51
|
Su M, Zhan L, Zhang Y, Zhang J. Yes-activated protein promotes primary resistance of BRAF V600E mutant metastatic colorectal cancer cells to mitogen-activated protein kinase pathway inhibitors. J Gastrointest Oncol 2021; 12:953-963. [PMID: 34295548 DOI: 10.21037/jgo-21-258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/11/2021] [Indexed: 01/09/2023] Open
Abstract
Background Most colorectal cancer (CRC) patients with the BRAF V600E mutation display resistance to chemotherapy and targeted medicinal treatments. Thus, exploring new drugs and drug resistance mechanisms for the BRAF V600E mutation has become an urgent clinical priority. Methods MTS experiment, cell cloning experiment, cell scratching experiment, Transwell experiment, chromatin immunoprecipitation (ChIP), quantitative polymerase chain reaction (qPCR) and flow cytometry are used. Detect the transcription and protein expression of YAP in colorectal cancer cell lines, establish a transient cell line with YAP gene overexpression and knockdown, and detect the effect of YAP gene expression on the biological functions of colorectal cancer cells RKO and HT-29. And further study the mechanism of YAP regulating the response of RAF and MEK targeted therapy. Results In this study, for the first time, we verified that the expression of transcription factor yes-associated protein (YAP) was upregulated in BRAF V600E mutant CRC cells. After knocking down YAP, we observed a reduction in the growth rate, proliferation, and invasion ability of colon cancer cells. We further verified that YAP knockdown increased sensitivity of BRAF V600E mutant CRC cells to mitogen-activated protein kinase (MAPK) pathway inhibitors. In addition, we clarified the mechanism underlying YAP regulation of RAF and MAPK/extracellular signal-regulated kinase (MEK)-targeted therapy response: YAP cooperates with RAF→MEK pathway inhibitors to regulate the cell cycle, increase cell G1/S phase arrest, and increase apoptosis. Conclusions These results suggest that YAP expression may be related to the primary resistance of MAPK inhibitors in metastatic CRC with the BRAF V600E mutation. Therefore, the combination of YAP and MAPK pathway inhibitors in BRAF V600E mutant metastatic CRC may present a promising treatment method.
Collapse
Affiliation(s)
- Meng Su
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Lei Zhan
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yong Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Jingdong Zhang
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
52
|
Tong Y, Huang Y, Zhang Y, Zeng X, Yan M, Xia Z, Lai D. DPP3/CDK1 contributes to the progression of colorectal cancer through regulating cell proliferation, cell apoptosis, and cell migration. Cell Death Dis 2021; 12:529. [PMID: 34023852 PMCID: PMC8141054 DOI: 10.1038/s41419-021-03796-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 01/05/2023]
Abstract
At present, colorectal cancer (CRC) has become a serious threat to human health in the world. Dipeptidyl peptidase 3 (DPP3) is a zinc-dependent hydrolase that may be involved in several physiological processes. However, whether DPP3 affects the development and progression of CRC remains a mystery. This study is the first to demonstrate the role of DPP3 in CRC. Firstly, the results of immunohistochemistry analysis showed the upregulation of DPP3 in CRC tissues compared with normal tissues, which is statistically analyzed to be positively correlated with lymphatic metastasis, pathological stage, positive number of lymph nodes. Moreover, the high expression of DPP3 predicts poor prognosis in CRC patients. In addition, the results of cell dysfunction experiments clarified that the downregulation of DPP3 significantly inhibited cell proliferation, colony formation, cell migration, and promoted apoptosis in vitro. DPP3 depletion could induce cell apoptosis by upregulating the expression of BID, BIM, Caspase3, Caspase8, HSP60, p21, p27, p53, and SMAC. In addition, downregulation of DPP3 can reduce tumorigenicity of CRC cells in vivo. Furthermore, CDK1 is determined to be a downstream target of DPP3-mediated regulation of CRC by RNA-seq, qPCR, and WB. The interaction between DPP3 and CDK1 shows mutual regulation. Specifically, downregulation of DPP3 can accentuate the effects of CDK1 knockdown on the function of CRC cells. Overexpression of CDK1 alleviates the inhibitory effects of DPP3 knockdown in CRC cells. In summary, DPP3 has oncogene-like functions in the development and progression of CRC by targeting CDK1, which may be an effective molecular target for the prognosis and treatment of CRC.
Collapse
Affiliation(s)
- Yixin Tong
- Department of Tongji Medical College of Huazhong University, 1095 Jiefang Dadao, Wuhan, Hubei Province, China
| | - Yuan Huang
- Department of Endoscopy Center, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Xuhui, Shanghai, China
| | - Yuchao Zhang
- Department of Gastrointestinal Surgery, Sun Yat-sen memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, Guangdong Province, China
| | - Xiangtai Zeng
- Department of The First Affiliated Hospital, Gannan Medical University, 23 Qingnian Road, Zhanggong District, Ganzhou, Jiangxi Province, China
| | - Mei Yan
- Department of Gastrointestinal Surgery, Sun Yat-sen memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, Guangdong Province, China
| | - Zhongsheng Xia
- Department of Gastrointestinal Surgery, Sun Yat-sen memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, Guangdong Province, China.
| | - Dongming Lai
- Department of Gastrointestinal Surgery, Sun Yat-sen memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, Guangdong Province, China.
| |
Collapse
|
53
|
Xing Z, Wang X, Liu J, Zhang M, Feng K, Wang X. Expression and prognostic value of CDK1, CCNA2, and CCNB1 gene clusters in human breast cancer. J Int Med Res 2021; 49:300060520980647. [PMID: 33896262 PMCID: PMC8076779 DOI: 10.1177/0300060520980647] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective Cell cycle-associated proteins play important roles in breast cancer (BRCA), based on evidence from cell lines, preclinical murine models, and human tissue samples. Methods Herein, we used the Onomine, GEPIA, Kaplan–Meier Plotter, and cBioPortal databases to examine transcriptional and survival data pertaining to cyclin-associated gene clusters (CDK1, CCNA2, and CCNB1) in BRCA patients. Results CDK1, CCNA2, and CCNB1 gene expression levels were higher in BRCA compared with control tissue samples and were correlated with more-advanced tumor stage. Kaplan–Meier survival analyses confirmed that elevated CDK1, CCNA2, and CCNB1 expression levels were associated with overall and post-progression survival and recurrence-free probability rates in patients with BRCA. Conclusion The results of this study implied that CDK1, CCNA2, and CCNB1 gene clusters may provide potential therapeutic targets and prognostic biomarkers in patients with BRCA.
Collapse
Affiliation(s)
- Zeyu Xing
- Breast Cancer Department, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Wang
- Breast Cancer Department, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaqi Liu
- Breast Cancer Department, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Menglu Zhang
- Breast Cancer Department, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kexin Feng
- Breast Cancer Department, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiang Wang
- Breast Cancer Department, National Cancer Center/National Clinical Research Center for Cancer/ Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
54
|
Palma F, Affinito A, Nuzzo S, Roscigno G, Scognamiglio I, Ingenito F, Martinez L, Franzese M, Zanfardino M, Soricelli A, Fiorelli A, Condorelli G, Quintavalle C. miR-34c-3p targets CDK1 a synthetic lethality partner of KRAS in non-small cell lung cancer. Cancer Gene Ther 2021; 28:413-426. [PMID: 32948832 PMCID: PMC8119240 DOI: 10.1038/s41417-020-00224-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/29/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022]
Abstract
Lung cancer is still the leading cause of death by cancer worldwide despite advances both in its detection and therapy. Multiple oncogenic driver alterations have been discovered, opening the prospective for new potential therapeutic targets. Among them, KRAS mutations represent the most frequent oncogene aberrations in non-small cell lung cancer (NSCLC) patients with a negative prognostic impact, but effective therapies targeting KRAS are not well characterized yet. Here, we demonstrate that the microRNA miR-34c-3p is a positive prognostic factor in KRAS-mutated NSCLC patients. Firstly, looking at the TGCA dataset, we found that high miR-34c-3p expression correlated with longer survival of KRAS-mutated NSCLC patients. In vitro assays on immortalized and patient-derived primary NSCLC cells revealed that miR-34c-3p overexpression increased apoptosis and lowered proliferation rate in KRASmut cells. Computational analysis and in vitro assays identified CDK1, one of the most promising lethal targets for KRAS-mutant cancer, as a target of miR-34c-3p. Moreover, the combination of CDK1 inhibition (mediated by RO3306) and miR-34c-3p overexpression resulted in an additive effect on the viability of KRASmut-expressing cells. Altogether, our findings demonstrate that miR-34c-3p is a novel biomarker that may allow tailored treatment for KRAS-mutated NSCLC patients.
Collapse
Affiliation(s)
- Francesco Palma
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
- Percuros BV, Zernikedreef 8, 2333 CL, Leiden, The Netherlands
| | | | | | - Giuseppina Roscigno
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Iolanda Scognamiglio
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
| | - Francesco Ingenito
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy
- Percuros BV, Zernikedreef 8, 2333 CL, Leiden, The Netherlands
| | - Lola Martinez
- Flow Cytometry Core Unit, Biotechnology Programme, Spanish National Cancer Research Centre (CNIO), E-28029, Madrid, Spain
| | | | | | | | - Alfonso Fiorelli
- Thoracic Surgery Unit, Università degli Studi della Campania "Luigi Vanvitelli,", Naples, Italy
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, "Federico II" University of Naples, Naples, Italy.
- Institute of Experimental Endocrinology and Oncology (IEOS) G. Salvatore, CNR, Naples, Italy.
| | - Cristina Quintavalle
- Institute of Experimental Endocrinology and Oncology (IEOS) G. Salvatore, CNR, Naples, Italy.
| |
Collapse
|
55
|
Takeda H, Sunakawa Y. Management of BRAF Gene Alterations in Metastatic Colorectal Cancer: From Current Therapeutic Strategies to Future Perspectives. Front Oncol 2021; 11:602194. [PMID: 33842313 PMCID: PMC8027060 DOI: 10.3389/fonc.2021.602194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/09/2021] [Indexed: 12/24/2022] Open
Abstract
BRAF mutations constitute an important poor prognostic factor in metastatic colorectal cancer (mCRC) and the development of treatments in this context is of great necessity to prolong patient survival. Although the association between BRAF mutations and microsatellite instability (MSI) has been known for several years, previous clinical trials have revealed that the former has a limited prognostic impact and that immune checkpoint inhibitors offer a significant survival benefit to mCRC patients with both characteristics. Furthermore, the genomic classification of BRAF mutations according to their molecular functions enables greater understanding of the characteristics of mCRC patients with BRAF mutations, with therapeutic strategies based on this classification made more ideal to improve poor prognosis through the delivery of targeted therapies. Recently, a phase III trial was conducted in previously treated mCRC patients with BRAF V600E-mutated tumors and revealed that the combination therapy approach of BRAF inhibition and anti-epidermal growth factor receptor antibody therapy with or without MEK inhibition was more efficacious than standard chemotherapy alone. This review discusses current treatment strategies and future perspectives in BRAF-mutated mCRC.
Collapse
Affiliation(s)
| | - Yu Sunakawa
- Department of Clinical Oncology, St Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
56
|
Gmeiner WH. Recent Advances in Our Knowledge of mCRC Tumor Biology and Genetics: A Focus on Targeted Therapy Development. Onco Targets Ther 2021; 14:2121-2130. [PMID: 33790575 PMCID: PMC8007558 DOI: 10.2147/ott.s242224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022] Open
Abstract
Metastatic colorectal cancer (mCRC) remains a highly lethal malignancy although considerable progress has resulted from characterizing molecular alterations such as RAS mutation status and extent of microsatellite instability (MSI) to guide optimal use of available therapies. The availability of gene expression profiling, next generation sequencing technologies, proteomics analysis and other technologies provides high resolution information on individual tumors, including metastatic lesions to better define intra-tumor and inter-tumor heterogeneity. Recent literature applying this information to further customize personalized therapies is reviewed. Current biomarker-based stratification used to select optimal therapy that is personalized to the mutation profile of individual tumors is described. Recent literature using whole exome sequencing of metastatic lesions and primary CRC tumors and other advanced technologies to more fully elucidate the tumor biology specific to mCRC sub-types and to develop more precise therapies that improve outcomes is also reviewed.
Collapse
Affiliation(s)
- William H Gmeiner
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
57
|
Fadaka AO, Samantha Sibuyi NR, Bakare OO, Klein A, Madiehe AM, Meyer M. Expression of cyclin-dependent kinases and their clinical significance with immune infiltrates could predict prognosis in colorectal cancer. ACTA ACUST UNITED AC 2021; 29:e00602. [PMID: 33732631 PMCID: PMC7937668 DOI: 10.1016/j.btre.2021.e00602] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/26/2021] [Accepted: 02/20/2021] [Indexed: 12/15/2022]
Abstract
The expression and prognostic values of AURKA and RB1 may also be significant to CRC diagnosis than previously studies. The association of CDKs with immune infiltrates may serve as target molecules for immunotherapy in CRC. The expression of CDK is significant among CRC subtypes and therefore, it can be inferred as a potential biomarker in the cancer subtype. An increase in tumor purity was positively correlated with the expression of CDK-1 in COAD due to CD4+ cells and CDK-4 in COAD and READ resulting from a fraction of immune cells.
Introduction Colorectal cancer (CRC) is one of the most cancer-related mortalities worldwide and remains a major public health issue. Despite several attempts to develop promising therapies for CRC, its survival rate decreases with metastasis. Cyclin-dependent kinases (CDKs) are a family of protein kinases with various regulatory activities including cell cycle, mRNA expression, transcription, and differentiation. Aside from their role in cell proliferation when mutated, abnormal expression of these genes has been reported in some human cancer subtypes. This study explored the roles and therapeutic potentials of CDK 1 and 4 as prognostic biomarkers in CRC. Methods Bioinformatics analyses were carried out to demonstrate the expression and prognostic values of CDK-1 and CDK-4 with immune infiltrate in CRC. Discussion CDK levels in CRC were remarkably higher than those in normal tissues (p < 0.05), and overexpression in CRC tissues was significantly related to nodal metastatic status (p < 0.05) and histological subtypes. Kaplan-Meier analyses showed that patients with CRC who exhibited CDK-1 overexpression had worse overall survival (OS) as against patients with CDK-4 overexpression. The alteration observed was a mutation while the mutation hotspots include E163* and R24A/C/H/L respectively for CDK-1 and CDK-4 on the Pkinase domain. Of the associated genes, AURKA and RB1 were predominantly altered. Furthermore, CDK-4 is positively correlated with tumor purity in both COAD and READ while CDK-1is only positively correlated in COAD. CDK-1 overexpression was significantly associated with poor prognosis as opposed to CDK-4. Conclusion The expression and prognostic values of AURKA and RB1 may also be significant to CRC diagnosis. CDKs together with the co-expressed genes and their association with immune infiltrates may serve as target molecules for immunotherapy in CRC.
Collapse
Affiliation(s)
- Adewale Oluwaseun Fadaka
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Olalekan Olanrewaju Bakare
- Bioinformatics Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, 7535, Cape Town, South Africa
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, 7535, Cape Town, South Africa
| | - Abram Madimabe Madiehe
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa.,Nanobiotechnology Research Group, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
58
|
TMEM106C contributes to the malignant characteristics and poor prognosis of hepatocellular carcinoma. Aging (Albany NY) 2021; 13:5585-5606. [PMID: 33591950 PMCID: PMC7950261 DOI: 10.18632/aging.202487] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Transmembrane protein (TMEM) is a kind of integral membrane protein that spans biological membranes. The functions of most members of the TMEM family are unknown. Here, we conducted bioinformatic analysis and biological validation to investigate the role of TMEM106C in HCC. First, GEPIA and OncomineTM were used to analyze TMEM106C expression, which was verified by real-time PCR and western blot analyses. Then, the biological functions of TMEM106C were explored by CCK8 and transwell assays. The prognostic value of TMEM106C was analyzed by UALCAN. LinkedOmics was used to analyze TMEM106C pathways generated by Gene Ontology. A protein-protein interaction network (PPI) was constructed by GeneMANIA. We demonstrated that TMEM106C was overexpressed in HCC and that inhibition of TMEM106C significantly suppressed the proliferation and metastasis of HCC through targeting CENPM and DLC-1. Upregulation of TMEM106C was closely correlated with sex, tumor stage, tumor grade and prognosis. Overexpression of TMEM106C was linked to functional networks involving organelle fission and cell cycle signaling pathways through the regulation of CDK kinases, E2F1 transcription factors and miRNAs. Our data demonstrated that TMEM106C contributes to malignant characteristics and poor prognosis in HCC, which may serve as a prognostic biomarker and potential therapeutic target.
Collapse
|
59
|
Expression and Gene Regulation Network of Metabolic Enzyme Phosphoglycerate Mutase Enzyme 1 in Breast Cancer Based on Data Mining. BIOMED RESEARCH INTERNATIONAL 2021. [DOI: 10.1155/2021/6670384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The metabolic enzyme phosphoglycerate mutase enzyme 1 (PGAM1) is a key enzyme in the glycolysis pathway, and glycolysis is closely related to cancer progression, suggesting that PGAM1 may have important functions in breast cancer. We used sequencing data from the Oncomine database and UALCAN database to analyze the expression of PGAM1 and its influence on the clinicopathological characteristics of breast cancer. LinkedOmics was used to identify genes related to PGAM1 expression, kinases, miRNAs, and transcription factors that were significantly related to PGAM1 through GSEA. cBioPortal was used to identify the alternation frequency and form of PGAM1 in breast cancer. The expression level of PGAM1 in breast cancer was significantly higher than that in normal tissues. Moreover, the expression level of PGAM1 is closely related to the molecular subtype and TP53 mutation status. The expression level of PGAM1 in HER2-positive and triple-negative tumors was significantly higher than that of luminal type. The expression level of PGAM1 in TP53-mutant tumors was higher than that in non-TP53-mutant tumors. In addition, the overall survival of patients with high PGAM1 expression was significantly worse than that of patients with low expression (
). Through GSEA analysis, we found multiple kinases, miRNAs, and transcription factors significantly related to PFKFB4. cBioPortal analysis showed that the mutation rate of PGAM1 in breast cancer was relatively low (4%), and the main form of mutation was high mRNA expression. This study suggests that PGAM1 is a potential diagnostic and prognostic marker in breast cancer. Through data mining, we revealed the potential regulatory network information of PGAM1, laying a foundation for further research on the role of PGAM1 in breast cancer.
Collapse
|
60
|
Wang J, Zhang S, Huang K, Shi L, Zhang Q. Magnolin Inhibits Proliferation and Invasion of Breast Cancer MDA-MB-231 Cells by Targeting the ERK1/2 Signaling Pathway. Chem Pharm Bull (Tokyo) 2021; 68:421-427. [PMID: 32378540 DOI: 10.1248/cpb.c19-00820] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to evaluate the effects of Magnolin (MGL) on inhibition of human breast cancer cells, and explore the underlying molecular mechanisms. The viability of the treated cells was assessed with the Cell Counting Kit-8 (CCK-8) assay, and the proliferation was analyzed in terms of EdU uptake, colony formation, and flow cytometry. The in vitro invasion and migration were determined by the transwell and wound healing assays respectively. The mRNA and protein levels of relevant factors was evaluated by quantitative real-time PCR and Western blotting respectively. MGL significantly decreased the viability and promoted apoptosis of MDA-MB-231 cells, along with reducing EdU incorporation rate as well as the colony forming capacity compared to the untreated control cells. In addition, the in vitro invasion and migration were also significantly inhibited by MGL. Furthermore, MGL suppressed the phosphorylation of MEK1/2, extracellular signal-regulated kinase (ERK)1/2 and significantly downregulated the expression of cyclin-dependent kinase 1 (CDK1), the anti-apoptotic B-cell lymphoma 2 (BCL2) and metastasis-associated matrix metalloproteases (MMPs) 2 & 9, and upregulated the cleaved caspases 3 and 9. After ERK was completely inhibited with the small interfering RNA (siRNA), MGL had no effect on these factors, indicating that ERK is essential for MGL action in breast cancer. In conclusion, MGL inhibits proliferation and invasion of and induces apoptosis in breast cancer cells through the ERK pathway.
Collapse
Affiliation(s)
- Jing Wang
- Department of Thyroid and Breast Surgery, The First College of Clinical Medical Science, China Three Gorges University
| | - Shengchu Zhang
- Department of Thyroid and Breast Surgery, The First College of Clinical Medical Science, China Three Gorges University
| | - Kuo Huang
- Department of Clinical Laboratory, The First College of Clinical Medical Science, China Three Gorges University
| | - Lang Shi
- The First College of Clinical Medical Science, China Three Gorges University
| | - Qingyong Zhang
- Department of Clinical Laboratory, The First College of Clinical Medical Science, China Three Gorges University
| |
Collapse
|
61
|
Beauséjour M, Boutin A, Vachon PH. Anoikis and the Human Gut Epithelium in Health and Disease. ANOIKIS 2021:95-126. [DOI: 10.1007/978-3-030-73856-3_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
62
|
Li Z, Lin Y, Cheng B, Zhang Q, Cai Y. Identification and Analysis of Potential Key Genes Associated With Hepatocellular Carcinoma Based on Integrated Bioinformatics Methods. Front Genet 2021; 12:571231. [PMID: 33767726 PMCID: PMC7985067 DOI: 10.3389/fgene.2021.571231] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 02/18/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a type of primary liver tumor with poor prognosis and high mortality, and its molecular mechanism remains incompletely understood. This study aimed to use bioinformatics technology to identify differentially expressed genes (DEGs) in HCC pathogenesis, hoping to identify novel biomarkers or potential therapeutic targets for HCC research. METHODS The bioinformatics analysis of our research mostly involved the following two datasets: Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). First, we screened DEGs based on the R packages (limma and edgeR). Using the DAVID database, the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of DEGs were carried out. Next, the protein-protein interaction (PPI) network of the DEGs was built in the STRING database. Then, hub genes were screened through the cytoHubba plug-in, followed by verification using the GEPIA and Oncomine databases. We demonstrated differences in levels of the protein in hub genes using the Human Protein Atlas (HPA) database. Finally, the hub genes prognostic values were analyzed by the GEPIA database. Additionally, using the Comparative Toxicogenomics Database (CTD), we constructed the drug-gene interaction network. RESULTS We ended up with 763 DEGs, including 247 upregulated and 516 downregulated DEGs, that were mainly enriched in the epoxygenase P450 pathway, oxidation-reduction process, and metabolism-related pathways. Through the constructed PPI network, it can be concluded that the P53 signaling pathway and the cell cycle are the most obvious in module analysis. From the PPI, we filtered out eight hub genes, and these genes were significantly upregulated in HCC samples, findings consistent with the expression validation results. Additionally, survival analysis showed that high level gene expression of CDC20, CDK1, MAD2L1, BUB1, BUB1B, CCNB1, and CCNA2 were connected with the poor overall survival of HCC patients. Toxicogenomics analysis showed that only topotecan, oxaliplatin, and azathioprine could reduce the gene expression levels of all seven hub genes. CONCLUSION The present study screened out the key genes and pathways that were related to HCC pathogenesis, which could provide new insight for the future molecularly targeted therapy and prognosis evaluation of HCC.
Collapse
Affiliation(s)
- Zhuolin Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yao Lin
- Department of Plastic Surgery and Burn Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Bizhen Cheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Qiaoxin Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yingmu Cai
- Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
- *Correspondence: Yingmu Cai,
| |
Collapse
|
63
|
Pirim D. Integrative analyses of molecular pathways and key candidate biomarkers associated with colorectal cancer. Cancer Biomark 2020; 27:555-568. [PMID: 32176635 DOI: 10.3233/cbm-191263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths and mining the molecular factors underlying CRC pathogenesis is imperative for alleviating the disease burden. OBJECTIVE To highlight key molecular pathways, prioritize hub genes and their regulators related to CRC. METHODS Data sets of TCGA-COAD and GTEx were used to identify differentially expressed genes (DEGs) and their functional enrichments in pathways and biological processes were analyzed using bioinformatics tools. Protein-protein interaction network was constructed and hub genes were identified using Cytoscape. Ingenuity Pathway Analysis was used to analyze the relations of the hub genes with diseases and canonical pathways. Key regulators targeting the hub genes such as TFs, miRNAs and their interactions were identified using in silico tools. RESULTS AURKA, CDK1, MYC, CDH1, CCNB1, CDC20, UBE2C, PLK1, KIF11, and CCNA2 were prioritized as hub genes based on their topological properties. Enrichment analyses emphasized the roles of DEGs and hub genes in the cell cycle process. Interactions of the hub genes with TFs and miRNAs suggested TP53, EZH2 and KLF4 as being promising candidate biomarkers for CRC. CONCLUSIONS Our results provide in silico evidence for candidate biomolecules that may have strong biomarker potential for CRC-related translational strategies.
Collapse
|
64
|
Deng D, Shah K. TRAIL of Hope Meeting Resistance in Cancer. Trends Cancer 2020; 6:989-1001. [PMID: 32718904 PMCID: PMC7688478 DOI: 10.1016/j.trecan.2020.06.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 02/08/2023]
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) induces apoptosis selectively via its interaction with the death receptors TRAILR1/DR4 and TRAILR2/DR5 in a wide range of cancers, while sparing normal cells. Despite its tremendous potential for cancer therapeutics, the translation of TRAIL into the clinic has been confounded by TRAIL-resistant cancer populations. We discuss different molecular mechanisms underlying TRAIL-mediated apoptosis and resistance to TRAIL. We also discuss the successes and failures of recent preclinical and clinical studies of TRAIL-induced apoptosis, and current attempts to overcome TRAIL resistance, and we provide a perspective for improving the prospects of future clinical implementation.
Collapse
Affiliation(s)
- David Deng
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02129, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02129, USA
| | - Khalid Shah
- Center for Stem Cell Therapeutics and Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02129, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02129, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
65
|
Li M, He F, Zhang Z, Xiang Z, Hu D. CDK1 serves as a potential prognostic biomarker and target for lung cancer. J Int Med Res 2020; 48:300060519897508. [PMID: 32020821 PMCID: PMC7111107 DOI: 10.1177/0300060519897508] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Mingyao Li
- Department of Radiation Oncology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Fenyi He
- Department of Special Examination, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Zhanchun Zhang
- Department of Radiation Oncology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Zhenfei Xiang
- Department of Radiation Oncology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Danfei Hu
- Department of Radiation Oncology, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| |
Collapse
|
66
|
Somarelli JA, Roghani RS, Moghaddam AS, Thomas BC, Rupprecht G, Ware KE, Altunel E, Mantyh JB, Kim SY, McCall SJ, Shen X, Mantyh CR, Hsu DS. A Precision Medicine Drug Discovery Pipeline Identifies Combined CDK2 and 9 Inhibition as a Novel Therapeutic Strategy in Colorectal Cancer. Mol Cancer Ther 2020; 19:2516-2527. [PMID: 33158998 DOI: 10.1158/1535-7163.mct-20-0454] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/15/2020] [Accepted: 09/28/2020] [Indexed: 12/26/2022]
Abstract
Colorectal cancer is the third most common cancer in the United States and responsible for over 50,000 deaths each year. Therapeutic options for advanced colorectal cancer are limited, and there remains an unmet clinical need to identify new treatments for this deadly disease. To address this need, we developed a precision medicine pipeline that integrates high-throughput chemical screens with matched patient-derived cell lines and patient-derived xenografts (PDX) to identify new treatments for colorectal cancer. High-throughput screens of 2,100 compounds were performed across six low-passage, patient-derived colorectal cancer cell lines. These screens identified the CDK inhibitor drug class among the most effective cytotoxic compounds across six colorectal cancer lines. Among this class, combined targeting of CDK1, 2, and 9 was the most effective, with IC50s ranging from 110 nmol/L to 1.2 μmol/L. Knockdown of CDK9 in the presence of a CDK2 inhibitor (CVT-313) showed that CDK9 knockdown acted synergistically with CDK2 inhibition. Mechanistically, dual CDK2/9 inhibition induced significant G2-M arrest and anaphase catastrophe. Combined CDK2/9 inhibition in vivo synergistically reduced PDX tumor growth. Our precision medicine pipeline provides a robust screening and validation platform to identify promising new cancer therapies. Application of this platform to colorectal cancer pinpointed CDK2/9 dual inhibition as a novel combinatorial therapy to treat colorectal cancer.
Collapse
Affiliation(s)
- Jason A Somarelli
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Roham Salman Roghani
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina.,Center for Genomics and Computational Biology, Duke University, Durham, North Carolina
| | - Ali Sanjari Moghaddam
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina.,Center for Genomics and Computational Biology, Duke University, Durham, North Carolina
| | - Beatrice C Thomas
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Gabrielle Rupprecht
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina.,Center for Genomics and Computational Biology, Duke University, Durham, North Carolina
| | - Kathryn E Ware
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Erdem Altunel
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina.,Center for Genomics and Computational Biology, Duke University, Durham, North Carolina
| | - John B Mantyh
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina.,Center for Genomics and Computational Biology, Duke University, Durham, North Carolina
| | - So Young Kim
- Duke Functional Genomics Core, Duke University, Durham, North Carolina
| | - Shannon J McCall
- Department of Pathology, Duke University, Durham, North Carolina
| | - Xiling Shen
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina.,Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | | | - David S Hsu
- Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina. .,Center for Genomics and Computational Biology, Duke University, Durham, North Carolina
| |
Collapse
|
67
|
Zhu Y, Li K, Zhang J, Wang L, Sheng L, Yan L. Inhibition of CDK1 Reverses the Resistance of 5-Fu in Colorectal Cancer. Cancer Manag Res 2020; 12:11271-11283. [PMID: 33177877 PMCID: PMC7649235 DOI: 10.2147/cmar.s255895] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Introduction Although the survival rate of colorectal cancer (CRC) patients can be improved by surgery, radiotherapy, and chemotherapy, the resistance to 5-fluorouracil (5-Fu) affects the effect of chemotherapy and the prognosis of patients. An increasing number of studies showed that 5-Fu resistance was the main reason for the failure of colorectal cancer treatment. The poor prognosis of colorectal cancer greatly harms people’s health. This study aimed to clarify the correlation between cyclin-dependent kinase 1 (CDK1) and 5-Fu-induced tumor resistance. Materials and Methods Cell proliferation and invasion experiments showed that down-regulation of CDK1 inhibited fluorouracil-resistant CRC cell proliferation. The expression level of CDK1 was detected in 5-Fu-resistant CRC cells in vitro. Tumor growth was inhibited by down-regulation of CDK1 in tumor xenograft mouse models. Results We found that CDK1 was highly expressed in tumor tissues, especially in fluorouracil-resistant tissues. We also confirmed that the differential expression of 5-Fu in tumor tissues was related to tumor site, lymph node metastasis and stage. CDK1 promoted migration, invasion and inhibited apoptosis in 5-Fu-resistant CRC cells. Down-regulation of CDK1 inhibited fluorouracil-resistant CRC cell proliferation and tumorigenesis in vivo. Conclusion High expression of CDK1 may lead to poor clinical prognosis, and inhibition of CDK1 enhances 5-Fu sensitivity in CRC. Our research suggested that CDK1 may be used to predict 5-Fu efficacy and as a therapeutic target for CRC.
Collapse
Affiliation(s)
- Yiping Zhu
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Kai Li
- Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Jieling Zhang
- Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Lu Wang
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Lili Sheng
- Department of Oncology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, People's Republic of China
| | - Liang Yan
- Provincial Key Laboratory of Biological Macro-molecules Research, Wannan Medical College, Wuhu, Anhui, People's Republic of China
| |
Collapse
|
68
|
Bhatia K, Bhumika, Das A. Combinatorial drug therapy in cancer - New insights. Life Sci 2020; 258:118134. [PMID: 32717272 DOI: 10.1016/j.lfs.2020.118134] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022]
Abstract
Cancer can arise due to mutations in numerous pathways present in our body and thus has many alternatives for getting aggravated. Due to this attribute, it gets difficult to treat cancer patients with monotherapy alone and has a risk of not being eliminated to the full extent. This necessitates the introduction of combinatorial therapy as it employs cancer treatment using more than one method and shows a greater success rate. Combinatorial therapy involves a complementary combination of two different therapies like a combination of radio and immunotherapy or a combination of drugs that can target more than one pathway of cancer formation like combining CDK targeting drugs with Growth factors targeting drugs. In this review, we discuss the various aspects of cancer which include, its causes; four regulatory mechanisms namely: apoptosis, cyclin-dependent kinases, tumor suppressor genes, and growth factors; some of the pathways involved; treatment: monotherapy and combinatorial therapy and combinatorial drug formulation in chemotherapy. The present review gives a holistic account of the different mechanisms of therapies and also drug combinations that may serve to not only complement the monotherapy but can also surpass the resistance against monotherapy agents.
Collapse
Affiliation(s)
- Karanpreet Bhatia
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi 110042, India
| | - Bhumika
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Main Bawana Road, Delhi 110042, India.
| |
Collapse
|
69
|
Meng H, Liu J, Qiu J, Nie S, Jiang Y, Wan Y, Cheng W. Identification of Key Genes in Association with Progression and Prognosis in Cervical Squamous Cell Carcinoma. DNA Cell Biol 2020; 39:848-863. [PMID: 32202912 DOI: 10.1089/dna.2019.5202] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cervical cancer remains a primary cause of female death in developing countries, but its prognosis can be greatly improved if patients are diagnosed earlier. In the present study, we screened the common differentially expressed genes (DEGs) of cervical squamous cell carcinoma (CESC) from dataset GSE7803, Gene Expression Omnibus, and The Cancer Genome Atlas databases. An integrated bioinformatics analysis was performed based on these DEGs for their enrichment in functions and pathways, interaction network, prognostic signature, and candidate molecular drugs. As a result, 164 (114 upregulated and 47 downregulated) DEGs of CESC were identified for further investigation. We then conducted the gene ontology term enrichment and Kyoto Encyclopedia of Genes and Genomes Pathway analyses to reveal the underlying functions and pathways of these DEGs. In the protein-protein interaction network, hub module and hub genes were identified. Five genes of significant prognostic value-DSG2, ITM2A, CENPM, RIBC2, and MEIS2-were identified by prognostic signature analysis and used to construct a risk linear model. Further validation and investigation suggested DSG2 might be a key gene in CESC prognosis. We then identified two candidate small molecules (trichostatin A and tanespimycin) against CESC. Further validation and exploration of these hub genes are warranted for future prospect in clinical applications.
Collapse
Affiliation(s)
- Huangyang Meng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinhui Liu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiangnan Qiu
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sipei Nie
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Jiang
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yicong Wan
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wenjun Cheng
- Department of Gynecology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
70
|
Li J, Wang Y, Wang X, Yang Q. CDK1 and CDC20 overexpression in patients with colorectal cancer are associated with poor prognosis: evidence from integrated bioinformatics analysis. World J Surg Oncol 2020; 18:50. [PMID: 32127012 PMCID: PMC7055103 DOI: 10.1186/s12957-020-01817-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignancies of the digestive system, which causes severe financial burden worldwide. However, the specific mechanisms involved in CRC are still unclear. METHODS To identify the significant genes and pathways involved in the initiation and progression of CRC, the microarray dataset GSE126092 was downloaded from Gene Expression Omnibus (GEO) database, and then, the data was analyzed to identify differentially expressed genes (DEGs). Subsequently, the Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed on these DEGs using the DAVID database, and the protein-protein interaction (PPI) network was constructed using the STRING database and analyzed using the Cytoscape software. Finally, hub genes were screened, and the survival analysis was performed on these hub genes using the Kaplan-Meier curves in the cBioPortal database. RESULTS In total, 937 DEGs were obtained, including 316 upregulated genes and 621 downregulated genes. GO analysis revealed that the DEGs were mostly enriched in terms of nuclear division, organelle fission, cell division, and cell cycle process. KEGG pathway analysis showed that the DEGs were mostly enriched in cell cycle, oocyte meiosis, cytokine-cytokine receptor interaction, and cGMP-PKG signaling pathway. The PPI network comprised 608 nodes and 3100 edges, and 4 significant modules and 10 hub genes with the highest degree were identified using the Cytoscape software. Finally, survival analysis showed that overexpression of CDK1 and CDC20 in patients with CRC were statistically associated with worse overall survival. CONCLUSIONS This bioinformatics analysis revealed that CDK1 and CDC20 might be candidate targets for diagnosis and treatment of CRC, which provided valuable clues for CRC.
Collapse
Affiliation(s)
- Jianxin Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yinchun Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xin Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Qingqiang Yang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.
| |
Collapse
|
71
|
Li HN, Zheng WH, Du YY, Wang G, Dong ML, Yang ZF, Li XR. ZW10 interacting kinetochore protein may serve as a prognostic biomarker for human breast cancer: An integrated bioinformatics analysis. Oncol Lett 2020; 19:2163-2174. [PMID: 32194714 PMCID: PMC7039158 DOI: 10.3892/ol.2020.11353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/19/2019] [Indexed: 12/12/2022] Open
Abstract
ZW10 interacting kinetochore protein (ZWINT) is an essential component for the mitotic spindle checkpoint and has been reported to be upregulated in numerous types of human cancer. Nonetheless, its role in breast cancer (BC) remains unclear. Herein, it was demonstrated that the expression of ZWINT was significantly higher in BC than in normal breast tissues, on the basis of integrated analysis of bioinformatics studies, cancer database analyses and immunohistochemical detection. Elevated ZWINT levels were associated with a number of clinicopathological characteristics in patients with BC. These characteristics include: i) Positive human epidermal growth factor receptor 2 expression; ii) triple-negative BC; iii) younger age; iv) basal-like subtype; and v) greater Scarff-Bloom-Richardson grades. Additionally, prognostic analysis indicated that shorter relapse-free survival, overall survival and metastatic relapse-free survival may be associated with high ZWINT expression. A total of 16 pathways associated with high ZWINT expression, including Myc targets V1/2, DNA repair and mitotic spindle pathways, were identified using Gene Set Enrichment Analysis. In addition, a positive correlation between cyclin-dependent kinase 1 (CDK1) and ZWINT mRNA expression was identified by co-expression analysis. The present study suggested that ZWINT may serve as an effective prognostic biomarker for BC. In addition, ZWINT may be implicated in the CDK1-mediated initiation and progression of BC. However, further research is required to understand the role of ZWINT in BC.
Collapse
Affiliation(s)
- Han-Ning Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Wei-Hong Zheng
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ya-Ying Du
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Ge Wang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Meng-Lu Dong
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhi-Fang Yang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xing-Rui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
72
|
Wei LB, Gao JR, Gao YC, Liu XC, Jiang H, Qin XJ. Effect of the traditional Chinese medicine Qi Teng Xiao Zhuo granules on chronic glomerulonephritis rats studied by using long noncoding RNAs expression profiling. Gene 2019; 728:144279. [PMID: 31821871 DOI: 10.1016/j.gene.2019.144279] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
AIM OF THE STUDY Chronic glomerulonephritis (CGN) is the most common form of primary glomerular disease. Qi Teng Xiao Zhuo granules have been proposed as a prescription of traditional Chinese medicine (TCM) for treatment of CGN, however,the comprehensive molecular mechanism underlying this therapeutic effectremains unclear to date. Our study aimed to evaluate and analyze the possible roles and molecular mechanisms of Qi Teng Xiao Zhuo granule-mediated treatment of CGN induced by adriamycin in rats. MATERIALS AND METHODS RNA-sequencing and real-time polymerase chain reaction (RT-PCR) were applied to identify specifically expressed long noncoding RNAs (lncRNAs) in glomerular tissues of rats from the control group, adriamycin-induced group, and Qi Teng Xiao Zhuo granules group (n = 3). Differentially expressed lncRNAs and mRNAs (messengerRNAs) were screened out among the 3 groups. Gene ontology (GO) and pathway enrichment analyses were performed to analyze the biological functions and pathways for mRNAs. LncRNA-mRNA co-expression network was constructed to analyse for the genes. The protein-protein interaction (PPI) network was visualized. RESULTS A total of 473 significantly up and down-regulated lncRNAs, 753 up and down-regulated mRNAs were identified. Additionally, it is worth noting that TOP2a (topoisomerase (DNA) II alpha), with the highest connectivity degree in PPI network, was enriched in variouskinds of pathways. Coding-non-coding gene co-expression networks (CNC network) were drawn based on the correlation analysis between lncRNAs and mRNAs. Ten lncRNAs, NONRATT009275.2, NONRATT025409.2, NONRATT025419.2, MSTRG.7681.1, ENSRNOT00000084373, NONRATT000512.2, NONRATT006734.2, ENSRNOT00000084386, NONRATT021738.2, ENSRNOT00000084080, were selected to analyse the relationship between LncRNAs and Qi Teng Xiao Zhuo granules via the CNC network (Coding-non-coding gene co-expression networks) and GO analysis. Real-time PCR results confirmed that the six lncRNAs were specifically expressed in the Qi Teng Xiao Zhuo granules rats. CONCLUSIONS The ten lncRNAs might play important roles in the Qi Teng Xiao Zhuo granules treatment of CGN. Key genes, such as Ptprc (protein tyrosine phosphatase, receptor type, C), TOP2a, Fos (FBJ osteosarcoma oncogene), Myc (myelocytomatosis oncogene), etc, may be crucial biomarkers for Qi Teng Xiao Zhuo granules.
Collapse
Affiliation(s)
- Liang-Bing Wei
- Department of Pharmacy, The first affiliated hospital of Anhui university of Chinese medicine, 117 Meishan Road, Hefei, China.
| | - Jia-Rong Gao
- Department of Pharmacy, The first affiliated hospital of Anhui university of Chinese medicine, 117 Meishan Road, Hefei, China.
| | - Ya-Chen Gao
- Department of Nephrology, The first affiliated hospital of Anhui university of Chinese medicine, 117 Meishan Road, Hefei, China.
| | - Xiao-Chuang Liu
- Department of Pharmacy, The first affiliated hospital of Anhui university of Chinese medicine, 117 Meishan Road, Hefei, China.
| | - Hui Jiang
- Department of Pharmacy, The first affiliated hospital of Anhui university of Chinese medicine, 117 Meishan Road, Hefei, China.
| | - Xiu-Juan Qin
- Department of Pharmacy, The first affiliated hospital of Anhui university of Chinese medicine, 117 Meishan Road, Hefei, China.
| |
Collapse
|
73
|
Zinc finger of the cerebellum 5 promotes colorectal cancer cell proliferation and cell cycle progression through enhanced CDK1/CDC25c signaling. Arch Med Sci 2019; 17:449-461. [PMID: 33747280 PMCID: PMC7959057 DOI: 10.5114/aoms.2019.89677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 02/02/2019] [Indexed: 12/14/2022] Open
Abstract
Introduction Colorectal cancer (CRC), mostly caused by external or environmental factors, is the third most common and lethal cancer worldwide. Although a large number of investigations have been carried out to reveal the evolution of CRC, the underlying mechanisms of CRC remain unclear. Material and methods Expression of zinc finger of the cerebellum 5 (ZIC5) in CRC tissues and cell models was measured by qRT-PCR and IHC. Cell transfection was carried out for ZIC5 overexpression or knockdown. The MTT assay was applied to examine the capacity of glioma cell proliferation. Wound healing assay and tumor invasion assay were used to test the capacity of glioma cell migration and invasion respectively. Cell cycle analysis and western blot were used to verify the apoptosis rates of CRC cells upon ZIC5 overexpression or downregulation. A further tumor Xenograft study was used to examine the effects of ZIC5 on tumor malignancy in vivo. Results Cell models using HCT116 and SW620 cells were established to study the ZIC5 function upon ZIC5 overexpression of knockdown. Consistently, we discovered that ZIC5 also significantly increased in Chinese CRC patients. In addition, ZIC5 promoted CRC cell proliferation through increasing the proportion of cells maintained in the S phase. ZIC5 overexpression facilitated the capacity of CRC cell migration and invasion. Inhibition of ZIC5 mitigated such malignant effects. Conclusions Collectively, investigations of the ZIC5 in CRC provided a new insight into CRC diagnosis, treatment, prognosis and next-step translational therapeutic developments from bench to clinic.
Collapse
|
74
|
Gao X, Zhang Y, Zhang R, Zhao Z, Zhang H, Wu J, Shen W, Zhong M. Cyclin-dependent kinase 1 disruption inhibits angiogenesis by inducing cell cycle arrest and apoptosis. Exp Ther Med 2019; 18:3062-3070. [PMID: 31555388 PMCID: PMC6755431 DOI: 10.3892/etm.2019.7883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 07/16/2019] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis is a complex process, which involves the sprouting of new blood vessels from pre-existing vasculature. Pathological retinal angiogenesis can lead to vision loss and even blindness. Cyclin-dependent kinase 1 (CDK1) is involved in regulation of the cell cycle and is reported to contribute to tumor progression. However, the role of CDK1 in retinal angiogenesis is largely unknown. The purpose of the present study was to investigate the role of CDK1 in retinal angiogenesis. Western blotting, reverse transcription-quantitative PCR (RT-qPCR) analysis, immunofluorescence and immunohistochemistry were used to evaluate the expression of CDK1 in pathological angiogenesis using an oxygen-induced retinopathy (OIR) mouse model. Small interfering (si)RNA sequences against CDK1 were synthesized and incubated with retinal cells. The efficiency of knockdown was confirmed by western blot and RT-qPCR assays. The effect of CDK1 siRNAs on angiogenesis in vitro was investigated using EdU cell proliferation, cell migration and tube formation assays. Subsequently, flow cytometry was used to assess the effects of CDK1 siRNAs on cell cycle distribution and on the induction of apoptosis. The expression levels of cell cycle- and apoptosis-related genes were detected using western blotting. CDK1 was overexpressed in pathological retinal angiogenesis. CDK1 siRNAs inhibited human umbilical vein endothelial cell proliferation, migration and tube formation. The possible mechanisms involved the induction of cell cycle arrest at the G2/M phase and the induction of apoptosis via an increase in the expression levels of p21 and p53. In conclusion, the data indicated that CDK1 was overexpressed in the OIR model and that silencing of CDK1 inhibited angiogenesis in vitro. CDK1 may be a novel therapeutic target for pathological retinal angiogenesis.
Collapse
Affiliation(s)
- Xin Gao
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Yuan Zhang
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Rui Zhang
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Zichan Zhao
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Haorui Zhang
- Company 6 of Basic Medical School, Second Military Medical University, Shanghai 200433, P.R. China
| | - Jinhui Wu
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Wei Shen
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| | - Ming Zhong
- Department of Ophthalmology, Shanghai Changhai Hospital, Shanghai 200433, P.R. China
| |
Collapse
|
75
|
Feng D, Qin B, Pal K, Sun L, Dutta S, Dong H, Liu X, Mukhopadhyay D, Huang S, Sinicrope FA. BRAF V600E-induced, tumor intrinsic PD-L1 can regulate chemotherapy-induced apoptosis in human colon cancer cells and in tumor xenografts. Oncogene 2019; 38:6752-6766. [PMID: 31406255 PMCID: PMC6786951 DOI: 10.1038/s41388-019-0919-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 06/04/2019] [Accepted: 07/10/2019] [Indexed: 12/19/2022]
Abstract
Programmed death ligand 1 (PD-L1) is an immune checkpoint protein, however, emerging data suggest that tumor cell PD-L1 may regulate immune-independent and intrinsic cellular functions. We demonstrate regulation of PD-L1 by oncogenic BRAFV600E and investigated its ability to influence apoptotic susceptibility in colorectal cancer (CRC) cells. Endogenous or exogenous mutant vs wild-type BRAF were shown to increase PD-L1 mRNA and protein expression that was attenuated by MEK inhibition or c-JUN and YAP knockdown. Deletion of PD-L1 reduced tumor cell growth in vitro and in vivo. Loss of PD-L1 was also shown to attenuate DNA damage and apoptosis induced by diverse anti-cancer drugs that could be reversed by restoration of wild-type PD-L1, but not mutants with deletion of its extra- or intra-cellular domain. The effect of PD-L1 on chemosensitivity was confirmed in MC38 murine tumor xenografts generated from PD-L1 knockout vs parental cells. Deletion of PD-L1 suppressed BH3-only BIM and BIK proteins that could be restored by re-expression of PD-L1; re-introduction of BIM enhanced apoptosis. PD-L1 expression was significantly increased in BRAFV600E human colon cancers, and patients whose tumors had high vs low PD-L1 had significantly better survival. In summary, BRAFV600E can transcriptionally up-regulate PD-L1 expression that was shown to induce BIM and BIK to enhance chemotherapy-induced apoptosis. These data indicate an intrinsic, non-immune function of PD-L1, and suggest the potential for PD-L1 as a predictive biomarker.
Collapse
Affiliation(s)
- Daofu Feng
- Gastrointestinal Research Unit, Rochester, MN, 55905, USA
| | - Bo Qin
- Gastrointestinal Research Unit, Rochester, MN, 55905, USA
| | - Krishnendu Pal
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Lei Sun
- Gastrointestinal Research Unit, Rochester, MN, 55905, USA
| | - Shamit Dutta
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Haidong Dong
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Xin Liu
- Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Frank A Sinicrope
- Gastrointestinal Research Unit, Rochester, MN, 55905, USA. .,Departments of Medicine and Oncology, Rochester, MN, 55905, USA. .,Mayo Clinic and Mayo Comprehensive Cancer Center, Rochester, MN, 55905, USA.
| |
Collapse
|
76
|
Identification of AUNIP as a candidate diagnostic and prognostic biomarker for oral squamous cell carcinoma. EBioMedicine 2019; 47:44-57. [PMID: 31409573 PMCID: PMC6796785 DOI: 10.1016/j.ebiom.2019.08.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors worldwide. Patients with poorly differentiated OSCC often exhibit a poor prognosis. AUNIP (Aurora Kinase A and Ninein Interacting Protein), also known as AIBp, plays a key role in cell cycle and DNA damage repair. However, the function of AUNIP in OSCC remains elusive. Methods The differentially expressed genes (DEGs) were obtained using R language. Receiver operating characteristic curve analysis was performed to identify diagnostic markers for OSCC. The effectiveness of AUNIP in diagnosing OSCC was evaluated by machine learning. AUNIP expression was analyzed in publicly available databases and clinical specimens. Bioinformatics analysis and in vitro experiments were conducted to explore biological functions and prognostic value of AUNIP in OSCC. Findings The gene integration analysis revealed 90 upregulated DEGs. One candidate biomarker, AUNIP, for the diagnosis of OSCC was detected, and its expression gradually increased along with malignant differentiation of OSCC. Bioinformatics analysis demonstrated that AUNIP could be associated with tumor microenvironment, human papillomavirus infection, and cell cycle in OSCC. The suppression of AUNIP inhibited OSCC cell proliferation and resulted in G0/G1 phase arrest in OSCC cells. The survival analysis showed that AUNIP overexpression predicted poor prognosis of OSCC patients. Interpretation: AUNIP could serve as a candidate diagnostic and prognostic biomarker for OSCC and suppression of AUNIP may be a potential approach to preventing and treating OSCC. Fund Taishan Scholars Project in Shandong Province (ts201511106) and the National Natural Science Foundation of China (Nos. 61603218).
Collapse
|
77
|
ARID1A and PI3-kinase pathway mutations in the endometrium drive epithelial transdifferentiation and collective invasion. Nat Commun 2019; 10:3554. [PMID: 31391455 PMCID: PMC6686004 DOI: 10.1038/s41467-019-11403-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/03/2019] [Indexed: 01/06/2023] Open
Abstract
ARID1A and PI3-Kinase (PI3K) pathway alterations are common in neoplasms originating from the uterine endometrium. Here we show that monoallelic loss of ARID1A in the mouse endometrial epithelium is sufficient for vaginal bleeding when combined with PI3K activation. Sorted mutant epithelial cells display gene expression and promoter chromatin signatures associated with epithelial-to-mesenchymal transition (EMT). We further show that ARID1A is bound to promoters with open chromatin, but ARID1A loss leads to increased promoter chromatin accessibility and the expression of EMT genes. PI3K activation partially rescues the mesenchymal phenotypes driven by ARID1A loss through antagonism of ARID1A target gene expression, resulting in partial EMT and invasion. We propose that ARID1A normally maintains endometrial epithelial cell identity by repressing mesenchymal cell fates, and that coexistent ARID1A and PI3K mutations promote epithelial transdifferentiation and collective invasion. Broadly, our findings support a role for collective epithelial invasion in the spread of abnormal endometrial tissue. PIK3CA mutations and ARID1A loss co-exist in endometrial neoplasms. Here, the authors show that these co-mutations drive gene expression profiles correlated with differential chromatin accessibility and ARID1A binding in the endometrial epithelium, resulting in partial EMT and myometrial invasion.
Collapse
|
78
|
Abnormal expression of menin predicts the pathogenesis and poor prognosis of adult gliomas. Cancer Gene Ther 2019; 27:539-547. [PMID: 31383953 DOI: 10.1038/s41417-019-0127-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
Several brain tumors is closely related to the disorder of chromatin histone modification, whereas the epigenetic mechanisms of the incidence of highly malignant adult glioma is not yet deeply studied. Deletion or mutation of the MEN1 gene, which encodes the epigenetic regulator menin, specifically induces poorly differentiated neuroendocrine tumors; however, the biological and clinical importance of MEN1 in the nervous system remains poorly understood. Menin expression was robustly activated in 44.4% of adult gliomas. Abnormally high expression of menin was closely related to a shorter median survival time of 20 months, a larger tumor volume and a higher percentage of Ki67 staining. Interestingly, menin expression was also activated in the cytoplasm of tumor cells (38.8%) and was also closely related to the poor prognosis of patients with glioma. Importantly, in a screening of 96 types of small-molecule targeted histone modification regulators, menin inhibitors were found to significantly block the proliferation of adult glioma cells. Our findings confirm that menin is a potential biomarker of poor prognosis in adult gliomas, independent of the WHO grade. Targeting menin may effectively inhibit certain gliomas, and this information provides novel insight into therapeutic strategies for glioma.
Collapse
|
79
|
Increased glucocorticoid receptor activity and proliferation in metastatic colon cancer. Sci Rep 2019; 9:11257. [PMID: 31375708 PMCID: PMC6677795 DOI: 10.1038/s41598-019-47696-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 07/09/2019] [Indexed: 12/21/2022] Open
Abstract
Metastasis is regarded as the fatal hallmark for colon cancer, but molecular mechanisms responsible for it have remained poorly defined. Glucocorticoid receptor (GR) within the tumor microenvironment mediates the effects of stress hormones which are used in clinics for their inflammation-modulatory and immunosuppressive properties. Further, epigenetic activation of GR promotes tumor heterogeneity and metastasis. Here, we sought to investigate the correlation between GR activation and proliferation and invasion in metastatic colon cancer microenvironment. We used proliferation/invasion assays, western blot, RT-qPCR, immunofluorescence staining and quantitative methylation to study glucocorticoid-GR signaling, including the involvement of CDK1, in human colon adenocarcinoma cell lines HT29 and T84 (a representative metastatic cell line). Nuclear expression levels of GR were significantly upregulated in metastatic T84 cells, and glucocorticoid derivative, dexamethasone (DEX) treatment caused increased proliferation and invasion in T84 cell, compared to HT29 cell. DEX treatment induced CDK1 expression which was accompanied by reduced CDK1 methylation, indicating epigenetic regulation. Depletion of GR suppressed proliferation of metastatic colon carcinoma cells and depletion of CDK1 had similar suppressing effects on proliferation as well as invasion of metastatic cells. Our study suggests that glucocorticoid-GR-CDK1 signaling induces proliferation and invasion of colon cancer cells and therapies involving the use of glucocorticoids need to exercise caution and re-evaluation.
Collapse
|
80
|
Zhao H, Li S, Wang G, Zhao W, Zhang D, Wang F, Li W, Sun L. Study of the mechanism by which dinaciclib induces apoptosis and cell cycle arrest of lymphoma Raji cells through a CDK1-involved pathway. Cancer Med 2019; 8:4348-4358. [PMID: 31207099 PMCID: PMC6675732 DOI: 10.1002/cam4.2324] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 05/15/2019] [Accepted: 05/22/2019] [Indexed: 01/02/2023] Open
Abstract
Objective This study aimed to identify and evaluate the mechanism by which apoptosis and cell cycle arrest were induced by dinaciclib in lymphoma Raji cells. Methods The colony formation assay was used to detect cell proliferation of Raji cells. Cell cycle arrest and cell apoptosis were determined by flow cytometry and TUNEL assays, respectively. Protein expression related to the Raji cell state was evaluated by Western blot. The Raji/Dinaciclib drug‐resistant cell line was established, where the regulating functions of CDK1‐involved pathway were verified. In addition, the effect of dinaciclib in vivo was examined in orthotopically implanted tumors in nude mice. Results Cell apoptosis was induced, and DNA synthesis ability was decreased in a time‐dependent manner in dinaciclib‐treated lymphoma Raji cells. Furthermore, the cell cycle was found to be blocked in the G2/M Phase. Further study indicated that CDK1‐involved pathway played a key regulatory role in this process. It was revealed by cell transfection that the expression of cell cycle proteins was downregulated after treatment with dinaciclib through a CDK1‐involved pathway, which eventually led to apoptosis. Knockdown of CDK1 restored the sensitivity of the Raji/Dinaciclib cells to dinaciclib. Xenograft model of nude mice showed that dinaciclib treatment in vivo could effectively inhibit tumor growth, consistent with the experiment results mentioned before. Conclusion In this study, we clarified the mechanisms through which dinaciclib induces Raji cell apoptosis and blocks the cell cycle through a CDK1‐involved pathway, which supported that dinaciclib had potential values in the treatment of lymphoma.
Collapse
Affiliation(s)
- Huayan Zhao
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shenglei Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guannan Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wugan Zhao
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dandan Zhang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ling Sun
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
81
|
Li L, Zhang Z, Yang Q, Ning M. Lycorine inhibited the cell growth of non-small cell lung cancer by modulating the miR-186/CDK1 axis. Life Sci 2019; 231:116528. [PMID: 31176784 DOI: 10.1016/j.lfs.2019.06.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 12/24/2022]
Abstract
AIMS Lycorine is a kind of natural alkaloid with anti-cancer potential. It has been demonstrated that lycorine processes high activity and specificity against the progression of cancers. However, the underlying molecular mechanisms by which lycorine regulates the formation and development of non-small cell lung cancer (NSCLC) remain largely unknown. MAIN METHODS The effects of lycorine on the growth of NSCLC cells were determined by the cell counting kit-8 (CCK-8) assay, colony formation and flow cytometry analysis. RT-qPCR was performed to detect the expression of microRNA with lycorine treatment. The binding of miRNA and target genes was confirmed by luciferase reporter assay. KEY FINDINGS Lycorine significantly inhibited the proliferation and induced apoptosis of NSCLC cells. Mechanistically, lycorine up-regulated the expression of microRNA-186 in NSCLC cells. Depletion of miR-186 significantly reversed the suppressive effect of lycorine on the proliferation of NSCLC cells. Furthermore, the cyclin dependent kinase 1 (CDK1) was identified as one of the binding candidates of miR-186. Experimental analysis showed that miR-186 bound the 3'-untranslated region (3'-UTR) of CDK1 and suppressed the level of CDK1 in NSCLC cells. Consistently, exposure of lycorine significantly decreased the expression of CDK1. Restoration of CDK1 remarkably attenuated the inhibition of lycorine on the proliferation of NSCLC cells. SIGNIFICANCE Our results uncovered the novel molecular mechanism of lycorine in suppressing the progression of NSCLC partially via regulating the miR-186/CDK1 axis.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou, Hebei 061001, China
| | - Zao Zhang
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou, Hebei 061001, China
| | - Qian Yang
- Traditional Chinese Medicine Department, Cangzhou Central Hospital, Cangzhou, Hebei, China, 061001
| | - Meiying Ning
- Department of Pharmacy, Cangzhou Central Hospital, Cangzhou, Hebei 061001, China.
| |
Collapse
|
82
|
Zhu X, Wang D, Lin Q, Wu G, Yuan S, Ye F, Fan Q. Screening key lncRNAs for human rectal adenocarcinoma based on lncRNA-mRNA functional synergistic network. Cancer Med 2019; 8:3875-3891. [PMID: 31116002 PMCID: PMC6639256 DOI: 10.1002/cam4.2236] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/17/2019] [Accepted: 04/26/2019] [Indexed: 12/23/2022] Open
Abstract
Background Rectal adenocarcinoma (READ) is one of the deadliest malignancies, and the molecular mechanisms underlying the initiation and development of READ remain largely unknown. In this study, we aimed to find key long noncoding RNAs (lncRNAs) and mRNAs in READ by RNA sequencing. Methods RNA sequencing was performed to identify differentially expressed mRNAs (DEmRNAs) and lncRNAs (DElncRNAs) between READ and normal tissue. READ‐specific protein‐protein interaction (PPI), DElncRNA‐DEmRNA coexpression, and DElncRNA‐nearby DEmRNA interaction networks were constructed. DEmRNAs and DEmRNAs coexpressed with DElncRNAs were functionally annotated. Results A total of 2113 DEmRNAs and 150 DElncRNAs between READ and normal tissue were identified. The PPI network identified several hub proteins, including CDK1, AURKB, CDC6, FOXQ1, NUF2, and TOP2A. The DElncRNA‐DEmRNA coexpression and DElncRNA‐nearby DEmRNA interaction networks identified some hub lncRNAs, including CCAT1, LOC105374879, GAS5, and B3GALT5‐AS1. The colorectal cancer pathway, the intestinal immune network for IgA production and the p53 signaling pathway were three pathways significantly enriched in DEmRNAs and DEmRNAs coexpressed with DElncRNAs. MSH6 coexpressed with two DElncRNAs (LOC105374879 and CASC15) and BCL2 coexpressed with B3GALT5‐AS1 were significantly enriched in the colorectal cancer signaling pathway. TNFRSF17 coexpressed with B3GALT5‐AS1 was enriched in the intestinal immune network for IgA production. CCNB2 coexpressed with LOC105374879 was enriched in the p53 signaling pathway. Conclusion A total of four DEmRNAs (MSH6, BCL2, TNFRSF17, and CCNB2) and three DElncRNAs (LOC105374879, CASC15, and B3GALT5‐AS1) may be involved in the pathogenesis of READ; this data may contribute to understanding the mechanisms of READ and the development of therapeutic strategies for READ.
Collapse
Affiliation(s)
- Xiongwen Zhu
- Department of Gastrointestinal Surgery, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, China
| | - Dongguo Wang
- Department of Clinical Lab Medicine, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, China
| | - Qianyuan Lin
- Department of Medical Technology and Pharmacy, Renji college of Wenzhou Medical University, Wenzhou, China
| | - Guiyang Wu
- Department of Gastrointestinal Surgery, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, China
| | - Shichao Yuan
- Department of Gastrointestinal Surgery, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, China
| | - Fubo Ye
- Department of Gastrointestinal Surgery, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, China
| | - Qinghao Fan
- Department of Gastrointestinal Surgery, Taizhou Municipal Hospital Affiliated with Taizhou University, Taizhou, China
| |
Collapse
|
83
|
Yan X, Liu XP, Guo ZX, Liu TZ, Li S. Identification of Hub Genes Associated With Progression and Prognosis in Patients With Bladder Cancer. Front Genet 2019; 10:408. [PMID: 31134129 PMCID: PMC6513982 DOI: 10.3389/fgene.2019.00408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/15/2019] [Indexed: 01/28/2023] Open
Abstract
Given that most bladder cancers (BCs) are diagnosed in advanced stages with poor prognosis, this study aims to find novel biomarkers associated with the progression and prognosis in patients with BC. 1,779 differentially expressed genes (DEGs) between BC samples and normal bladder tissues were identified in total. Then, 24 DEGs were regarded as candidate hub genes by constructing a protein–protein interaction (PPI) network and a random forest model. Among them, six genes (BUB1B, CCNB1, CDK1, ISG15, KIF15, and RAD54L) were eventually identified by using five analysis methods (one-way Analysis of Variance analysis, spearman correlation analysis, distance correlation analysis, receiver operating characteristic curve, and expression values comparison), which were correlated with the progression and prognosis of BC. Moreover, the validation of hub genes was conducted based on GSE13507, Oncomine, and CBioPortal. Results of univariate Cox regression analysis showed that the expression levels of all the hub genes were influence features of overall survival (OS) and cancer specific survival (CSS) based on GSE13507, and we further established a six-gene signature based on the expression levels of the six genes and their Cox regression coefficients. This signature showed good potential for clinical application suggested by survival analysis (OS: Hazard Ratio = 0.484, 95%CI: 0.298–0.786; P = 0.0034; CSS: Hazard Ratio = 0.244, 95%CI: 0.121–0.493, P < 0.0001) and decision curve analysis. In conclusion, our study indicates that six hub genes have great predictive value for the prognosis and progression of BC and may contribute to the exploration of further basic and clinical research of BC.
Collapse
Affiliation(s)
- Xin Yan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao-Ping Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zi-Xin Guo
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tong-Zu Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sheng Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.,Human Genetics Resource Preservation Center of Hubei Province, Wuhan, China
| |
Collapse
|
84
|
LncRNAs expression in adriamycin-induced rats reveals the potential role of LncRNAs contributing to chronic glomerulonephritis pathogenesis. Gene 2019; 687:90-98. [DOI: 10.1016/j.gene.2018.11.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/28/2018] [Accepted: 11/16/2018] [Indexed: 12/29/2022]
|
85
|
Zhou G, Yang J, Song P. Correlation of ERK/MAPK signaling pathway with proliferation and apoptosis of colon cancer cells. Oncol Lett 2018; 17:2266-2270. [PMID: 30675292 PMCID: PMC6341783 DOI: 10.3892/ol.2018.9857] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
The role of extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) signaling pathway in the proliferation and apoptosis of human colon cancer cells was studied. The transduction process of ERK/MAPK signaling pathway was inhibited using methyl ethyl ketone (MEK) inhibitor U0126. Promoting effect of hepatocyte growth factor (HGF) on proliferation of human colon cancer cells was detected via Cell Counting Kit 8 (CCK8), the cycle and apoptosis of human colon cancer cells were detected via flow cytometry, and the migration of human colon cancer cells was detected via wound healing assay. The results revealed that after drug treatment for 48 h, there were statistically significant differences in 4 and 8 µmol/l U0126 experimental group compared with control group (P<0.05). Compared with those in control group, G1 phase, S phase, G2 phase and proliferation index (PI) in 2, 4 and 8 µmol/l U0126 group had statistically significant differences (P<0.05). There were statistically significant differences in comparison of G1 phase, S phase, G2 phase and PI between control and 8 µmol/l U0126 group (P<0.05). Compared with that in control group, the cell migration distance in 8 µmol/l U0126 group had a statistically significant difference after drug treatment for 24 h (P<0.05). After drug treatment for 48 and 72 h, the cell migration distance in 4 and 8 µmol/l U0126 group was significantly reduced, and the differences were statistically significant compared with that in control group (P<0.05). In conclusion, ERK/MAPK signaling pathway is involved in the effects of HGF of promoting proliferation and regulating cell cycle and apoptosis of human colon cancer cells, providing a new approach for the treatment of colon cancer.
Collapse
Affiliation(s)
- Gang Zhou
- Department of Medical Oncology, The Second Medical Centre, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jing Yang
- Department of Medical Oncology, The Second Medical Centre, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Peng Song
- Department of Medical Oncology, The Second Medical Centre, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
86
|
Wang L, Xu M, Lu P, Zhou F. microRNA-769 is downregulated in colorectal cancer and inhibits cancer progression by directly targeting cyclin-dependent kinase 1. Onco Targets Ther 2018; 11:9013-9025. [PMID: 30588014 PMCID: PMC6296200 DOI: 10.2147/ott.s183847] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In recent years, microRNAs (miRNAs) have been reported to be aberrantly expressed in colorectal cancer (CRC). The deregulation of miRNAs is implicated in the formation and progression of CRC, and participates in the regulation of a wide range of biological behaviors. Considering the crucial role of miRNAs in CRC, miRNAs are thought to have significant promise in the diagnosis and therapy of patients with this malignancy. MATERIAL AND METHODS Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to detect miR-769 expression in CRC tissues and cell lines. MTT assay and flow cytometry analysis were used to determine the effects of miR-769 upregulation in CRC cell proliferation and apoptosis, respectively. The influence of miR-769 overexpression in CRC cell migration and invasion was evaluated through migration and invasion assays. Notably, the possible mechanisms underlying the action of miR-769 in CRC cells were explored. RESULTS In the present study, miR-769 was frequently found to be poorly expressed in CRC tissues and cell lines. Functional assays showed that recovery of miR-769 expression suppressed CRC cell proliferation, migration, and invasion, increased cell apoptosis in vitro, and inhibited tumor growth in vivo. Cyclin-dependent kinase 1 (CDK1) was the direct target of miR-769 in CRC cells. CDK1 was overexpressed in CRC tissue samples and negatively correlated with miR-769 expression. In addition, CDK1 inhibition imitated the tumor suppressor activity of miR-769 in CRC cells, and restoration of CDK1 expression partially abolished the tumor-suppressing roles of miR-769 in malignant CRC cells. CONCLUSION The results of this study demonstrated that miR-769 was downregulated in CRC and directly targeted CDK1 to be implicated in the regulation of CRC cell proliferation, apoptosis, migration and invasion. Thus, the miR-769/CDK1 axis might be an effective therapeutic target for treating patients with CRC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, Xuhui Branch of Shanghai Sixth People's Hospital, Shanghai 200235, People's Republic of China,
| | - Minyi Xu
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, Xuhui Branch of Shanghai Sixth People's Hospital, Shanghai 200235, People's Republic of China,
| | - Pei Lu
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, Xuhui Branch of Shanghai Sixth People's Hospital, Shanghai 200235, People's Republic of China,
| | - Fangfang Zhou
- Department of Clinical Laboratory, Shanghai Eighth People's Hospital, Xuhui Branch of Shanghai Sixth People's Hospital, Shanghai 200235, People's Republic of China,
| |
Collapse
|
87
|
Zhu Y, Bian Y, Zhang Q, Hu J, Li L, Yang M, Qian H, Yu L, Liu B, Qian X. Construction and analysis of dysregulated lncRNA-associated ceRNA network in colorectal cancer. J Cell Biochem 2018; 120:9250-9263. [PMID: 30525245 DOI: 10.1002/jcb.28201] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/15/2018] [Indexed: 12/26/2022]
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed digestive system cancer. The aim of the present study was to investigate the interactions among messenger RNAs (mRNAs), microRNAs (miRNAs), and long noncoding RNAs (lncRNAs) in CRC to reveal the mechanisms of CRC. Differentially expressed genes (DEGs) were identified from public gene expression data sets. One thousand eighty-one common dysregulated mRNAs in two data sets were identified. Gene function analysis and protein-protein interaction network analysis indicated that these DEGs might play important roles in CRC. LINC00365 was selected through coding- noncoding network analysis and its expression was validated upregulated in 22 paired clinical samples and four CRC cell lines. A competing endogenous RNA network composed of 70 miRNAs, nine mRNAs, and LINC00365 was constructed. Eight of nine mRNAs were validated upregulated in The Cancer Genome Atlas data set. Our results suggested that LINC00365 was an oncogene in CRC and it could regulate the expression of several mRNAs through sponging miRNAs.
Collapse
Affiliation(s)
- Yiping Zhu
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Oncology, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, China
| | - Yinzhu Bian
- Department of Oncology, The First People's Hospital of Yancheng, Yancheng, Jiangsu, China
| | - Qun Zhang
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Jing Hu
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Li Li
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Mi Yang
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Hanqing Qian
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Lixia Yu
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Baorui Liu
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China.,Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaoping Qian
- Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China.,Comprehensive Cancer Center, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
88
|
Gan Y, Li Y, Li T, Shu G, Yin G. CCNA2 acts as a novel biomarker in regulating the growth and apoptosis of colorectal cancer. Cancer Manag Res 2018; 10:5113-5124. [PMID: 30464611 PMCID: PMC6217169 DOI: 10.2147/cmar.s176833] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Colorectal cancer (CRC) is considered to be the most prevalent malignant tumors that contribute to high cancer-related mortality. However, the signaling pathways involved in CRC and CRC-driven genes are largely unknown. We seek to discover a novel biomarker in CRC. MATERIALS AND METHODS All clinical CRC samples (n=33) were from Xiangya Hospital. We first selected CCNA2 by integrated bioinformatics analysis of four GSE databases. Next, the expression of CCNA2 in tissues and cell lines was verified by quantitative real-time PCR. The effects of CCNA2 on cell growth, proliferation, cell cycle, and apoptosis were examined by in vitro assays. RESULTS We identified 498 shared DEGs (294 upregulated and 204 downregulated), and the top ten hub genes were selected by integrated analysis. These hub genes were significantly overexpressed in CRC samples and were positively correlated. Our data revealed that the expression of CCNA2 in CRC tissues is higher than that in normal tissues. The CCNA2 knockdown could significantly suppress CRC cell growth by impairing cell cycle progression and inducing cell apoptosis. CONCLUSION CCNA2, as a novel oncogenic gene, plays a role in regulating cancer cell growth and apoptosis. It could be used as a new biomarker for diagnosis and therapy in CRC.
Collapse
Affiliation(s)
- Yaqi Gan
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China,
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China,
| | - Yimin Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China,
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China,
| | - Tong Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China,
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China,
| | - Guang Shu
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China,
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China,
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China,
| |
Collapse
|
89
|
Zhou S, Xia H, Xu H, Tang Q, Nie Y, Gong QY, Bi F. ERRα suppression enhances the cytotoxicity of the MEK inhibitor trametinib against colon cancer cells. J Exp Clin Cancer Res 2018; 37:218. [PMID: 30185207 PMCID: PMC6125878 DOI: 10.1186/s13046-018-0862-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/01/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND ERRα, a constitutive transcription factor that regulates energy metabolism, plays an important role in the progression of various tumours. However, its role in cell survival and proliferation and its implication in targeted therapy in colon cancer remains elusive. METHODS The expression of ERRα in colon cancer tissues and cell lines was detected by using western blotting and immunohistochemistry. A wound healing assay and a transwell assay were performed to examine the migration and invasion of the colon cancer cells. A cell viability assay, clonogenic assay, western blot assay and the dual-luciferase reporter assay were employed to study the interaction between trametinib (inhibitor of MEK) and EGF treatment. Flow cytometry, western blotting, quantitative reverse-transcription polymerase chain reaction and xenograft studies were used to identify whether the combination of trametinib and simvastatin had a synergistic effect. RESULTS ERRα positively regulated the cell proliferation, migration and invasion of colon cancer cells, and the suppression of ERRα completely reduced the EGF treatment-induced proliferation of colon cancer cells. Further investigation showed that trametinib partially restrained the up-regulation of ERRα induced by the EGF treatment, and ERRα inhibition increased the sensitivity of colon cancer cells to trametinib. At last, we combined trametinib with simvastatin, a common clinically used drug with a new reported function of transcriptional activity inhibition of ERRα, and found that this combination produced a synergistic effect in inhibiting the proliferation and survival of colon cancer cells in vitro as well as in vivo. CONCLUSIONS The present data indicated that ERRα acted as an oncogene in colon cancer cells, and the combined targeting of ERRα and MEK might be a promising therapeutic strategy for colon cancer treatment.
Collapse
Affiliation(s)
- Sheng Zhou
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
- Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
- Collaborative Innovation Center for Biotherapy, Sichuan Province, Chengdu, China
| | - Hongwei Xia
- Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
- Collaborative Innovation Center for Biotherapy, Sichuan Province, Chengdu, China
| | - Huanji Xu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
- Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
- Collaborative Innovation Center for Biotherapy, Sichuan Province, Chengdu, China
| | - Qiulin Tang
- Laboratory of Molecular Targeted Therapy in Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
- Collaborative Innovation Center for Biotherapy, Sichuan Province, Chengdu, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology & Xijing Hospital of Digest Diseases, Fourth Military Medical University, Xi’an, Shanxi Province China
| | - Qi yong Gong
- Department of Radiology, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
| | - Feng Bi
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Sichuan Province, Chengdu, China
- Laboratory of Molecular Targeted Therapy in Oncology/Department of Medical Oncology, West China Hospital, Sichuan University, Sichuan Province, Chengdu, 610041 China
| |
Collapse
|