813957 DOI: 10.3389/fonc.2022.1013035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Chemoresistance is a major barrier in the treatment of colorectal cancer (CRC) and many other cancers. ENO1 has been associated with various biological characteristics of CRC. This study aimed to investigate the function of ENO1 in regulating 5-Fluorouracil (5-FU) resistance in CRC. Methods ENO1 level in 120 pairs of tumor tissues and adjacent normal tissues was examined by immunohistochemistry, and the correlation between ENO1 expression and prognosis was explored by survival analysis. Its role and potential mechanisms in regulating 5-FU resistance in CRC were studied by Western blotting, MTT assay, colony formation assay and transwell invasion assay. Murine xenograft assay was implied to verify the results in vivo. Results Our study indicated that ENO1 was elevated in CRC tissues and was associated with poor patient prognosis. High levels of ENO1 expression were detected as a significant influencing factor for overall survival. Furthermore, ENO1 expression was found to have increased in drug-resistant cells (HCT116/5-FU and SW620/5-FU) constructed by increasing concentrations of 5-FU. Knockdown of ENO1 markedly increased the drug susceptibility and inhibited the proliferation and migration ability of HCT116/5-FU and SW620/5-FU cells. It was found that down-regulation of ENO1 inhibited the epithelial-mesenchymal transformation (EMT) signaling process. Finally, a murine xenograft assay verified that the depletion of ENO1 alleviated 5-FU resistance. Conclusion This study identified that ENO1 regulated 5-FU resistance via the EMT pathway and may be a novel target in the prevention and treatment of 5-FUresistant CRC.
Collapse
Affiliation(s)
- Jinrong Gu
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Kaiqiang Zhong
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Longgang Wang
- Department of Emergency Medicine, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haishun Ni
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yirui Zhao
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xuchao Wang
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yizhou Yao
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Linhua Jiang
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bin Wang
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China,*Correspondence: Xinguo Zhu, ; Bin Wang,
| | - Xinguo Zhu
- Department of General Surgery, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China,*Correspondence: Xinguo Zhu, ; Bin Wang,
| |
Collapse
|
57
|
Li Z, Yang HY, Zhang XL, Zhang X, Huang YZ, Dai XY, Shi L, Zhou GR, Wei JF, Ding Q. Kinesin family member 23, regulated by FOXM1, promotes triple negative breast cancer progression via activating Wnt/β-catenin pathway. J Exp Clin Cancer Res 2022; 41:168. [PMID: 35524313 PMCID: PMC9077852 DOI: 10.1186/s13046-022-02373-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Triple negative breast cancer (TNBC) is highly malignant and has a worse prognosis, compared with other subtypes of breast cancer due to the absence of therapeutic targets. KIF23 plays a crucial role in the tumorigenesis and cancer progression. However, the role of KIF23 in development of TNBC and the underlying mechanism remain unknown. The study aimed to elucidate the biological function and regulatory mechanism of KIF23 in TNBC. Methods Quantitative real-time PCR and Western blot were used to determine the KIF23 expression in breast cancer tissues and cell lines. Then, functional experiments in vitro and in vivo were performed to investigate the effects of KIF23 on tumor growth and metastasis in TNBC. Chromatin immunoprecipitation assay was conducted to illustrate the potential regulatory mechanisms of KIF23 in TNBC. Results We found that KIF23 was significantly up-regulated and associated with poor prognosis in TNBC. KIF23 could promote TNBC proliferation, migration and invasion in vitro and in vivo. KIF23 could activate Wnt/β-catenin pathway and promote EMT progression in TNBC. In addition, FOXM1, upregulated by WDR5 via H3K4me3 modification, directly bound to the promoter of KIF23 gene to promote its transcription and accelerated TNBC progression via Wnt/β-catenin pathway. Both of small inhibitor of FOXM1 and WDR5 could inhibit TNBC progression. Conclusions Our findings elucidate WDR5/FOXM1/KIF23/Wnt/β-catenin axis is associated with TNBC progression and may provide a novel and promising therapeutic target for TNBC treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02373-7.
Collapse
|
58
|
An J, Nagaki Y, Motoyama S, Kuze Y, Hoshizaki M, Kemuriyama K, Yamaguchi T, Ebihara T, Minamiya Y, Suzuki Y, Imai Y, Kuba K. Identification of Galectin-7 as a crucial metastatic enhancer of squamous cell carcinoma associated with immunosuppression. Oncogene 2022; 41:5319-5330. [PMID: 36335283 DOI: 10.1038/s41388-022-02525-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Metastasis predicts poor prognosis in cancer patients. It has been recognized that specific tumor microenvironment defines cancer cell metastasis, whereas the underlying mechanisms remain elusive. Here we show that Galectin-7 is a crucial mediator of metastasis associated with immunosuppression. In a syngeneic mouse squamous cell carcinoma (SCC) model of NR-S1M cells, we isolated metastasized NR-S1M cells from lymph nodes in tumor-bearing mice and established metastatic NR-S1M cells in in vitro culture. RNA-seq analysis revealed that interferon gene signature was markedly downregulated in metastatic NR-S1M cells compared with parental cells, and in vivo NR-S1M tumors heterogeneously developed focal immunosuppressive areas featured by deficiency of anti-tumor immune cells. Spatial transcriptome analysis (Visium) for the NR-S1M tumors revealed that various pro-metastatic genes were significantly upregulated in immunosuppressive areas when compared to immunocompetent areas. Notably, Galectin-7 was identified as a novel metastasis-driving factor. Galectin-7 expression was induced during tumorigenesis particularly in the microenvironment of immunosuppression, and extracellularly released at later stage of tumor progression. Deletion of Galectin-7 in NR-S1M cells significantly suppressed lymph node and lung metastasis without affecting primary tumor growth. Therefore, Galectin-7 is a crucial mediator of tumor metastasis of SCC, which is educated in the immune-suppressed tumor areas, and may be a potential target of cancer immunotherapy.
Collapse
Affiliation(s)
- Jianbo An
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Yushi Nagaki
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan.,Department of Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Satoru Motoyama
- Department of Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Yuta Kuze
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Midori Hoshizaki
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan.,Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan
| | - Kohei Kemuriyama
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan.,Department of Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Tomokazu Yamaguchi
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Takashi Ebihara
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita, Japan
| | - Yoshihiro Minamiya
- Department of Surgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Yumiko Imai
- Laboratory of Regulation of Intractable Infectious Diseases, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 567-0085, Japan
| | - Keiji Kuba
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita, 010-8543, Japan. .,Department of Pharmacology, Kyushu University Graduate School of Medical Sciences, Fukuoka, 812-8582, Japan.
| |
Collapse
|
59
|
Yang B, Zhang B, Qi Q, Wang C. CircRNA has_circ_0017109 promotes lung tumor progression via activation of Wnt/β-catenin signaling due to modulating miR-671-5p/FZD4 axis. BMC Pulm Med 2022; 22:443. [PMID: 36434577 PMCID: PMC9700975 DOI: 10.1186/s12890-022-02209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 10/29/2022] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Accumulating evidence highlights the critical roles of circular RNAs (circRNAs) in the malignant progression of cancers. In this study, we investigated the expression pattern of a newly identified circRNA (hsa_circ_0017109) in non-small cell lung cancer (NSCLC), and examined its downstream molecular targets. METHODS Quantitative real-time PCR (qRT-PCR) and Western blotting (WB) were conducted to quantify gene and protein expression. In vitro functional assays such as colony formation assay, cell counting kit-8 (CCK-8) and flow cytometry were used to study cell proliferation and apoptosis. RNA pull-down assay, luciferase reporter assay and RNA immunoprecipitation were performed to validate molecular interaction. Mouse xenograft model of NSCLC cells was used to assess the role of circ_0017109 in tumorigenesis. RESULTS Circ_0017109 was upregulated in NSCLC tumor samples and cells. Silencing circ_0017109 impaired cell proliferation and promoted apoptosis in NSCLC cells, and circ_0017109 knockdown suppressed in vivo tumorigenesis of NSCLC cells in mouse xenograft model. MiR-671-5p was identified as a target of circ_0017109, and circ_0017109 negatively impacted on miR-671-5p expression. MiR-671-5p downregulated FZD4 and dampened the activity of Wnt/β-catenin signaling pathway. Circ_0017109 modulated FZD4 expression by suppressing miR-671-5p activity. CONCLUSIONS Elevated circ_0017109 expression promotes tumor progression of NSCLC by modulating miR-671-5p/FZD4/β-catenin axis.
Collapse
Affiliation(s)
- Bo Yang
- grid.411918.40000 0004 1798 6427Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-hu-xi Road, Ti-Yuan-Bei, He XI Disrict, Tianjin, 30060 P.R. China ,grid.411918.40000 0004 1798 6427National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-hu-xi Road, Ti-Yuan-Bei, He XI Disrict, Tianjin, 30060 P.R. China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Huan-hu-xi Road, Ti-Yuan-Bei, He XI Disrict, Tianjin, 30060 P.R. China
| | - Bin Zhang
- grid.411918.40000 0004 1798 6427Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-hu-xi Road, Ti-Yuan-Bei, He XI Disrict, Tianjin, 30060 P.R. China ,grid.411918.40000 0004 1798 6427National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-hu-xi Road, Ti-Yuan-Bei, He XI Disrict, Tianjin, 30060 P.R. China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Huan-hu-xi Road, Ti-Yuan-Bei, He XI Disrict, Tianjin, 30060 P.R. China
| | - Qi Qi
- grid.411918.40000 0004 1798 6427Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-hu-xi Road, Ti-Yuan-Bei, He XI Disrict, Tianjin, 30060 P.R. China ,grid.411918.40000 0004 1798 6427National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-hu-xi Road, Ti-Yuan-Bei, He XI Disrict, Tianjin, 30060 P.R. China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Huan-hu-xi Road, Ti-Yuan-Bei, He XI Disrict, Tianjin, 30060 P.R. China
| | - Changli Wang
- grid.411918.40000 0004 1798 6427Department of Lung Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-hu-xi Road, Ti-Yuan-Bei, He XI Disrict, Tianjin, 30060 P.R. China ,grid.411918.40000 0004 1798 6427National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Huan-hu-xi Road, Ti-Yuan-Bei, He XI Disrict, Tianjin, 30060 P.R. China ,grid.411918.40000 0004 1798 6427Tianjin’s Clinical Research Center for Cancer, Tianjin Lung Cancer Center, Huan-hu-xi Road, Ti-Yuan-Bei, He XI Disrict, Tianjin, 30060 P.R. China
| |
Collapse
|
60
|
Yang Y, Cui H, Li D, Gao Y, Chen L, Zhou C, Feng M, Tu W, Li S, Chen X, Hao B, Li L, Cao Y. Prognosis and Immunological Characteristics of PGK1 in Lung Adenocarcinoma: A Systematic Analysis. Cancers (Basel) 2022; 14:5228. [PMID: 36358653 PMCID: PMC9653683 DOI: 10.3390/cancers14215228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 01/30/2024] Open
Abstract
Background: Aerobic glycolysis plays a key role in tumor metabolic reprogramming to reshape the immune microenvironment. The phosphoglycerate kinase 1 (PGK1) gene codes a glycolytic enzyme that converts 1,3-diphosphoglycerate to 3-phosphoglycerate. However, in lung adenocarcinoma (LUAD), the role of PGK1 in altering the tumor microenvironment (TME) has not yet been determined. Methods: Raw data, including bulk DNA and mRNA-seq data, methylation modification data, single-cell RNA-seq data, proteomics data, clinical case characteristics survival, immunotherapy data, and so on, were obtained from multiple independent public data sets. These data were reanalyzed to uncover the prognosis and immunological characteristics of PGK1 in LUAD. Results: We found that PGK1 mRNA and protein were considerably over-expressed in LUAD compared to normal tissue and that high PGK1 expression is associated with poorer prognostic outcomes in LUAD. The enrichment analysis of PGK1 co-expressed genes in lung adenocarcinoma revealed that PGK1 may be involved in hypoxia, metabolism, DNA synthesis, cell cycle, PI3K/AKT, and various immune and inflammatory signaling pathways. Furthermore, PGK1 is also linked to the recruitment of numerous immune cells, including aDC (dendritic cells), macrophages, and neutrophils. More importantly, PGK1 was highly expressed in immunosuppressive cells, including M2 macrophages, Tregs, and exhausted T cells, among others. Finally, higher PGK1 expression indicated significant correlations to immune checkpoints, TMB (tumor mutation burden), and high response to immunotherapy. Conclusions: The presented findings imply that PGK1, as a glycolysis core gene, may be important for the modification of the immune microenvironment by interacting with the tumor metabolism. The results of this study provide clues for a potential immunometabolic combination therapy strategy in LUAD, for which more experimental and clinical translational research is needed.
Collapse
Affiliation(s)
- Yuechao Yang
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Huanhuan Cui
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Deheng Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yang Gao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lei Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Changshuai Zhou
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mingtao Feng
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wenjing Tu
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Sen Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin Chen
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Bin Hao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Liangdong Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yiqun Cao
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
61
|
ENO1 Binds to ApoC3 and Impairs the Proliferation of T Cells via IL-8/STAT3 Pathway in OSCC. Int J Mol Sci 2022; 23:ijms232112777. [DOI: 10.3390/ijms232112777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Lymph node metastasis is associated with poor prognosis of oral squamous cell carcinoma (OSCC), and few studies have explored the relevance of postoperative lymphatic drainage (PLD) in metastatic OSCC. Alpha-enolase (ENO1) is a metabolic enzyme, which is related to lymphatic metastasis of OSCC. However, the role of ENO1 in PLD in metastatic OSCC has not been elucidated. Herein, we collected lymphatic drainage after lymphadenectomy between metastatic and non-metastatic lymph nodes in OSCC patients to investigate the relationship between ENO1 expression and metastasis, and to identify the proteins which interacted with ENO1 in PLD of patients with metastatic OSCC by MS/GST pulldown assay. Results revealed that the metabolic protein apolipoprotein C-III (ApoC3) was a novel partner of ENO1. The ENO1 bound to ApoC3 in OSCC cells and elicited the production of interleukin (IL)-8, as demonstrated through a cytokine antibody assay. We also studied the function of IL-8 on Jurkat T cells co-cultured with OSCC cells in vitro. Western blot analysis was applied to quantitate STAT3 (signal transducer and activator of transcription 3) and p-STAT3 levels. Mechanistically, OSCC cells activated the STAT3 signaling pathway on Jurkat T cells through IL-8 secretion, promoted apoptosis, and inhibited the proliferation of Jurkat T cells. Collectively, these findings illuminate the molecular mechanisms underlying the function of ENO1 in metastasis OSCC and provide new strategies for targeting ENO1 for OSCC treatment.
Collapse
|
62
|
Zhang S, Pang K, Feng X, Zeng Y. Transcriptomic data exploration of consensus genes and molecular mechanisms between chronic obstructive pulmonary disease and lung adenocarcinoma. Sci Rep 2022; 12:13214. [PMID: 35918384 PMCID: PMC9345949 DOI: 10.1038/s41598-022-17552-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022] Open
Abstract
Most current research has focused on chronic obstructive pulmonary disease (COPD) and lung adenocarcinoma (LUAD) alone; however, it is important to understand the complex mechanism of COPD progression to LUAD. This study is the first to explore the unique and jointly molecular mechanisms in the pathogenesis of COPD and LUAD across several datasets based on a variety of analysis methods. We used weighted correlation network analysis to search hub genes in two datasets from public databases: GSE10072 and GSE76925. We explored the unique and jointly molecular mechanistic signatures of the two diseases in pathogenesis through enrichment analysis, immune infiltration analysis, and therapeutic targets analysis. Finally, the results were confirmed using real-time quantitative reverse transcription PCR. Fifteen hub genes were identified: GPI, EZH2, EFNA4, CFB, ENO1, SH3PXD2B, SELL, CORIN, MAD2L1, CENPF, TOP2A, ASPM, IGFBP2, CDKN2A, and ELF3. For the first time, SELL, CORIN, GPI, and EFNA4 were found to play a role in the etiology of COPD and LUAD. The LUAD genes identified were primarily involved in the cell cycle and DNA replication processes; COPD genes we found were related to ubiquitin-mediated proteolysis, ribosome, and T/B-cell receptor signaling pathways. The tumor microenvironment of LUAD pathogenesis was influenced by CD4 + T cells, type 1 regulatory T cells, and T helper 1 cells. T follicular helper cells, natural killer T cells, and B cells all impact the immunological inflammation in COPD. The results of drug targets analysis suggest that cisplatin and tretinoin, as well as bortezomib and metformin may be potential targeted therapy for patients with COPD combined LUAD. These signatures may be provided a new direction for developing early interventions and treatments to improve the prognosis of COPD and LUAD.
Collapse
Affiliation(s)
- Siyu Zhang
- Department of Respiratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 39 Yanhu Avenue, Wuchang District, Wuhan, 430000, Hubei, China
| | - Kun Pang
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xinyu Feng
- Department of Respiratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 39 Yanhu Avenue, Wuchang District, Wuhan, 430000, Hubei, China
| | - Yulan Zeng
- Department of Respiratory Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 39 Yanhu Avenue, Wuchang District, Wuhan, 430000, Hubei, China.
| |
Collapse
|
63
|
Zhang Z, Xu P, Hu Z, Fu Z, Deng T, Deng X, Peng L, Xie Y, Long L, Zheng D, Shen P, Zhang M, Gong B, Zhu Z, Lin J, Chen R, Liu Z, Yang H, Li R, Fang W. CCDC65, a Gene Knockout that leads to Early Death of Mice, acts as a potentially Novel Tumor Suppressor in Lung Adenocarcinoma. Int J Biol Sci 2022; 18:4171-4186. [PMID: 35844805 PMCID: PMC9274497 DOI: 10.7150/ijbs.69332] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/06/2022] [Indexed: 01/06/2023] Open
Abstract
CCDC65 is a member of the coiled-coil domain-containing protein family and was only reported in gastric cancer by our group. We first observed that it is downregulated in lung adenocarcinoma based on the TCGA database. Reduced CCDC65 protein was shown as an unfavorable factor promoting the clinical progression in lung adenocarcinoma. Subsequently, CCDC65-/- mice were found possibly dead of hydrocephalus. Compared with the CCDC65+/+ mice, the downregulation of CCDC65 in CCDC65+/- mice significantly increased the formation ability of lung cancer induced by urethane. In the subsequent investigation, we observed that CCDC65 functions as a tumor suppressor repressing cell proliferation in vitro and in vivo. Molecular mechanism showed that CCDC65 recruited E3 ubiquitin ligase FBXW7 to induce the ubiquitination degradation of c-Myc, an oncogenic transcription factor in tumors, and reduced c-Myc binding to ENO1 promoter, which suppressed the transcription of ENO1. In addition, CCDC65 also recruited FBXW7 to degrade ENO1 protein by ubiquitinated modulation. The downregulated ENO1 further reduced the phosphorylation activation of AKT1, which thus inactivated the cell cycle signal. Our data demonstrated that CCDC65 is a potential tumor suppressor by recruiting FBWX7 to suppress c-Myc/ENO1-induced cell cycle signal in lung adenocarcinoma.
Collapse
Affiliation(s)
- Ziyan Zhang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Ping Xu
- Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Respiratory Department, Peking University Shenzhen Hospital, Shenzhen, 518034, China
| | - Zhe Hu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Zhaojian Fu
- Department of Oncology, Dali Bai Autonomous Prefecture People's Hospital, Dali, Yunnan, 671000, China
| | - Tongyuan Deng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Xiaojie Deng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Lanzhu Peng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Yingying Xie
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Lingzhi Long
- Department of Pulmonary and Critical Care Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410000, China
| | - Dayong Zheng
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Peng Shen
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Mengmin Zhang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Bin Gong
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Zhibo Zhu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Junhao Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| | - Rui Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhen Liu
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University Guangzhou 510095, Guangdong, China
| | - Huilin Yang
- Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong, 510515, China
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, China
| | - Rong Li
- Cancer Research Institute, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515 Guangzhou, China
| | - Weiyi Fang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, 510315 Guangzhou, China
| |
Collapse
|
64
|
Feng S, Lou K, Zou X, Zou J, Zhang G. The Potential Role of Exosomal Proteins in Prostate Cancer. Front Oncol 2022; 12:873296. [PMID: 35747825 PMCID: PMC9209716 DOI: 10.3389/fonc.2022.873296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/16/2022] [Indexed: 01/10/2023] Open
Abstract
Prostate cancer is the most prevalent malignant tumor in men across developed countries. Traditional diagnostic and therapeutic methods for this tumor have become increasingly difficult to adapt to today’s medical philosophy, thus compromising early detection, diagnosis, and treatment. Prospecting for new diagnostic markers and therapeutic targets has become a hot topic in today’s research. Notably, exosomes, small vesicles characterized by a phospholipid bilayer structure released by cells that is capable of delivering different types of cargo that target specific cells to regulate biological properties, have been extensively studied. Exosomes composition, coupled with their interactions with cells make them multifaceted regulators in cancer development. Numerous studies have described the role of prostate cancer-derived exosomal proteins in diagnosis and treatment of prostate cancer. However, so far, there is no relevant literature to systematically summarize its role in tumors, which brings obstacles to the later research of related proteins. In this review, we summarize exosomal proteins derived from prostate cancer from different sources and summarize their roles in tumor development and drug resistance.
Collapse
Affiliation(s)
- Shangzhi Feng
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
| | - Kecheng Lou
- The First Clinical College, Gannan Medical University, Ganzhou, Jiangxi, China
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
| | - Xiaofeng Zou
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junrong Zou
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, Jiangxi, China
- *Correspondence: Junrong Zou, ; Guoxi Zhang,
| | - Guoxi Zhang
- Department of Urology, The First Affiliated hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Ganna Medical University, Ganzhou, China
- Department of Jiangxi Engineering Technology Research Center of Calculi Prevention, Gannan Medical University, Ganzhou, Jiangxi, China
- *Correspondence: Junrong Zou, ; Guoxi Zhang,
| |
Collapse
|
65
|
Entezari M, Ghanbarirad M, Taheriazam A, Sadrkhanloo M, Zabolian A, Goharrizi MASB, Hushmandi K, Aref AR, Ashrafizadeh M, Zarrabi A, Nabavi N, Rabiee N, Hashemi M, Samarghandian S. Long non-coding RNAs and exosomal lncRNAs: Potential functions in lung cancer progression, drug resistance and tumor microenvironment remodeling. Biomed Pharmacother 2022; 150:112963. [PMID: 35468579 DOI: 10.1016/j.biopha.2022.112963] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022] Open
Abstract
Among the different kinds of tumors threatening human life, lung cancer is one that is commonly observed in both males and females. The aggressive behavior of lung cancer and interactions occurring in tumor microenvironment enhances the malignancy of this tumor. The lung tumor cells have demonstrated capacity in developing chemo- and radio-resistance. LncRNAs are a category of non-coding RNAs that do not encode proteins, but their aberrant expression is responsible for tumor development, especially lung cancer. In the present review, we focus on both lncRNAs and exosomal lncRNAs in lung cancer, and their ability in regulating proliferation and metastasis. Cell cycle progression and molecular mechanisms related to lung cancer metastasis such as EMT and MMPs are regulated by lncRNAs. LncRNAs interact with miRNAs, STAT, Wnt, EZH2, PTEN and PI3K/Akt signaling pathways to affect progression of lung cancer cells. LncRNAs demonstrate both tumor-suppressor and tumor-promoting functions in lung cancer. They can be considered as biomarkers in lung cancer and especially exosomal lncRNAs present in body fluids are potential tools for minimally invasive diagnosis. Furthermore, we discuss regulation of lncRNAs by anti-cancer drugs and genetic tools as well as the role of these factors in therapy response of lung cancer cells.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Ghanbarirad
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonosis, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc., 6 Tide Street, Boston, MA 02210, USA
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada V6H3Z6
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
66
|
Liu W, Wang Q, Chang J, Bhetuwal A, Bhattarai N, Zhang F, Tang J. Serum proteomics unveil characteristic protein diagnostic biomarkers and signaling pathways in patients with esophageal squamous cell carcinoma. Clin Proteomics 2022; 19:18. [PMID: 35610567 PMCID: PMC9128263 DOI: 10.1186/s12014-022-09357-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a common digestive tract malignant tumor with high incidence and dismal prognosis worldwide. However, the reliable biomarkers for clinical diagnosis and the underlying signaling pathways insights of ESCC are not unequivocally understood yet. The serum proteome may provide valuable clues for the early diagnosis of ESCC and the discovery of novel molecular insights. Methods In the current study, an optimized proteomics approach was employed to discover novel serum-based biomarkers for ESCC, and unveil abnormal signal pathways. Gene ontology (GO) enrichment analysis was done by Gene Set Enrichment Analysis (GSEA) and Metascape database, respectively. Pathway analysis was accomplished by GeneCards database. The correlation coefficient was assessed using Pearson and distance correlation analyses. Prioritized candidates were further verified in two independent validation sets by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) staining. Results A total of 633 non-redundant proteins were identified in the serum of patients with ESCC, of which 59 and 10 proteins displayed a more than 1.5-fold increase or decrease compared with healthy controls. Verification was performed for six candidate biomarkers, including S100A8/A9, SAA1, ENO1, TPI1 and PGAM1. Receiver operating characteristics (ROC) curve plotting showed the high diagnostic sensitivity and specificity of these six protein molecules as a biomarker panel: the area under characteristic curve (AUC) is up to 0.945. Differentially expressed proteins were subjected to functional enrichment analysis, which revealed the dysregulation of signaling pathways mainly involved in glycolysis, TLR4, HIF-1α, Cori cycle, TCA cycle, folate metabolism, and platelet degranulation. The latter finding was all the more noteworthy as a strong positive correlation was discovered between activated glycolysis and TLR4 pathways and unfavorable clinicopathological TNM stages in ESCC. Conclusions Our findings propose a potential serum biomarker panel for the early detection and diagnosis of ESCC, which could potentially broaden insights into the characteristics of ESCC from the proteomic perspective. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-022-09357-x.
Collapse
Affiliation(s)
- Wenhu Liu
- School of Pharmacy, School of Basic Medical Sciences & Forensic Medical, North Sichuan Medical College, Nanchong, China
| | - Qiang Wang
- Department of Clinical Laboratory, Translational Medicine Research Center, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jinxia Chang
- School of Pharmacy, School of Basic Medical Sciences & Forensic Medical, North Sichuan Medical College, Nanchong, China
| | - Anup Bhetuwal
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, China
| | - Nisha Bhattarai
- Department of Neurology, North Sichuan Medical College, Nanchong, China
| | - Fan Zhang
- School of Pharmacy, School of Basic Medical Sciences & Forensic Medical, North Sichuan Medical College, Nanchong, China.
| | - Jiancai Tang
- School of Pharmacy, School of Basic Medical Sciences & Forensic Medical, North Sichuan Medical College, Nanchong, China.
| |
Collapse
|
67
|
FAM126A interacted with ENO1 mediates proliferation and metastasis in pancreatic cancer via PI3K/AKT signaling pathway. Cell Death Dis 2022; 8:248. [PMID: 35513377 PMCID: PMC9072533 DOI: 10.1038/s41420-022-01047-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 12/05/2022]
Abstract
Pancreatic cancer (PC) is a common digestive system carcinoma with high mortality rate mostly due to aberrant growth and distant metastasis. Current researches demonstrated that Family Sequence Similarities (FAMs) have been involving in tumor development, and which subfamily has the function of promoting or inhibiting tumors and its in-depth molecular mechanism remains unclear. Based on the Gene Expression Omnibus (GEO), the Gene Expression Profiling Interactive Analysis (GEPIA2), we observed that FAM126A is in high expressed level among PC tissues and contributes to worse progression of PC, which was validated by PC tissue microarray. Function assay indicated that overexpression of FAM126A accelerates PC cell proliferation, invasion and migration in vitro, as well as liver cancer metastasis in vivo. Further, we found that FAM126A induces epithelial-mesenchymal transition (EMT), including the downregulation of E-cadherin epithelial marker expression, and the upregulation of N-cadherin, Vimentin, and Snail, mesenchymal marker expression. By co-localization and co-immunoprecipitation assays, we confirmed that FAM126A directly interacts with ENO1, which was a key activator of the PI3K/AKT signaling pathway. Furthermore, ENO1 knockdown reversed cell proliferation, migration, and invasion of PC cells promoted by FAM126A overexpression in vitro and in vivo. In general, these results verified FAM126A is an oncogene interacting with ENO1 in PC by activating PI3K/AKT signaling pathway.
Collapse
|
68
|
Fang Z, Zhong M, Zhou L, Le Y, Wang H, Fang Z. Low-density lipoprotein receptor-related protein 8 facilitates the proliferation and invasion of non-small cell lung cancer cells by regulating the Wnt/β-catenin signaling pathway. Bioengineered 2022; 13:6807-6818. [PMID: 35246020 PMCID: PMC8974054 DOI: 10.1080/21655979.2022.2036917] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Low-density lipoprotein receptor-related protein 8 (LRP8) is involved in the development of multiple tumors, including lung cancer. However, the exact mechanism by which LRP8 exerts its oncogenic role in non-small cell lung cancer (NSCLC) remains elusive. Hence, in this study, we aimed to unravel the expression and role of LRP8 in the progression of NSCLC. We used online bioinformatics databases to identify the expression of LRP8 in multiple types of lung cancer. We validated LRP8 expression in NSCLC cell lines and tissues by Western blotting and immunohistochemistry. The functions of LRP8 in NSCLC carcinogenesis and progression were determined using in vitro and in vivo systems. The Wnt pathway activator LiCl was further used to validate the regulatory role of LRP8 in Wnt/β-catenin signaling. We demonstrated that LRP8 was markedly overexpressed in NSCLC tissues and cell lines, and its overexpression significantly correlated with poor clinicopathological characteristics and prognosis. Moreover, LRP8 depletion suppressed cell proliferation, migration, invasion, and epithelial-mesenchymal transition in vitro and impeded tumor growth in vivo. Mechanistically, LPR8 knockdown elicited tumor-suppressive functions by suppressing the Wnt/β-catenin pathway, which was partially reversed by LiCl. Hence, our study revealed that LRP8 facilitates NSCLC cell proliferation and invasion via the Wnt/β-catenin pathway, and thus LRP8 could be a novel therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Zhi Fang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,Department of Abdominal Oncology, Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, People's Republic of China
| | - Min Zhong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,Department of Abdominal Oncology, Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, People's Republic of China
| | - Ling Zhou
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,Department of Abdominal Oncology, Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, People's Republic of China
| | - Yi Le
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,Department of Abdominal Oncology, Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, People's Republic of China
| | - Heng Wang
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Ziling Fang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China.,Department of Abdominal Oncology, Jiangxi Key Laboratory for Individualized Cancer Therapy, Nanchang, People's Republic of China
| |
Collapse
|
69
|
Yu R, Yang S, Liu Y, Zhu Z. Identification and validation of serum autoantibodies in children with B-cell acute lymphoblastic leukemia by serological proteome analysis. Proteome Sci 2022; 20:3. [PMID: 35109855 PMCID: PMC8808998 DOI: 10.1186/s12953-021-00184-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/16/2021] [Indexed: 01/20/2023] Open
Abstract
Background B-cell acute lymphoblastic leukemia (B-ALL) is the most common malignancy of childhood. Even though significant progresses have been made in the treatment of B-ALL, some pediatric B-ALL have still poor prognosis. The identification of tumor autoantibodies may have utility in early cancer diagnosis and immunotherapy. In this study, we used serological proteome analysis (SERPA) to screen serum autoantibodies of pediatric B-ALL, aiming to contribute to the early detection of B-ALL in children. Methods The total proteins from three pooled B-ALL cell lines (NALM-6, REH and BALL-1 cells) were separated using two-dimensional gel electrophoresis (2-DE), which was followed by Western blot by mixed serum samples from children with B-ALL (n=20) or healthy controls (n=20). We analyzed the images of 2-D gel and Western blot by PDQuest software, and then identified the spots of immune responses in B-ALL samples compared with those in control samples. The proteins from spots were identified using mass spectrometry (MS). The autoantibodies against alpha-enolase (α-enolase) and voltage-dependent anion-selective channel protein 1 (VDAC1) were further validated in sera from another 30 children with B-ALL and 25 normal individuals by the use of enzyme-linked immunosorbent assay (ELISA). The protein expression levels of the candidate antigens α-enolase and VDAC1 in B-ALL were thoroughly studied by immunohistochemical analysis. Results Utilizing the SERPA approach, α-enolase and VDAC1 were identified as candidate autoantigens in children with B-ALL. The frequencies of autoantibodies against α-enolase and VDAC1 in children with B-ALL were 27% and 23% by using ELISA analysis, respectively, which were significantly higher than those in normal controls (4% and 0, p<0.05). Immunohistochemical analysis showed the expression of α-enolase and VDAC1 was positive in 95% and 85% of B-ALL patients, respectively, but negative expression levels were showed in the control group. Conclusions This study incidated that α-enolase and VDAC1 may be the autoantigens associated with B-ALL. Therefore, α-enolase and VDAC1 autoantibodies may be the potential serological markers for children with B-ALL. Supplementary Information The online version contains supplementary material available at 10.1186/s12953-021-00184-w.
Collapse
Affiliation(s)
- Runhong Yu
- Institute of Hematology, Henan Provincial People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, China.,Henan Key laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Shiwei Yang
- Institute of Hematology, Henan Provincial People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, China.,Henan Key laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Yufeng Liu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Road, Erqi District, Zhengzhou, Henan, 450052, China
| | - Zunmin Zhu
- Institute of Hematology, Henan Provincial People's Hospital, 7 Weiwu Road, Jinshui District, Zhengzhou, Henan, 450003, China. .,Henan Key laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, Zhengzhou, Henan, China. .,Department of Hematology, People's Hospital of Zhengzhou University, Henan, Zhengzhou, China.
| |
Collapse
|
70
|
Ma L, Xue X, Zhang X, Yu K, Xu X, Tian X, Miao Y, Meng F, Liu X, Guo S, Qiu S, Wang Y, Cui J, Guo W, Li Y, Xia J, Yu Y, Wang J. The essential roles of m 6A RNA modification to stimulate ENO1-dependent glycolysis and tumorigenesis in lung adenocarcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:36. [PMID: 35078505 PMCID: PMC8788079 DOI: 10.1186/s13046-021-02200-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/26/2021] [Indexed: 12/31/2022]
Abstract
Background Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer. Patient prognosis is poor, and the existing therapeutic strategies for LUAD are far from satisfactory. Recently, targeting N6-methyladenosine (m6A) modification of RNA has been suggested as a potential strategy to impede tumor progression. However, the roles of m6A modification in LUAD tumorigenesis is unknown. Methods Global m6A levels and expressions of m6A writers, erasers and readers were evaluated by RNA methylation assay, dot blot, immunoblotting, immunohistochemistry and ELISA in human LUAD, mouse models and cell lines. Cell viability, 3D-spheroid generation, in vivo LUAD formation, experiments in cell- and patient-derived xenograft mice and survival analysis were conducted to explore the impact of m6A on LUAD. The RNA-protein interactions, translation, putative m6A sites and glycolysis were explored in the investigation of the mechanism underlying how m6A stimulates tumorigenesis. Results The elevation of global m6A level in most human LUAD specimens resulted from the combined upregulation of m6A writer methyltransferase 3 (METTL3) and downregulation of eraser alkB homolog 5 (ALKBH5). Elevated global m6A level was associated with a poor overall survival in LUAD patients. Reducing m6A levels by knocking out METTL3 and overexpressing ALKBH5 suppressed 3D-spheroid generation in LUAD cells and intra-pulmonary tumor formation in mice. Mechanistically, m6A-dependent stimulation of glycolysis and tumorigenesis occurred via enolase 1 (ENO1). ENO1 mRNA was m6A methylated at 359 A, which facilitated it’s binding with the m6A reader YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) and resulted in enhanced translation of ENO1. ENO1 positively correlated with METTL3 and global m6A levels, and negatively correlated with ALKBH5 in human LUAD. In addition, m6A-dependent elevation of ENO1 was associated with LUAD progression. In preclinical models, tumors with a higher global m6A level showed a more sensitive response to the inhibition of pan-methylation, glycolysis and ENO activity in LUAD. Conclusions The m6A-dependent stimulation of glycolysis and tumorigenesis in LUAD is at least partially orchestrated by the upregulation of METTL3, downregulation of ALKBH5, and stimulation of YTHDF1-mediated ENO1 translation. Blocking this mechanism may represent a potential treatment strategy for m6A-dependent LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02200-5.
Collapse
Affiliation(s)
- Lifang Ma
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China.,Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China
| | - Xiangfei Xue
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, China
| | - Xiao Zhang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China
| | - Keke Yu
- Department of Bio-bank, Shanghai Chest Hospital, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Xin Xu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China
| | - Xiaoting Tian
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China
| | - Yayou Miao
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China
| | - Fanyu Meng
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China
| | - Xiaoxin Liu
- Nursing Department, Shanghai Chest Hospital, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Susu Guo
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, China
| | - Shiyu Qiu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China
| | - Yikun Wang
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China
| | - Jiangtao Cui
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China
| | - Wanxin Guo
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China
| | - You Li
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China
| | - Jinjing Xia
- Department of Respiratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China.
| | - Yongchun Yu
- Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China.
| | - Jiayi Wang
- Department of Clinical Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China. .,Shanghai Institute of Thoracic Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, No. 241 West Huaihai Road, 200030, Shanghai, China. .,Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, 200072, Shanghai, China.
| |
Collapse
|
71
|
Sardarabadi P, Kojabad AA, Jafari D, Liu CH. Liquid Biopsy-Based Biosensors for MRD Detection and Treatment Monitoring in Non-Small Cell Lung Cancer (NSCLC). BIOSENSORS 2021; 11:394. [PMID: 34677350 PMCID: PMC8533977 DOI: 10.3390/bios11100394] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Globally, non-small cell lung cancer (NSCLC) is the leading cause of cancer deaths. Despite advancements in chemotherapy and targeted therapies, the 5-year survival rate has remained at 16% for the past forty years. Minimal residual disease (MRD) is described as the existence of either isolated tumour cells or circulating tumour cells in biological liquid of patients after removal of the primary tumour without any clinical signs of cancer. Recently, liquid biopsy has been promising as a non-invasive method of disease monitoring and treatment guidelines as an MRD marker. Liquid biopsy could be used to detect and assess earlier stages of NSCLC, post-treatment MRD, resistance to targeted therapies, immune checkpoint inhibitors (ICIs) and tumour mutational burden. MRD surveillance has been proposed as a potential marker for lung cancer relapse. Principally, biosensors provide the quantitative analysis of various materials by converting biological functions into quantifiable signals. Biosensors are usually operated to detect antibodies, enzymes, DNA, RNA, extracellular vesicles (EVs) and whole cells. Here, we present a category of biosensors based on the signal transduction method for identifying biosensor-based biomarkers in liquid biopsy specimens to monitor lung cancer treatment.
Collapse
Affiliation(s)
- Parvaneh Sardarabadi
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30044, Taiwan;
| | - Amir Asri Kojabad
- Department of Hematology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran 14535, Iran;
| | - Davod Jafari
- Department of Medical Biotechnology, School of Allied Medicine, Iran University of Medical Sciences, Tehran 14535, Iran;
| | - Cheng-Hsien Liu
- Institute of Nanoengineering and Microsystems, National Tsing Hua University, Hsinchu 30044, Taiwan;
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30044, Taiwan
| |
Collapse
|
72
|
Prognostic Value of a Glycolytic Signature and Its Regulation by Y-Box-Binding Protein 1 in Triple-Negative Breast Cancer. Cells 2021; 10:cells10081890. [PMID: 34440660 PMCID: PMC8392807 DOI: 10.3390/cells10081890] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer as it shows a high capacity for metastasis and poor prognoses. Metabolic reprogramming is one of the hallmarks of cancer, and aberrant glycolysis was reported to be upregulated in TNBC. Thus, identifying metabolic biomarkers for diagnoses and investigating cross-talk between glycolysis and invasiveness could potentially enable the development of therapeutics for patients with TNBC. In order to determine novel and reliable metabolic biomarkers for predicting clinical outcomes of TNBC, we analyzed transcriptome levels of glycolysis-related genes in various subtypes of breast cancer from public databases and identified a distinct glycolysis gene signature, which included ENO1, SLC2A6, LDHA, PFKP, PGAM1, and GPI, that was elevated and associated with poorer prognoses of TNBC patients. Notably, we found a transcription factor named Y-box-binding protein 1 (YBX1) to be strongly associated with this glycolysis gene signature, and it was overexpressed in TNBC. A mechanistic study further validated that YBX1 was upregulated in TNBC cell lines, and knockdown of YBX1 suppressed expression of those glycolytic genes. Moreover, YBX1 expression was positively associated with epithelial-to-mesenchymal transition (EMT) genes in breast cancer patients, and suppression of YBX1 downregulated expressions of EMT-related genes and tumor migration and invasion in MDA-MB-231 and BT549 TNBC cells. Our data revealed an YBX1-glycolysis-EMT network as an attractive diagnostic marker and metabolic target in TNBC patients.
Collapse
|