51
|
Hu X, Mandika C, He L, You Y, Chang Y, Wang J, Chen T, Zhu X. Construction of Urokinase-Type Plasminogen Activator Receptor-Targeted Heterostructures for Efficient Photothermal Chemotherapy against Cervical Cancer To Achieve Simultaneous Anticancer and Antiangiogenesis. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39688-39705. [PMID: 31588724 DOI: 10.1021/acsami.9b15751] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rational design and construction of theranostic nanomedicines based on clinical characteristics of cervical cancer is an important strategy to achieve precise cancer therapy. Herein, we fabricate a cervical cancer-targeting gold nanorod-mesoporous silica heterostructure for codelivery of synergistic cisplatin and antiangiogenic drug Avastin (cisplatin-AuNRs@SiO2-Avastin@PEI/AE105) to achieve synergistic chemophotothermal therapy. Based on database analysis and clinical sample staining, conjugation of the AE105-targeting peptide obviously improves the intracellular uptake of the nanosystem and enhances the cancer-killing ability and selectivity between cervical cancer and normal cells. It could also be used to specifically monitor the urokinase-type plasminogen activator receptor (uPAR) expression level in clinical cervical specimens, which would be an early indicator of prognosis in cancer treatment. Under 808 nm laser irradiation, the nanosystem demonstrates smart NIR-light-triggered drug release and prominent photodynamic activity via induction of reactive oxygen species overproduction-mediated cell apoptosis. The nanosystem also simultaneously suppresses HeLa tumor growth and angiogenesis in vivo, with no evident histological damage observed in the major organs. In short, this study not only provides a clinical data-based rational design strategy of smart nanomedicine for precise treatment and rapid clinical diagnosis of cervical cancer but also contributes to the development of the clinical translation of nanomedicines.
Collapse
Affiliation(s)
- Xiaoli Hu
- Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Chetry Mandika
- Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Lizhen He
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Yuanyuan You
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Yanzhou Chang
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Jing Wang
- Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Tianfeng Chen
- Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
- Department of Chemistry , Jinan University , Guangzhou 510632 , China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology , The Second Affiliated Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| |
Collapse
|
52
|
Li X, Li Q, Yu X, Li H, Huang G. Reverse of microtubule-directed chemotherapeutic drugs resistance induced by cancer-associated fibroblasts in breast cancer. Onco Targets Ther 2019; 12:7963-7973. [PMID: 31579239 PMCID: PMC6773970 DOI: 10.2147/ott.s211043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/26/2019] [Indexed: 12/01/2022] Open
Abstract
PURPOSE This study was designed to expound the underlying mechanism of microtubule-directed chemotherapeutic drugs resistance induced by cancer-associated fibroblasts (CAFs) in breast cancer. MATERIALS AND METHODS We collected 10 microtubule-directed chemotherapeutic drugs resistant breast tumor samples and 10 normal breast tumor samples to analyze the CAFs distribution by immunohistochemistry and flow cytometry. We also detected the collagen expression in CAFs by real-time PCR. We detected the activation of PI3K/AKT signaling pathway in tumor cells by Western blotting and immunofluorescence. The subcutaneous 4T1/MCF-7 bearing mice were used to investigate the anticancer effects of integrin β1 inhibitor combined with microtubule-directed chemotherapeutic drugs. RESULTS In our studies, accumulation of CAFs was observed in tumor samples from microtubule-directed chemotherapeutic drugs resistant patients. Those isolated CAFs could efficiently induce the acquisition of microtubule-directed chemotherapeutic drugs resistance in breast cancer cells. More importantly, we found that CAFs could regulate the microtubule-directed chemotherapeutic drugs resistance through the secretion of collagen to activate the integrin β1/PI3K/AKT signaling pathway. Combination of integrin α2β1 inhibitor and paclitaxel/vincristine sulfate could efficiently overcome the microtubule-directed chemotherapeutic drugs resistance induced by CAFs and enhanced the anticancer effects of chemotherapy in subcutaneous 4T1/MCF-7 bearing mice. CONCLUSION Our results demonstrated that CAFs constitute a supporting niche for cancer drug resistance acquisition. Thus, traditional microtubule-directed chemotherapeutic drugs combined with integrin β1 inhibitor may present an innovative therapeutic strategy for breast cancer therapy.
Collapse
Affiliation(s)
- Xuebo Li
- Department of Radiotherapy, Yidu Central Hospital of Wei Fang, Qingzhou262500, People’s Republic of China
| | - Qiang Li
- Department of Radiotherapy, Yidu Central Hospital of Wei Fang, Qingzhou262500, People’s Republic of China
| | - Xiuli Yu
- Department of Radiotherapy, Yidu Central Hospital of Wei Fang, Qingzhou262500, People’s Republic of China
| | - Haitao Li
- Department of Thyroid Breast Surgery, Yidu Central Hospital of Wei Fang, Qingzhou262500, People’s Republic of China
| | - Guoqiang Huang
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou310005, People’s Republic of China
| |
Collapse
|
53
|
Ning J, Zhao Y, Ye Y, Yu J. Opposing roles and potential antagonistic mechanism between TGF-β and BMP pathways: Implications for cancer progression. EBioMedicine 2019; 41:702-710. [PMID: 30808576 PMCID: PMC6442991 DOI: 10.1016/j.ebiom.2019.02.033] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 02/05/2019] [Accepted: 02/15/2019] [Indexed: 02/08/2023] Open
Abstract
The transforming growth factor β (TGF-β) superfamily participates in tumour proliferation, apoptosis, differentiation, migration, invasion, immune evasion and extracellular matrix remodelling. Genetic deficiency in distinct components of TGF-β and BMP-induced signalling pathways or their excessive activation has been reported to regulate the development and progression of some cancers. As more in-depth studies about this superfamily have been conducted, more evidence suggests that the TGF-β and BMP pathways play an opposing role. The cross-talk of these 2 pathways has been widely studied in kidney disease and bone formation, and the opposing effects have also been observed in some cancers. However, the antagonistic mechanisms are still insufficiently investigated in cancer. In this review, we aim to display more evidences and possible mechanisms accounting for the antagonism between these 2 pathways, which might provide some clues for further study in cancer. Describe the basics of TGF-β and BMP signalling Summarize the potential mechanisms accounting for the antagonism between TGF-β and BMP pathways Provide some evidence about the antagonistic effects between pathways observed in some cancers
Collapse
Affiliation(s)
- Junya Ning
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
| | - Yi Zhao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, PR China
| | - Yingnan Ye
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China.
| |
Collapse
|
54
|
Terry S, Faouzi Zaarour R, Hassan Venkatesh G, Francis A, El-Sayed W, Buart S, Bravo P, Thiery J, Chouaib S. Role of Hypoxic Stress in Regulating Tumor Immunogenicity, Resistance and Plasticity. Int J Mol Sci 2018; 19:ijms19103044. [PMID: 30301213 PMCID: PMC6213127 DOI: 10.3390/ijms19103044] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/28/2018] [Accepted: 10/04/2018] [Indexed: 12/15/2022] Open
Abstract
Hypoxia, or gradients of hypoxia, occurs in most growing solid tumors and may result in pleotropic effects contributing significantly to tumor aggressiveness and therapy resistance. Indeed, the generated hypoxic stress has a strong impact on tumor cell biology. For example, it may contribute to increasing tumor heterogeneity, help cells gain new functional properties and/or select certain cell subpopulations, facilitating the emergence of therapeutic resistant cancer clones, including cancer stem cells coincident with tumor relapse and progression. It controls tumor immunogenicity, immune plasticity, and promotes the differentiation and expansion of immune-suppressive stromal cells. In this context, manipulation of the hypoxic microenvironment may be considered for preventing or reverting the malignant transformation. Here, we review the current knowledge on how hypoxic stress in tumor microenvironments impacts on tumor heterogeneity, plasticity and resistance, with a special interest in the impact on immune resistance and tumor immunogenicity.
Collapse
Affiliation(s)
- Stéphane Terry
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| | - Rania Faouzi Zaarour
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Goutham Hassan Venkatesh
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Amirtharaj Francis
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Walid El-Sayed
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| | - Stéphanie Buart
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| | - Pamela Bravo
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| | - Jérome Thiery
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
| | - Salem Chouaib
- INSERM UMR 1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, EPHE, Fac. de médecine-Univ. Paris-Sud, University Paris-Saclay, Villejuif F-94805, France.
- Thumbay Research Institute of Precision Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates.
| |
Collapse
|