51
|
Gostomczyk K, Marsool MDM, Tayyab H, Pandey A, Borowczak J, Macome F, Chacon J, Dave T, Maniewski M, Szylberg Ł. Targeting circulating tumor cells to prevent metastases. Hum Cell 2024; 37:101-120. [PMID: 37874534 PMCID: PMC10764589 DOI: 10.1007/s13577-023-00992-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023]
Abstract
Circulating tumor cells (CTCs) are cancer cells that detach from the primary tumor, enter the bloodstream or body fluids, and spread to other body parts, leading to metastasis. Their presence and characteristics have been linked to cancer progression and poor prognosis in different types of cancer. Analyzing CTCs can offer valuable information about tumors' genetic and molecular diversity, which is crucial for personalized therapy. Epithelial-mesenchymal transition (EMT) and the reverse process, mesenchymal-epithelial transition (MET), play a significant role in generating and disseminating CTCs. Certain proteins, such as EpCAM, vimentin, CD44, and TGM2, are vital in regulating EMT and MET and could be potential targets for therapies to prevent metastasis and serve as detection markers. Several devices, methods, and protocols have been developed for detecting CTCs with various applications. CTCs interact with different components of the tumor microenvironment. The interactions between CTCs and tumor-associated macrophages promote local inflammation and allow the cancer cells to evade the immune system, facilitating their attachment and invasion of distant metastatic sites. Consequently, targeting and eliminating CTCs hold promise in preventing metastasis and improving patient outcomes. Various approaches are being explored to reduce the volume of CTCs. By investigating and discussing targeted therapies, new insights can be gained into their potential effectiveness in inhibiting the spread of CTCs and thereby reducing metastasis. The development of such treatments offers great potential for enhancing patient outcomes and halting disease progression.
Collapse
Affiliation(s)
- Karol Gostomczyk
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland.
- University Hospital No. 2 Im. Dr Jan Biziel, Ujejskiego 75, 85-168, Bydgoszcz, Poland.
| | | | | | | | - Jędrzej Borowczak
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Facundo Macome
- Universidad del Norte Santo Tomás de Aquino, San Miquel de Tucuman, Argentina
| | - Jose Chacon
- American University of Integrative Sciences, Cole Bay, Saint Martin, Barbados
| | - Tirth Dave
- Bukovinian State Medical University, Chernivtsi, Ukraine
| | - Mateusz Maniewski
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
| | - Łukasz Szylberg
- Department of Obstetrics, Gynaecology and Oncology, Chair of Pathomorphology and Clinical Placentology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Torun, Poland
- Department of Tumor Pathology and Pathomorphology, Oncology Centre, Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
- Chair of Pathology, Dr Jan Biziel Memorial University Hospital No. 2, Bydgoszcz, Poland
| |
Collapse
|
52
|
Li D, Park Y, Hemati H, Liu X. Cell aggregation activates small GTPase Rac1 and induces CD44 cleavage by maintaining lipid raft integrity. J Biol Chem 2023; 299:105377. [PMID: 37866630 PMCID: PMC10692920 DOI: 10.1016/j.jbc.2023.105377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 09/13/2023] [Accepted: 10/05/2023] [Indexed: 10/24/2023] Open
Abstract
Lipid rafts are highly ordered membrane domains that are enriched in cholesterol and glycosphingolipids and serve as major platforms for signal transduction. Cell detachment from the extracellular matrix (ECM) triggers lipid raft disruption and anoikis, which is a barrier for cancer cells to metastasize. Compared to single circulating tumor cells (CTCs), our recent studies have demonstrated that CD44-mediatd cell aggregation enhances the stemness, survival and metastatic ability of aggregated cells. Here, we investigated whether and how lipid rafts are involved in CD44-mediated cell aggregation. We found that cell detachment, which mimics the condition when tumor cells detach from the ECM to metastasize, induced lipid raft disruption in single cells, but lipid raft integrity was maintained in aggregated cells. We further found that lipid raft integrity in aggregated cells was required for Rac1 activation to prevent anoikis. In addition, CD44 and γ-secretase coexisted at lipid rafts in aggregated cells, which promoted CD44 cleavage and generated CD44 intracellular domain (CD44 ICD) to enhance stemness of aggregated cells. Consequently, lipid raft disruption inhibited Rac1 activation, CD44 ICD generation, and metastasis. Our findings reveal two new pathways regulated by CD44-mediated cell aggregation via maintaining lipid raft integrity. These findings also suggest that targeting cell aggregation-mediated pathways could be a novel therapeutic strategy to prevent CTC cluster-initiated metastasis.
Collapse
Affiliation(s)
- Dong Li
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Younhee Park
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Hami Hemati
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Xia Liu
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, Kentucky, USA; Markey Cancer Center, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
53
|
Deng H, Gao J, Cao B, Qiu Z, Li T, Zhao R, Li H, Wei B. LncRNA CCAT2 promotes malignant progression of metastatic gastric cancer through regulating CD44 alternative splicing. Cell Oncol (Dordr) 2023; 46:1675-1690. [PMID: 37354353 DOI: 10.1007/s13402-023-00835-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2023] [Indexed: 06/26/2023] Open
Abstract
OBJECTIVE Gastric cancer (GC) is one of the most malignant tumors worldwide. Thus, it is necessary to explore the underlying mechanisms of GC progression and develop novel therapeutic regimens. Long non-coding RNAs (lncRNAs) have been demonstrated to be abnormally expressed and regulate the malignant behaviors of cancer cells. Our previous research demonstrated that lncRNA colon cancer-associated transcript 2 (CCAT2) has potential value for GC diagnosis and discrimination. However, the functional mechanisms of lncRNA CCAT2 in GC development remain to be explored. METHODS GC and normal adjacent tissues were collected to detect the expression of lncRNA CCAT2, ESRP1 and CD44 in clinical specimens and their clinical significance for GC patients. Cell counting kit-8, wound healing and transwell assays were conducted to investigate the malignant behaviors in vitro. The generation of nude mouse xenografts by subcutaneous, intraperitoneal and tail vein injection was performed to examine GC growth and metastasis in vivo. Co-immunoprecipitation, RNA-binding protein pull-down assay and fluorescence in situ hybridization were performed to reveal the binding relationships between ESRP1 and CD44. RESULTS In the present study, lncRNA CCAT2 was overexpressed in GC tissues compared to adjacent normal tissues and correlated with short survival time of patients. lncRNA CCAT2 promoted the proliferation, migration and invasion of GC cells. Its overexpression modulates alternative splicing of Cluster of differentiation 44 (CD44) variants and facilitates the conversion from the standard form to variable CD44 isoform 6 (CD44v6). Mechanistically, lncRNA CCAT2 upregulated CD44v6 expression by binding to epithelial splicing regulatory protein 1 (ESRP1), which subsequently mediates CD44 alternative splicing. The oncogenic role of the lncRNA CCAT2/ESRP1/CD44 axis in the promotion of malignant behaviors was verified by both in vivo and in vitro experiments. CONCLUSIONS Our findings identified a novel mechanism by which lncRNA CCAT2, as a type of protein-binding RNA, regulates alternative splicing of CD44 and promotes GC progression. This axis may become an effective target for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Huan Deng
- Department of Gastrointestinal Surgery, Peking University First Hospital, Beijing, 100034, China
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jingwang Gao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Ziyu Qiu
- Health Service Department of the Guard Bureau of the General Office of the Central Committee of the Communist Party of China, Beijing, 100091, China
| | - Tian Li
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710021, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, 28 Fuxing Rd, Beijing, 100853, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
| |
Collapse
|
54
|
Nicolazzo C, Francescangeli F, Magri V, Giuliani A, Zeuner A, Gazzaniga P. Is cancer an intelligent species? Cancer Metastasis Rev 2023; 42:1201-1218. [PMID: 37540301 PMCID: PMC10713722 DOI: 10.1007/s10555-023-10123-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/26/2023] [Indexed: 08/05/2023]
Abstract
Some relevant emerging properties of intelligent systems are "adaptation to a changing environment," "reaction to unexpected situations," "capacity of problem solving," and "ability to communicate." Single cells have remarkable abilities to adapt, make adequate context-dependent decision, take constructive actions, and communicate, thus theoretically meeting all the above-mentioned requirements. From a biological point of view, cancer can be viewed as an invasive species, composed of cells that move from primary to distant sites, being continuously exposed to changes in the environmental conditions. Blood represents the first hostile habitat that a cancer cell encounters once detached from the primary site, so that cancer cells must rapidly carry out multiple adaptation strategies to survive. The aim of this review was to deepen the adaptation mechanisms of cancer cells in the blood microenvironment, particularly referring to four adaptation strategies typical of animal species (phenotypic adaptation, metabolic adaptation, niche adaptation, and collective adaptation), which together define the broad concept of biological intelligence. We provided evidence that the required adaptations (either structural, metabolic, and related to metastatic niche formation) and "social" behavior are useful principles allowing putting into a coherent frame many features of circulating cancer cells. This interpretative frame is described by the comparison with analog behavioral traits typical of various animal models.
Collapse
Affiliation(s)
- Chiara Nicolazzo
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Federica Francescangeli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Valentina Magri
- Department of Pathology, Oncology and Radiology, Sapienza University of Rome, 00161, Rome, Italy
| | - Alessandro Giuliani
- Environment and Health Department, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Ann Zeuner
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Paola Gazzaniga
- Department of Molecular Medicine, Sapienza University of Rome, 00161, Rome, Italy.
| |
Collapse
|
55
|
Nasr MM, Lynch CC. How circulating tumor cluster biology contributes to the metastatic cascade: from invasion to dissemination and dormancy. Cancer Metastasis Rev 2023; 42:1133-1146. [PMID: 37442876 PMCID: PMC10713810 DOI: 10.1007/s10555-023-10124-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Circulating tumor cells (CTCs) are known to be prognostic for metastatic relapse and are detected in patients as solitary cells or cell clusters. Circulating tumor cell clusters (CTC clusters) have been observed clinically for decades and are of significantly higher metastatic potential compared to solitary CTCs. Recent studies suggest distinct differences in CTC cluster biology regarding invasion and survival in circulation. However, differences regarding dissemination, dormancy, and reawakening require more investigations compared to solitary CTCs. Here, we review the current state of CTC cluster research and consider their clinical significance. In addition, we discuss the concept of collective invasion by CTC clusters and molecular evidence as to how cluster survival in circulation compares to that of solitary CTCs. Molecular differences between solitary and clustered CTCs during dormancy and reawakening programs will also be discussed. We also highlight future directions to advance our current understanding of CTC cluster biology.
Collapse
Affiliation(s)
- Mostafa M Nasr
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
| | - Conor C Lynch
- Tumor Biology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
56
|
Chen L, Lv Y. Suspension state affects the stemness of breast cancer cells by regulating the glycogen synthase kinase-3β. Tissue Cell 2023; 85:102208. [PMID: 37683322 DOI: 10.1016/j.tice.2023.102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Circulating tumor cells (CTCs) are considered an important factor involved in tumor metastasis and can overcome mechanical interactions to gain the ability to distant metastasis. The previous study had shown that the suspension state could regulate the stemness of breast cancer cells (BCCs). However, the specific molecular mechanisms involved have not yet been explored clearly. In this study, MCF-7 and MDA-MBA-231 BCCs were cultured in suspension and adherent. The effect of suspension state on BCCs was further elucidated by observing suspension cell clusters, sorting CD44+/CD24- cell subpopulation and detecting self-renewal ability. Furthermore, it was found that glycogen synthase kinase-3β (GSK-3β) was significantly down-regulated in MCF-7 suspension cells along with the activation of the Wnt/β-catenin signaling, but the converse was true for MDA-MB-231 cells. Subsequently, GSK-3β was differentially expressed in MCF-7 suspension cells. The activation of the Wnt/β-catenin signaling, epithelial-mesenchymal transition (EMT) and stemness were all inhibited when GSK-3 was overexpressed in suspension MCF-7 cells. While GSK-3β was down-regulated, it further promoted the Wnt/β-catenin signaling, mesenchymal characteristic and stemness of MCF-7 cells. This study demonstrated that suspension state could activate the Wnt/β-catenin signaling by inhibiting GSK-3β to promote the stemness of epithelial BCCs, providing a therapeutic strategy for targeted CTCs.
Collapse
Affiliation(s)
- Lini Chen
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, PR China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China.
| |
Collapse
|
57
|
Huang M, Ma J, An G, Ye X. Unravelling cancer subtype-specific driver genes in single-cell transcriptomics data with CSDGI. PLoS Comput Biol 2023; 19:e1011450. [PMID: 38096269 PMCID: PMC10754467 DOI: 10.1371/journal.pcbi.1011450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/28/2023] [Accepted: 12/05/2023] [Indexed: 12/29/2023] Open
Abstract
Cancer is known as a heterogeneous disease. Cancer driver genes (CDGs) need to be inferred for understanding tumor heterogeneity in cancer. However, the existing computational methods have identified many common CDGs. A key challenge exploring cancer progression is to infer cancer subtype-specific driver genes (CSDGs), which provides guidane for the diagnosis, treatment and prognosis of cancer. The significant advancements in single-cell RNA-sequencing (scRNA-seq) technologies have opened up new possibilities for studying human cancers at the individual cell level. In this study, we develop a novel unsupervised method, CSDGI (Cancer Subtype-specific Driver Gene Inference), which applies Encoder-Decoder-Framework consisting of low-rank residual neural networks to inferring driver genes corresponding to potential cancer subtypes at the single-cell level. To infer CSDGs, we apply CSDGI to the tumor single-cell transcriptomics data. To filter the redundant genes before driver gene inference, we perform the differential expression genes (DEGs). The experimental results demonstrate CSDGI is effective to infer driver genes that are cancer subtype-specific. Functional and disease enrichment analysis shows these inferred CSDGs indicate the key biological processes and disease pathways. CSDGI is the first method to explore cancer driver genes at the cancer subtype level. We believe that it can be a useful method to understand the mechanisms of cell transformation driving tumours.
Collapse
Affiliation(s)
- Meng Huang
- Department of Automation, Xiamen University, Xiamen, China
- Department of Computer Science, University of Tsukuba, Tsukuba, Japan
| | - Jiangtao Ma
- Department of Automation, Xiamen University, Xiamen, China
- School of Engineering, Dali University, Dali, Yunnan, China
| | - Guangqi An
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Xiucai Ye
- Department of Computer Science, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
58
|
Zhuang B, Zhu X, Lin J, Zhang F, Qiao B, Kang J, Xie X, Wei X, Xie X. Radiofrequency ablation induces tumor cell dissemination in a mouse model of hepatocellular carcinoma. Eur Radiol Exp 2023; 7:74. [PMID: 38019353 PMCID: PMC10686970 DOI: 10.1186/s41747-023-00382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/30/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND We tested the hypothesis that radiofrequency ablation (RFA) for hepatocellular carcinoma (HCC) promotes tumor cell release and explored a method for reducing these effects. METHODS A green fluorescent protein-transfected orthotopic HCC model was established in 99 nude mice. In vivo flow cytometry was used to monitor circulating tumor cell (CTC) dynamics. Pulmonary fluorescence imaging and pathology were performed to investigate lung metastases. First, the kinetics of CTCs during the periablation period and the survival rate of CTCs released during RFA were investigated. Next, mice were allocated to controls, sham ablation, or RFA with/without hepatic vessel blocking (ligation of the portal triads) for evaluating the postablation CTC level, lung metastases, and survival over time. Moreover, the kinetics of CTCs, lung metastases, and mice survival were evaluated for RFA with/without ethanol injection. Pathological changes in tumors and surrounding parenchyma after ethanol injection were noted. Statistical analysis included t-test, ANOVA, and Kaplan-Meier survival curves. RESULTS CTC counts were 12.3-fold increased during RFA, and 73.7% of RFA-induced CTCs were viable. Pre-RFA hepatic vessel blocking prevented the increase of peripheral CTCs, reduced the number of lung metastases, and prolonged survival (all p ≤ 0.05). Similarly, pre-RFA ethanol injection remarkably decreased CTC release during RFA and further decreased lung metastases with extended survival (all p ≤ 0.05). Histopathology revealed thrombus formation in blood vessels after ethanol injection, which may clog tumor cell dissemination during RFA. CONCLUSION RFA induces viable tumor cell dissemination, and pre-RFA ethanol injection may provide a prophylactic strategy to reduce this underestimated effect. RELEVANCE STATEMENT RFA for HCC promotes viable tumor cell release during ablation, while ethanol injection can prevent RFA induced tumor cell release. KEY POINTS • RFA induced the release of viable tumor cells during the ablation procedure in an animal model. • Hepatic vessel blocking can suppress tumor cells dissemination during RFA. • Ethanol injection can prevent RFA-induced tumor cell release, presumably because of the formation of thrombosis.
Collapse
Affiliation(s)
- Bowen Zhuang
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Institute of Diagnostic and Interventional Ultrasound, Guangzhou, 510080, China
| | - Xi Zhu
- Biomedical Engineering Research Center, Kunming Medical University, Kunming, China
| | - Jinhua Lin
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Institute of Diagnostic and Interventional Ultrasound, Guangzhou, 510080, China
| | - Fuli Zhang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Qiao
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Institute of Diagnostic and Interventional Ultrasound, Guangzhou, 510080, China
| | - Jihui Kang
- Department of Pathology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiaohua Xie
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Institute of Diagnostic and Interventional Ultrasound, Guangzhou, 510080, China
| | - Xunbin Wei
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
- Biomedical Engineering Department, Peking University, Beijing, 100081, China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Xiaoyan Xie
- Department of Medical Ultrasonics, The First Affiliated Hospital of Sun Yat-Sen University, Institute of Diagnostic and Interventional Ultrasound, Guangzhou, 510080, China.
| |
Collapse
|
59
|
Nguyen TNA, Huang PS, Chu PY, Hsieh CH, Wu MH. Recent Progress in Enhanced Cancer Diagnosis, Prognosis, and Monitoring Using a Combined Analysis of the Number of Circulating Tumor Cells (CTCs) and Other Clinical Parameters. Cancers (Basel) 2023; 15:5372. [PMID: 38001632 PMCID: PMC10670359 DOI: 10.3390/cancers15225372] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Analysis of circulating tumor cells (CTCs) holds promise to diagnose cancer or monitor its development. Among the methods, counting CTC numbers in blood samples could be the simplest way to implement it. Nevertheless, its clinical utility has not yet been fully accepted. The reasons could be due to the rarity and heterogeneity of CTCs in blood samples that could lead to misleading results from assays only based on single CTC counts. To address this issue, a feasible direction is to combine the CTC counts with other clinical data for analysis. Recent studies have demonstrated the use of this new strategy for early detection and prognosis evaluation of cancers, or even for the distinguishment of cancers with different stages. Overall, this approach could pave a new path to improve the technical problems in the clinical applications of CTC counting techniques. In this review, the information relevant to CTCs, including their characteristics, clinical use of CTC counting, and technologies for CTC enrichment, were first introduced. This was followed by discussing the challenges and new perspectives of CTC counting techniques for clinical applications. Finally, the advantages and the recent progress in combining CTC counts with other clinical parameters for clinical applications have been discussed.
Collapse
Affiliation(s)
- Thi Ngoc Anh Nguyen
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan; (T.N.A.N.); (P.-S.H.); (P.-Y.C.)
| | - Po-Shuan Huang
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan; (T.N.A.N.); (P.-S.H.); (P.-Y.C.)
| | - Po-Yu Chu
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan; (T.N.A.N.); (P.-S.H.); (P.-Y.C.)
| | - Chia-Hsun Hsieh
- Division of Hematology-Oncology, Department of Internal Medicine, New Taipei City Municipal TuCheng Hospital, New Taipei City 23652, Taiwan;
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
| | - Min-Hsien Wu
- Graduate Institute of Biomedical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan; (T.N.A.N.); (P.-S.H.); (P.-Y.C.)
- Division of Hematology-Oncology, Department of Internal Medicine, New Taipei City Municipal TuCheng Hospital, New Taipei City 23652, Taiwan;
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan City 33302, Taiwan
| |
Collapse
|
60
|
Kouhmareh K, Martin E, Finlay D, Bhadada A, Hernandez-Vargas H, Downey F, Allen JK, Teriete P. Capture of circulating metastatic cancer cell clusters from a lung cancer patient can reveal a unique genomic profile and potential anti-metastatic molecular targets: A proof of concept study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558270. [PMID: 37781582 PMCID: PMC10541091 DOI: 10.1101/2023.09.19.558270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Metastasis remains the leading cause of cancer deaths worldwide and lung cancer, known for its highly metastatic progression, remains among the most lethal of malignancies. The heterogeneous genomic profile of lung cancer metastases is often unknown. Since different metastatic events can selectively spread to multiple organs, strongly suggests more studies are needed to understand and target these different pathways. Unfortunately, access to the primary driver of metastases, the metastatic cancer cell clusters (MCCCs), remains difficult and limited. These metastatic clusters have been shown to be 100-fold more tumorigenic than individual cancer cells. Capturing and characterizing MCCCs is a key limiting factor in efforts to help treat and ultimately prevent cancer metastasis. Elucidating differentially regulated biological pathways in MCCCs will help uncover new therapeutic drug targets to help combat cancer metastases. We demonstrate a novel, proof of principle technology, to capture MCCCs directly from patients' whole blood. Our platform can be readily tuned for different solid tumor types by combining a biomimicry-based margination effect coupled with immunoaffinity to isolate MCCCs. Adopting a selective capture approach based on overexpressed CD44 in MCCCs provides a methodology that preferentially isolates them from whole blood. Furthermore, we demonstrate a high capture efficiency of more than 90% when spiking MCCC-like model cell clusters into whole blood. Characterization of the captured MCCCs from lung cancer patients by immunofluorescence staining and genomic analyses, suggests highly differential morphologies and genomic profiles., This study lays the foundation to identify potential drug targets thus unlocking a new area of anti-metastatic therapeutics.
Collapse
Affiliation(s)
- Kourosh Kouhmareh
- PhenoVista Biosciences, 6195 Cornerstone Ct E STE 114, San Diego, CA 92121
| | - Erika Martin
- PhenoVista Biosciences, 6195 Cornerstone Ct E STE 114, San Diego, CA 92121
| | - Darren Finlay
- NCI Cancer Center Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Anukriti Bhadada
- TumorGen Inc., 6197 Cornerstone Ct E STE #101, San Diego, CA 92121
| | | | - Francisco Downey
- TumorGen Inc., 6197 Cornerstone Ct E STE #101, San Diego, CA 92121
| | - Jeffrey K Allen
- TumorGen Inc., 6197 Cornerstone Ct E STE #101, San Diego, CA 92121
| | - Peter Teriete
- IDEAYA Biosciences, 7000 Shoreline Ct STE #350, South San Francisco, CA 94080
| |
Collapse
|
61
|
Zhang Q, Shi M, Zheng R, Han H, Zhang X, Lin F. C1632 inhibits ovarian cancer cell growth and migration by inhibiting LIN28 B/let-7/FAK signaling pathway and FAK phosphorylation. Eur J Pharmacol 2023; 956:175935. [PMID: 37541366 DOI: 10.1016/j.ejphar.2023.175935] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/28/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
The highly conserved RNA-binding protein LIN28B and focal adhesion kinase (FAK) are significantly upregulated in ovarian cancer (OC), serving as markers for disease progression and prognosis. Nonetheless, the correlation between LIN28B and FAK, as well as the pharmacological effects of the LIN28 inhibitor C1632, in OC cells have not been elucidated. The present study demonstrates that C1632 significantly reduced the rate of DNA replication, arrested the cell cycle at the G0/G1 phase, consequently reducing cell viability, and impeding clone formation. Moreover, treatment with C1632 decreased cell-matrix adhesion, as well as inhibited cell migration and invasion. Further mechanistic studies revealed that C1632 inhibited the OC cell proliferation and migration by concurrently inhibiting LIN28 B/let-7/FAK signaling pathway and FAK phosphorylation. Furthermore, C1632 exhibited an obvious inhibitory effect on OC cell xenograft tumors in mice. Altogether, these findings identified that LIN28 B/let-7/FAK is a valuable target in OC and C1632 is a promising onco-therapeutic agent for OC treatment.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Mengyun Shi
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Ruiling Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Haoyi Han
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xin Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Feng Lin
- Department of Gynecology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China; Department of Gynecology, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
62
|
Lin W, Fang J, Wei S, He G, Liu J, Li X, Peng X, Li D, Yang S, Li X, Yang L, Li H. Extracellular vesicle-cell adhesion molecules in tumours: biofunctions and clinical applications. Cell Commun Signal 2023; 21:246. [PMID: 37735659 PMCID: PMC10512615 DOI: 10.1186/s12964-023-01236-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/18/2023] [Indexed: 09/23/2023] Open
Abstract
Cell adhesion molecule (CAM) is an umbrella term for several families of molecules, including the cadherin family, integrin family, selectin family, immunoglobulin superfamily, and some currently unclassified adhesion molecules. Extracellular vesicles (EVs) are important information mediators in cell-to-cell communication. Recent evidence has confirmed that CAMs transported by EVs interact with recipient cells to influence EV distribution in vivo and regulate multiple cellular processes. This review focuses on the loading of CAMs onto EVs, the roles of CAMs in regulating EV distribution, and the known and possible mechanisms of these actions. Moreover, herein, we summarize the impacts of CAMs transported by EVs to the tumour microenvironment (TME) on the malignant behaviour of tumour cells (proliferation, metastasis, immune escape, and so on). In addition, from the standpoint of clinical applications, the significance and challenges of using of EV-CAMs in the diagnosis and therapy of tumours are discussed. Finally, considering recent advances in the understanding of EV-CAMs, we outline significant challenges in this field that require urgent attention to advance research and promote the clinical applications of EV-CAMs. Video Abstract.
Collapse
Affiliation(s)
- Weikai Lin
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Jianjun Fang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Jiaxing Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xian Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Dai Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Shuo Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xinyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
- Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| |
Collapse
|
63
|
Dashzeveg NK, Jia Y, Zhang Y, Gerratana L, Patel P, Shajahan A, Dandar T, Ramos EK, Almubarak HF, Adorno-Cruz V, Taftaf R, Schuster EJ, Scholten D, Sokolowski MT, Reduzzi C, El-Shennawy L, Hoffmann AD, Manai M, Zhang Q, D'Amico P, Azadi P, Colley KJ, Platanias LC, Shah AN, Gradishar WJ, Cristofanilli M, Muller WA, Cobb BA, Liu H. Dynamic Glycoprotein Hyposialylation Promotes Chemotherapy Evasion and Metastatic Seeding of Quiescent Circulating Tumor Cell Clusters in Breast Cancer. Cancer Discov 2023; 13:2050-2071. [PMID: 37272843 PMCID: PMC10481132 DOI: 10.1158/2159-8290.cd-22-0644] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 04/14/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Most circulating tumor cells (CTC) are detected as single cells, whereas a small proportion of CTCs in multicellular clusters with stemness properties possess 20- to 100-times higher metastatic propensity than the single cells. Here we report that CTC dynamics in both singles and clusters in response to therapies predict overall survival for breast cancer. Chemotherapy-evasive CTC clusters are relatively quiescent with a specific loss of ST6GAL1-catalyzed α2,6-sialylation in glycoproteins. Dynamic hyposialylation in CTCs or deficiency of ST6GAL1 promotes cluster formation for metastatic seeding and enables cellular quiescence to evade paclitaxel treatment in breast cancer. Glycoproteomic analysis reveals newly identified protein substrates of ST6GAL1, such as adhesion or stemness markers PODXL, ICAM1, ECE1, ALCAM1, CD97, and CD44, contributing to CTC clustering (aggregation) and metastatic seeding. As a proof of concept, neutralizing antibodies against one newly identified contributor, PODXL, inhibit CTC cluster formation and lung metastasis associated with paclitaxel treatment for triple-negative breast cancer. SIGNIFICANCE This study discovers that dynamic loss of terminal sialylation in glycoproteins of CTC clusters contributes to the fate of cellular dormancy, advantageous evasion to chemotherapy, and enhanced metastatic seeding. It identifies PODXL as a glycoprotein substrate of ST6GAL1 and a candidate target to counter chemoevasion-associated metastasis of quiescent tumor cells. This article is featured in Selected Articles from This Issue, p. 1949.
Collapse
Affiliation(s)
- Nurmaa K. Dashzeveg
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Yuzhi Jia
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Youbin Zhang
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lorenzo Gerratana
- Department of Medicinal Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Priyam Patel
- Quantitative Data Science Core, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Tsogbadrakh Dandar
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Erika K. Ramos
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hannah F. Almubarak
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Valery Adorno-Cruz
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Rokana Taftaf
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Emma J. Schuster
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - David Scholten
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Michael T. Sokolowski
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Carolina Reduzzi
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Hematology-Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Lamiaa El-Shennawy
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Andrew D. Hoffmann
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Maroua Manai
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Qiang Zhang
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Paolo D'Amico
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Karen J. Colley
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, Chicago, Illinois
| | - Leonidas C. Platanias
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ami N. Shah
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - William J. Gradishar
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Hematology-Oncology, Department of Medicine, Weill Cornell Medicine, New York, New York
- Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - William A. Muller
- Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Brian A. Cobb
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Huiping Liu
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
64
|
Munoz-Arcos LS, Nicolò E, Serafini MS, Gerratana L, Reduzzi C, Cristofanilli M. Latest advances in clinical studies of circulating tumor cells in early and metastatic breast cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 381:1-21. [PMID: 37739480 DOI: 10.1016/bs.ircmb.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Circulating tumor cells (CTCs) have emerged as a promising biomarker in breast cancer, offering insights into disease progression and treatment response. While CTCs have demonstrated prognostic relevance in early breast cancer, more validation is required to establish optimal cut-off points. In metastatic breast cancer, the detection of CTCs using the Food and Drug Administration-approved CellSearch® system is a strong independent prognostic factor. However, mesenchymal CTCs and the Parsortix® PC1 system show promise as alternative detection methods. This chapter offers a comprehensive review of clinical studies on CTCs in breast cancer, emphasizing their prognostic and predictive value in different stages of the disease and provides insights into potential future directions in CTC research.
Collapse
Affiliation(s)
- Laura S Munoz-Arcos
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Eleonora Nicolò
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, United States; Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Mara S Serafini
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Lorenzo Gerratana
- Department of Medical Oncology, CRO Aviano, National Cancer Institute, IRCCS, Aviano, Italy
| | - Carolina Reduzzi
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Massimo Cristofanilli
- Department of Medicine, Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, United States.
| |
Collapse
|
65
|
Diamantopoulou Z, Gvozdenovic A, Aceto N. A new time dimension in the fight against metastasis. Trends Cell Biol 2023; 33:736-748. [PMID: 36967300 DOI: 10.1016/j.tcb.2023.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Despite advances in uncovering vulnerabilities, identifying biomarkers, and developing more efficient treatments, cancer remains a threat because of its ability to progress while acquiring resistance to therapy. The circadian rhythm governs most of the cellular functions implicated in cancer progression, and its exploitation therefore opens new promising directions in the fight against metastasis. In this review we summarize the role of the circadian rhythm in tumor development and progression, with emphasis on the circadian rhythm-regulated elements that control the generation of circulating tumor cells (CTCs) and metastasis. We then present data on chronotherapy and discuss how circadian rhythm investigations may open new paths to more effective anticancer treatments.
Collapse
Affiliation(s)
- Zoi Diamantopoulou
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Ana Gvozdenovic
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| |
Collapse
|
66
|
Zhou M, Li K, Luo KQ. Shear Stress Drives the Cleavage Activation of Protease-Activated Receptor 2 by PRSS3/Mesotrypsin to Promote Invasion and Metastasis of Circulating Lung Cancer Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301059. [PMID: 37395651 PMCID: PMC10477893 DOI: 10.1002/advs.202301059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/04/2023] [Indexed: 07/04/2023]
Abstract
When circulating tumor cells (CTCs) travel in circulation, they can be killed by detachment-induced anoikis and fluidic shear stress (SS)-mediated apoptosis. Circulatory treatment, which can make CTCs detached but also generate SS, can increase metastasis of cancer cells. To identify SS-specific mechanosensors without detachment impacts, a microfluidic circulatory system is used to generate arteriosus SS and compare transcriptome profiles of circulating lung cancer cells with suspended cells. Half of the cancer cells can survive SS damage and show higher invasion ability. Mesotrypsin (PRSS3), protease-activated receptor 2 (PAR2), and the subunit of activating protein 1, Fos-related antigen 1 (FOSL1), are upregulated by SS, and their high expression is responsible for promoting invasion and metastasis. SS triggers PRSS3 to cleave the N-terminal inhibitory domain of PAR2 within 2 h. As a G protein-coupled receptor, PAR2 further activates the Gαi protein to turn on the Src-ERK/p38/JNK-FRA1/cJUN axis to promote the expression of epithelial-mesenchymal transition markers, and also PRSS3, which facilitates metastasis. Enriched PRSS3, PAR2, and FOSL1 in human tumor samples and their correlations with worse outcomes reveal their clinical significance. PAR2 may serve as an SS-specific mechanosensor cleavable by PRSS3 in circulation, which provides new insights for targeting metastasis-initiating CTCs.
Collapse
Affiliation(s)
- Muya Zhou
- Department of Biomedical Sciences, Faculty of Health SciencesUniversity of MacauTaipaMacao SAR999078China
| | - Koukou Li
- Department of Biomedical Sciences, Faculty of Health SciencesUniversity of MacauTaipaMacao SAR999078China
| | - Kathy Qian Luo
- Department of Biomedical Sciences, Faculty of Health SciencesUniversity of MacauTaipaMacao SAR999078China
- Ministry of Education Frontiers Science Center for Precision OncologyUniversity of MacauTaipaMacao SAR999078China
| |
Collapse
|
67
|
Zhou JS, Liu ZN, Chen YY, Liu YX, Shen H, Hou LJ, Ding Y. New advances in circulating tumor cell‑mediated metastasis of breast cancer (Review). Mol Clin Oncol 2023; 19:71. [PMID: 37614367 PMCID: PMC10442766 DOI: 10.3892/mco.2023.2667] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 06/20/2023] [Indexed: 08/25/2023] Open
Abstract
Breast cancer stands as the most prevalent form of cancer affecting women, with metastasis serving as a leading cause of mortality among patients with breast cancer. Gaining a comprehensive understanding of the metastatic mechanism in breast cancer is essential for early detection and precision treatment of the disease. Circulating tumor cells (CTCs) play a vital role in this context, representing cancer cells that detach from tumor tissues and enter the bloodstream of cancer patients. These cells travel in the blood circulation as single cells or clusters. Recent research has shed light on the enhanced metastatic potential of CTC clusters compared to single CTCs, despite their limited occurrence. The aim of the present review was to explore recent findings on CTCs with a particular focus on the clustering phenomenon of CTCs observed in breast cancer. Additionally, the present review delved into the comparison between single CTCs and CTC clusters regarding their implications for the treatment and prognosis of patients diagnosed with metastatic breast cancer. By examining the role and mechanisms of CTCs in breast cancer metastasis, the present review provided an improved understanding of CTCs and their significance in early detection of breast cancer metastasis through peripheral blood analysis. Moreover, it contributed to the comprehension of cancer prognosis and prediction by highlighting the implications of CTCs in these aspects. Ultimately, the present study seeks to advance knowledge in the field and pave the way for improved approaches to breast cancer management.
Collapse
Affiliation(s)
- Jiang-Shan Zhou
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Zi-Ning Liu
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yuan-Yuan Chen
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yu-Xi Liu
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Hua Shen
- Department of Mathematics and Statistics, University of Calgary, Alberta T2N 1N4, Canada
| | - Li-Jun Hou
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
- Key Laboratory of Applied Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Yi Ding
- Laboratory of Pathophysiology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
- Key Laboratory of Applied Pharmacology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
68
|
Yang Q, Li M, Yang X, Xiao Z, Tong X, Tuerdi A, Li S, Lei L. Flourishing tumor organoids: History, emerging technology, and application. Bioeng Transl Med 2023; 8:e10559. [PMID: 37693042 PMCID: PMC10487342 DOI: 10.1002/btm2.10559] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/16/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Malignant tumors are one of the leading causes of death which impose an increasingly heavy burden on all countries. Therefore, the establishment of research models that closely resemble original tumor characteristics is crucial to further understanding the mechanisms of malignant tumor development, developing safer and more effective drugs, and formulating personalized treatment plans. Recently, organoids have been widely used in tumor research owing to their advantages including preserving the structure, heterogeneity, and cellular functions of the original tumor, together with the ease of manipulation. This review describes the history and characteristics of tumor organoids and the synergistic combination of three-dimensional (3D) culture approaches for tumor organoids with emerging technologies, including tissue-engineered cell scaffolds, microfluidic devices, 3D bioprinting, rotating wall vessels, and clustered regularly interspaced short palindromic repeats-CRISPR-associated protein 9 (CRISPR-Cas9). Additionally, the progress in research and the applications in basic and clinical research of tumor organoid models are summarized. This includes studies of the mechanism of tumor development, drug development and screening, precision medicine, immunotherapy, and simulation of the tumor microenvironment. Finally, the existing shortcomings of tumor organoids and possible future directions are discussed.
Collapse
Affiliation(s)
- Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Mengmeng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xinming Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Zian Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xinying Tong
- Department of Hemodialysis, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ayinuer Tuerdi
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Lanjie Lei
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| |
Collapse
|
69
|
Polak KL, Tamagno I, Parameswaran N, Smigiel J, Chan ER, Yuan X, Rios B, Jackson MW. Oncostatin-M and OSM-Receptor Feed-Forward Activation of MAPK Induces Separable Stem-like and Mesenchymal Programs. Mol Cancer Res 2023; 21:975-990. [PMID: 37310811 PMCID: PMC10527478 DOI: 10.1158/1541-7786.mcr-22-0715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/19/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
Patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) frequently present with advanced metastatic disease and exhibit a poor response to therapy, resulting in poor outcomes. The tumor microenvironment cytokine Oncostatin-M (OSM) initiates PDAC plasticity, inducing the reprogramming to a stem-like/mesenchymal state, which enhances metastasis and therapy resistance. Using a panel of PDAC cells driven through epithelial-mesenchymal transition (EMT) by OSM or the transcription factors ZEB1 or SNAI1, we find that OSM uniquely induces tumor initiation and gemcitabine resistance independently of its ability to induce a CD44HI/mesenchymal phenotype. In contrast, while ZEB1 and SNAI1 induce a CD44HI/mesenchymal phenotype and migration comparable with OSM, they are unable to promote tumor initiation or robust gemcitabine resistance. Transcriptomic analysis identified that OSM-mediated stemness requires MAPK activation and sustained, feed-forward transcription of OSMR. MEK and ERK inhibitors prevented OSM-driven transcription of select target genes and stem-like/mesenchymal reprogramming, resulting in reduced tumor growth and resensitization to gemcitabine. We propose that the unique properties of OSMR, which hyperactivates MAPK signaling when compared with other IL6 family receptors, make it an attractive therapeutic target, and that disrupting the OSM-OSMR-MAPK feed-forward loop may be a novel way to therapeutically target the stem-like behaviors common to aggressive PDAC. IMPLICATIONS Small-molecule MAPK inhibitors may effectively target the OSM/OSMR-axis that leads to EMT and tumor initiating properties that promote aggressive PDAC.
Collapse
Affiliation(s)
- Kelsey L Polak
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Ilaria Tamagno
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Neetha Parameswaran
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Jacob Smigiel
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - E. Ricky Chan
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Xueer Yuan
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Brenda Rios
- Cancer Biology Program, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Mark W. Jackson
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|
70
|
Hapeman JD, Carneiro CS, Nedelcu AM. A model for the dissemination of circulating tumour cell clusters involving platelet recruitment and a plastic switch between cooperative and individual behaviours. BMC Ecol Evol 2023; 23:39. [PMID: 37605189 PMCID: PMC10440896 DOI: 10.1186/s12862-023-02147-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND In spite of extensive research, cancer remains a major health problem worldwide. As cancer progresses, cells acquire traits that allow them to disperse and disseminate to distant locations in the body - a process known as metastasis. While in the vasculature, these cells are referred to as circulating tumour cells (CTCs) and can manifest either as single cells or clusters of cells (i.e., CTC clusters), with the latter being the most aggressive. The increased metastatic potential of CTC clusters is generally associated with cooperative group benefits in terms of survival, including increased resistance to shear stress, anoikis, immune attacks and drugs. However, the adoption of a group phenotype poses a challenge when exiting the vasculature (extravasation) as the large size can hinder the passage through vessel walls. Despite their significant role in the metastatic process, the mechanisms through which CTC clusters extravasate remain largely unknown. Based on the observed in vivo association between CTC clusters and platelets, we hypothesized that cancer cells take advantage of the platelet-derived Transforming Growth Factor Beta 1 (TGF-β1) - a signalling factor that has been widely implicated in many aspects of cancer, to facilitate their own dissemination. To address this possibility, we evaluated the effect of exogenous TGF-β1 on an experimentally evolved non-small cell lung cancer cell line that we previously developed and used to investigate the biology of CTC clusters. RESULTS We found that exogenous TGF-β1 induced the dissociation of clusters in suspension into adherent single cells. Once adhered, cells released their own TGF-β1 and were able to individually migrate and invade in the absence of exogenous TGF-β1. Based on these findings we developed a model that involves a TGF-β1-mediated plastic switch between a cooperative phenotype and a single-celled stage that enables the extravasation of CTC clusters. CONCLUSIONS This model allows for the possibility that therapies can be developed against TGF-β1 signalling components and/or TGF-β1 target genes to suppress the metastatic potential of CTC clusters. Considering the negative impact that metastasis has on cancer prognosis and the lack of therapies against this process, interfering with the ability of CTC clusters to switch between cooperative and individual behaviours could provide new strategies to improve patient survival.
Collapse
Affiliation(s)
- Jorian D Hapeman
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Caroline S Carneiro
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Aurora M Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.
| |
Collapse
|
71
|
Kommineni N, Chaudhari R, Conde J, Tamburaci S, Cecen B, Chandra P, Prasad R. Engineered Liposomes in Interventional Theranostics of Solid Tumors. ACS Biomater Sci Eng 2023; 9:4527-4557. [PMID: 37450683 DOI: 10.1021/acsbiomaterials.3c00510] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Engineered liposomal nanoparticles have unique characteristics as cargo carriers in cancer care and therapeutics. Liposomal theranostics have shown significant progress in preclinical and clinical cancer models in the past few years. Liposomal hybrid systems have not only been approved by the FDA but have also reached the market level. Nanosized liposomes are clinically proven systems for delivering multiple therapeutic as well as imaging agents to the target sites in (i) cancer theranostics of solid tumors, (ii) image-guided therapeutics, and (iii) combination therapeutic applications. The choice of diagnostics and therapeutics can intervene in the theranostics property of the engineered system. However, integrating imaging and therapeutics probes within lipid self-assembly "liposome" may compromise their overall theranostics performance. On the other hand, liposomal systems suffer from their fragile nature, site-selective tumor targeting, specific biodistribution and premature leakage of loaded cargo molecules before reaching the target site. Various engineering approaches, viz., grafting, conjugation, encapsulations, etc., have been investigated to overcome the aforementioned issues. It has been studied that surface-engineered liposomes demonstrate better tumor selectivity and improved therapeutic activity and retention in cells/or solid tumors. It should be noted that several other parameters like reproducibility, stability, smooth circulation, toxicity of vital organs, patient compliance, etc. must be addressed before using liposomal theranostics agents in solid tumors or clinical models. Herein, we have reviewed the importance and challenges of liposomal medicines in targeted cancer theranostics with their preclinical and clinical progress and a translational overview.
Collapse
Affiliation(s)
- Nagavendra Kommineni
- Center for Biomedical Research, Population Council, New York, New York 10065, United States
| | - Ruchita Chaudhari
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa; Lisboa 1169-056, Portugal
| | - Sedef Tamburaci
- Department of Chemical Engineering, Izmir Institute of Technology, Gulbahce Campus, Izmir 35430, Turkey
| | - Berivan Cecen
- Department of Biomedical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
- Department of Mechanical Engineering, Rowan University, Glassboro, New Jersey 08028, United States
| | - Pranjal Chandra
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| | - Rajendra Prasad
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, India
| |
Collapse
|
72
|
Fernández-Santiago C, López-López R, Piñeiro R. Models to study CTCs and CTC culture methods. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 381:57-98. [PMID: 37739484 DOI: 10.1016/bs.ircmb.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The vast majority of cancer-related deaths are due to the presence of disseminated disease. Understanding the metastatic process is key to achieving a reduction in cancer mortality. Particularly, there is a need to understand the molecular mechanisms that drive cancer metastasis, which will allow the identification of curative treatments for metastatic cancers. Liquid biopsies have arisen as a minimally invasive approach to gain insights into the biology of metastasis. Circulating tumour cells (CTCs), shed to the circulation from the primary tumour or metastatic lesions, are a key component of liquid biopsy. As metastatic precursors, CTCs hold the potential to unravel the mechanisms involved in metastasis formation as well as new therapeutic strategies for treating metastatic disease. However, the complex biology of CTCs together with their low frequency in circulation are factors hampering an in-depth mechanistic investigation of the metastatic process. To overcome these problems, CTC-derived models, including CTC-derived xenograft (CDX) and CTC-derived ex vivo cultures, in combination with more traditional in vivo models of metastasis, have emerged as powerful tools to investigate the biological features of CTCs facilitating cancer metastasis and uncover new therapeutic opportunities. In this chapter, we provide an up to date view of the diverse models used in different cancers to study the biology of CTCs, and of the methods developed for CTC culture and expansion, in vivo and ex vivo. We also report some of the main challenges and limitations that these models are facing.
Collapse
Affiliation(s)
- Cristóbal Fernández-Santiago
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | - Rafael López-López
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain; University Clinical Hospital of Santiago de Compostela (CHUS/SERGAS), Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Roberto Piñeiro
- Roche-Chus Joint Unit, Translational Medical Oncology Group (Oncomet), Health Research Institute of Santiago de Compostela, Santiago de Compostela, A Coruña, Spain; Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
73
|
Singh V, Kaur R, Kumari P, Pasricha C, Singh R. ICAM-1 and VCAM-1: Gatekeepers in various inflammatory and cardiovascular disorders. Clin Chim Acta 2023; 548:117487. [PMID: 37442359 DOI: 10.1016/j.cca.2023.117487] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
Leukocyte migration from the vascular compartment is critical fornormal lymphocyte recirculation in specific tissues and immune response in inflammatory locations. Leukocyte recruitment, migration to inflammatory areas, and targeting in the extravascular space are caused by cellular stimulation and local expression of adhesion molecules. Intercellular adhesion molecule 1 (ICAM-1) and Vascular cell adhesion molecule 1 (VCAM-1) belong to the immunoglobulin superfamily of cell adhesion molecules (CAM) with a crucial role in mediating the strong adherence of leukocytes to endothelial cells in numerous acute as well as chronic diseases. ICAM-1 and VCAM-1 mediate inflammation and promote leukocyte migration during inflammation. ICAM-1 and VCAM-1 have a large role in regulating homeostasis and in pathologic states such as cancer, atherosclerosis, atrial fibrillation, myocardial infarction, stroke, asthma, obesity, kidney diseases, and much more. In inflammatory conditions and infectious disorders, leukocytes move and cling to the endothelium via multiple intracellular adhesive interactions. It is suggested that combining membrane-bound and soluble ICAM-1 and VCAM-1 into a single unit functional system will further our understanding of their immunoregulatory role as well as their pathophysiological effects on disease. This review focuses on the pathophysiological roles of ICAM-1 and VCAM-1 in various inflammatory and other diseases as well as their emerging cardiovascular role during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rupinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pratima Kumari
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Chirag Pasricha
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ravinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
74
|
Sugiura K, Masuike Y, Suzuki K, Shin AE, Sakai N, Matsubara H, Otsuka M, Sims PA, Lengner CJ, Rustgi AK. LIN28B promotes cell invasion and colorectal cancer metastasis via CLDN1 and NOTCH3. JCI Insight 2023; 8:e167310. [PMID: 37318881 PMCID: PMC10443801 DOI: 10.1172/jci.insight.167310] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/13/2023] [Indexed: 06/17/2023] Open
Abstract
The RNA-binding protein LIN28B is overexpressed in over 30% of patients with colorectal cancer (CRC) and is associated with poor prognosis. In the present study, we unraveled a potentially novel mechanism by which LIN28B regulates colonic epithelial cell-cell junctions and CRC metastasis. Using human CRC cells (DLD-1, Caco-2, and LoVo) with either knockdown or overexpression of LIN28B, we identified claudin 1 (CLDN1) tight junction protein as a direct downstream target and effector of LIN28B. RNA immunoprecipitation revealed that LIN28B directly binds to and posttranscriptionally regulates CLDN1 mRNA. Furthermore, using in vitro assays and a potentially novel murine model of metastatic CRC, we show that LIN28B-mediated CLDN1 expression enhances collective invasion, cell migration, and metastatic liver tumor formation. Bulk RNA sequencing of the metastatic liver tumors identified NOTCH3 as a downstream effector of the LIN28B/CLDN1 axis. Additionally, genetic and pharmacologic manipulation of NOTCH3 signaling revealed that NOTCH3 was necessary for invasion and metastatic liver tumor formation. In summary, our results suggest that LIN28B promotes invasion and liver metastasis of CRC by posttranscriptionally regulating CLDN1 and activating NOTCH3 signaling. This discovery offers a promising new therapeutic option for metastatic CRC to the liver, an area where therapeutic advancements have been relatively scarce.
Collapse
Affiliation(s)
- Kensuke Sugiura
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Yasunori Masuike
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Kensuke Suzuki
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
- Department of General Surgery and
| | - Alice E. Shin
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | | | - Hisahiro Matsubara
- Department of Frontier Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Peter A. Sims
- Department of Systems Biology and Department of Biochemistry & Molecular Biophysics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| | - Christopher J. Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anil K. Rustgi
- Herbert Irving Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
75
|
Du T, Wu Z, Wu Y, Liu Y, Song Y, Ma L. CD44 Is Associated with Poor Prognosis of ccRCC and Facilitates ccRCC Cell Migration and Invasion through HAS1/MMP9. Biomedicines 2023; 11:2077. [PMID: 37509716 PMCID: PMC10377257 DOI: 10.3390/biomedicines11072077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND In many solid tumors, CD44 has been identified as a cancer stem cell marker as well as an important molecular in cancer progression and metastasis, making it attractive for potential therapeutic applications. However, our knowledge of the biological function and mechanism of CD44 in clear cell renal cell carcinoma (ccRCC) is limited. METHODS In this study, the expression, prognostic values and functional enrichment analysis of CD44 in ccRCC were analyzed using public databases. Quantitative real-time PCR (qRT-PCR), Western blotting, and immunohistochemical (IHC) assays were taken to detect CD44 expression in ccRCC tissues. The effects of CD44 on the proliferation, migration and invasion of ccRCC cells were investigated by gain-of-function and loss-of-function experiments. Subcutaneous models further confirmed the role of CD44 in tumor growth. The relationship between CD44, HAS1 and MMP9 was investigated to uncover the regulatory mechanism of CD44 in ccRCC. RESULTS CD44 was significantly upregulated in ccRCC and associated with poor overall survival (OS). Based on the functional enrichment analysis and PPI network, we found that CD44 had associations with ECM interaction and focal adhesion pathway. Clinical ccRCC sample validation revealed that CD44 mRNA and protein expression were significantly increased in ccRCC tissues, and strong CD44 staining was observed in four metastatic ccRCC cases. In vitro experiments showed that CD44 overexpression promoted cell proliferation, migration and invasion. In vivo experiments also demonstrated that CD44 overexpression accelerated tumor formation in mice. Finally, we found that CD44 regulates the expression of HAS1 in ccRCC, which is essential for the secretion of MMP9 and cell migratory ability. CONCLUSION The upregulation of CD44 mRNA and protein expressions in ccRCC is indicative of unfavorable clinical prognoses. The CD44/HAS1/MMP9 axis is believed to exert a significant influence on the regulation of ECM degradation and ccRCC metastasis.
Collapse
Affiliation(s)
- Tan Du
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Zonglong Wu
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Yaqian Wu
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Yunchong Liu
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Yimeng Song
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| | - Lulin Ma
- Department of Urology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
76
|
Shin E, Bak SH, Park T, Kim JW, Yoon SR, Jung H, Noh JY. Understanding NK cell biology for harnessing NK cell therapies: targeting cancer and beyond. Front Immunol 2023; 14:1192907. [PMID: 37539051 PMCID: PMC10395517 DOI: 10.3389/fimmu.2023.1192907] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023] Open
Abstract
Gene-engineered immune cell therapies have partially transformed cancer treatment, as exemplified by the use of chimeric antigen receptor (CAR)-T cells in certain hematologic malignancies. However, there are several limitations that need to be addressed to target more cancer types. Natural killer (NK) cells are a type of innate immune cells that represent a unique biology in cancer immune surveillance. In particular, NK cells obtained from heathy donors can serve as a source for genetically engineered immune cell therapies. Therefore, NK-based therapies, including NK cells, CAR-NK cells, and antibodies that induce antibody-dependent cellular cytotoxicity of NK cells, have emerged. With recent advances in genetic engineering and cell biology techniques, NK cell-based therapies have become promising approaches for a wide range of cancers, viral infections, and senescence. This review provides a brief overview of NK cell characteristics and summarizes diseases that could benefit from NK-based therapies. In addition, we discuss recent preclinical and clinical investigations on the use of adoptive NK cell transfer and agents that can modulate NK cell activity.
Collapse
Affiliation(s)
- Eunju Shin
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Seong Ho Bak
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Taeho Park
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Jin Woo Kim
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Suk-Ran Yoon
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Haiyoung Jung
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Ji-Yoon Noh
- Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| |
Collapse
|
77
|
De Pasquale D, Pucci C, Desii A, Marino A, Debellis D, Leoncino L, Prato M, Moscato S, Amadio S, Fiaschi P, Prior A, Ciofani G. A Novel Patient-Personalized Nanovector Based on Homotypic Recognition and Magnetic Hyperthermia for an Efficient Treatment of Glioblastoma Multiforme. Adv Healthc Mater 2023; 12:e2203120. [PMID: 37058273 PMCID: PMC11468287 DOI: 10.1002/adhm.202203120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/21/2023] [Indexed: 04/15/2023]
Abstract
Glioblastoma multiforme (GBM) is the deadliest brain tumor, characterized by an extreme genotypic and phenotypic variability, besides a high infiltrative nature in healthy tissues. Apart from very invasive surgical procedures, to date, there are no effective treatments, and life expectancy is very limited. In this work, an innovative therapeutic approach based on lipid-based magnetic nanovectors is proposed, owning a dual therapeutic function: chemotherapy, thanks to an antineoplastic drug (regorafenib) loaded in the core, and localized magnetic hyperthermia, thanks to the presence of iron oxide nanoparticles, remotely activated by an alternating magnetic field. The drug is selected based on ad hoc patient-specific screenings; moreover, the nanovector is decorated with cell membranes derived from patients' cells, aiming at increasing homotypic and personalized targeting. It is demonstrated that this functionalization not only enhances the selectivity of the nanovectors toward patient-derived GBM cells, but also their blood-brain barrier in vitro crossing ability. The localized magnetic hyperthermia induces both thermal and oxidative intracellular stress that lead to lysosomal membrane permeabilization and to the release of proteolytic enzymes into the cytosol. Collected results show that hyperthermia and chemotherapy work in synergy to reduce GBM cell invasion properties, to induce intracellular damage and, eventually, to prompt cellular death.
Collapse
Affiliation(s)
- Daniele De Pasquale
- Smart Bio‐InterfacesIstituto Italiano di TecnologiaViale Rinaldo Piaggio 3456025PontederaItaly
| | - Carlotta Pucci
- Smart Bio‐InterfacesIstituto Italiano di TecnologiaViale Rinaldo Piaggio 3456025PontederaItaly
| | - Andrea Desii
- Smart Bio‐InterfacesIstituto Italiano di TecnologiaViale Rinaldo Piaggio 3456025PontederaItaly
| | - Attilio Marino
- Smart Bio‐InterfacesIstituto Italiano di TecnologiaViale Rinaldo Piaggio 3456025PontederaItaly
| | - Doriana Debellis
- Electron Microscopy FacilityIstituto Italiano di TecnologiaVia Morego 3016163GenovaItaly
| | - Luca Leoncino
- Electron Microscopy FacilityIstituto Italiano di TecnologiaVia Morego 3016163GenovaItaly
| | - Mirko Prato
- Materials Characterization FacilityIstituto Italiano di TecnologiaVia Morego 3016163GenovaItaly
| | - Stefania Moscato
- Department of Clinical and Experimental MedicineUniversity of PisaVia Roma 5556126PisaItaly
| | - Simone Amadio
- Smart Bio‐InterfacesIstituto Italiano di TecnologiaViale Rinaldo Piaggio 3456025PontederaItaly
| | - Pietro Fiaschi
- Department of NeurosurgeryIRCCS Ospedale Policlinico San MartinoLargo Rossana Benzi 1016132GenovaItaly
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI)University of GenovaLargo Paolo Daneo 316132GenovaItaly
| | - Alessandro Prior
- Department of NeurosurgeryIRCCS Ospedale Policlinico San MartinoLargo Rossana Benzi 1016132GenovaItaly
| | - Gianni Ciofani
- Smart Bio‐InterfacesIstituto Italiano di TecnologiaViale Rinaldo Piaggio 3456025PontederaItaly
| |
Collapse
|
78
|
Zeng M, Ruan Z, Tang J, Liu M, Hu C, Fan P, Dai X. Generation, evolution, interfering factors, applications, and challenges of patient-derived xenograft models in immunodeficient mice. Cancer Cell Int 2023; 23:120. [PMID: 37344821 DOI: 10.1186/s12935-023-02953-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 06/23/2023] Open
Abstract
Establishing appropriate preclinical models is essential for cancer research. Evidence suggests that cancer is a highly heterogeneous disease. This follows the growing use of cancer models in cancer research to avoid these differences between xenograft tumor models and patient tumors. In recent years, a patient-derived xenograft (PDX) tumor model has been actively generated and applied, which preserves both cell-cell interactions and the microenvironment of tumors by directly transplanting cancer tissue from tumors into immunodeficient mice. In addition to this, the advent of alternative hosts, such as zebrafish hosts, or in vitro models (organoids and microfluidics), has also facilitated the advancement of cancer research. However, they still have a long way to go before they become reliable models. The development of immunodeficient mice has enabled PDX to become more mature and radiate new vitality. As one of the most reliable and standard preclinical models, the PDX model in immunodeficient mice (PDX-IM) exerts important effects in drug screening, biomarker development, personalized medicine, co-clinical trials, and immunotherapy. Here, we focus on the development procedures and application of PDX-IM in detail, summarize the implications that the evolution of immunodeficient mice has brought to PDX-IM, and cover the key issues in developing PDX-IM in preclinical studies.
Collapse
Affiliation(s)
- Mingtang Zeng
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zijing Ruan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiaxi Tang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Maozhu Liu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chengji Hu
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Fan
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Xinhua Dai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
79
|
He J, Abikoye AM, McLaughlin BP, Middleton RS, Sheldon R, Jones RG, Schafer ZT. Reprogramming of iron metabolism confers ferroptosis resistance in ECM-detached cells. iScience 2023; 26:106827. [PMID: 37250802 PMCID: PMC10209538 DOI: 10.1016/j.isci.2023.106827] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Cancer cells often acquire resistance to cell death programs induced by loss of integrin-mediated attachment to extracellular matrix (ECM). Given that adaptation to ECM-detached conditions can facilitate tumor progression and metastasis, there is significant interest in effective elimination of ECM-detached cancer cells. Here, we find that ECM-detached cells are remarkably resistant to the induction of ferroptosis. Although alterations in membrane lipid content are observed during ECM detachment, it is instead fundamental changes in iron metabolism that underlie resistance of ECM-detached cells to ferroptosis. More specifically, our data demonstrate that levels of free iron are low during ECM detachment because of changes in both iron uptake and iron storage. In addition, we establish that lowering the levels of ferritin sensitizes ECM-detached cells to death by ferroptosis. Taken together, our data suggest that therapeutics designed to kill cancer cells by ferroptosis may be hindered by lack of efficacy toward ECM-detached cells.
Collapse
Affiliation(s)
- Jianping He
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Boler-Parseghian Center for Rare & Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Abigail M. Abikoye
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Boler-Parseghian Center for Rare & Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brett P. McLaughlin
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Boler-Parseghian Center for Rare & Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ryan S. Middleton
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Boler-Parseghian Center for Rare & Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ryan Sheldon
- Metabolomics and Bioenergetics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Russell G. Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Zachary T. Schafer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
- Boler-Parseghian Center for Rare & Neglected Diseases, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
80
|
Liu K, Gao Q, Jia Y, Wei J, Chaudhuri S, Wang S, Tang A, Mani N, Iyer R, Cheng Y, Gao B, Lu W, Sun Z, Liu H, Fang D. Ubiquitin-specific peptidase 22 controls integrin-dependent cancer cell stemness and metastasis. RESEARCH SQUARE 2023:rs.3.rs-2922367. [PMID: 37398311 PMCID: PMC10312927 DOI: 10.21203/rs.3.rs-2922367/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Integrins plays critical roles in connecting the extracellular matrix and actin skeleton for cell adhesion, migration, signal transduction, and gene transcription, which upregulation is involved in cancer stemness and metastasis. However, the molecular mechanisms underlying how integrins are upregulated in cancer stem cells (CSCs) remain as a biomedical mystery. Herein, we show that the death from cancer signature gene USP22 is essential to maintain the stemness of breast cancer cells through promoting the transcription of a group of integrin family members in particular integrin β1 (ITGB1). Both genetic and pharmacological USP22 inhibition largely impaired breast cancer stem cell self-renewal and prevented their metastasis. Integrin β1 reconstitution partially rescued USP22-null breast cancer stemness and their metastasis. At the molecular level, USP22 functions as a bona fide deubiquitinase to protect the proteasomal degradation of the forkhead box M1 (FoxM1), a transcription factor for tumoral ITGB1 gene transcription. Importantly unbiased analysis of the TCGA database revealed a strong positive correlation between the death from cancer signature gene ubiquitin-specific peptidase 22 (USP22) and ITGB1, both of which are critical for cancer stemness, in more than 90% of human cancer types, implying that USP22 functions as a key factor to maintain stemness for a broad spectrum of human cancer types possibly through regulating ITGB1. To support this notion, immunohistochemistry staining detected a positive correlation among USP22, FoxM1 and integrin β1 in human breast cancers. Collectively, our study identifies the USP22-FoxM1-integrin β1 signaling axis critical for cancer stemness and offers a potential target for antitumor therapy.
Collapse
|
81
|
Zhu X, Li S. Nanomaterials in tumor immunotherapy: new strategies and challenges. Mol Cancer 2023; 22:94. [PMID: 37312116 PMCID: PMC10262535 DOI: 10.1186/s12943-023-01797-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
Tumor immunotherapy exerts its anti-tumor effects by stimulating and enhancing immune responses of the body. It has become another important modality of anti-tumor therapy with significant clinical efficacy and advantages compared to chemotherapy, radiotherapy and targeted therapy. Although various kinds of tumor immunotherapeutic drugs have emerged, the challenges faced in the delivery of these drugs, such as poor tumor permeability and low tumor cell uptake rate, had prevented their widespread application. Recently, nanomaterials had emerged as a means for treatment of different diseases due to their targeting properties, biocompatibility and functionalities. Moreover, nanomaterials possess various characteristics that overcome the defects of traditional tumor immunotherapy, such as large drug loading capacity, precise tumor targeting and easy modification, thus leading to their wide application in tumor immunotherapy. There are two main classes of novel nanoparticles mentioned in this review: organic (polymeric nanomaterials, liposomes and lipid nanoparticles) and inorganic (non-metallic nanomaterials and metallic nanomaterials). Besides, the fabrication method for nanoparticles, Nanoemulsions, was also introduced. In summary, this review article mainly discussed the research progress of tumor immunotherapy based on nanomaterials in the past few years and offers a theoretical basis for exploring novel tumor immunotherapy strategies in the future.
Collapse
Affiliation(s)
- Xudong Zhu
- Department of General Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People's Republic of China
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, People's Republic of China.
| |
Collapse
|
82
|
Kravitz CJ, Yan Q, Nguyen DX. Epigenetic markers and therapeutic targets for metastasis. Cancer Metastasis Rev 2023; 42:427-443. [PMID: 37286865 PMCID: PMC10595046 DOI: 10.1007/s10555-023-10109-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023]
Abstract
The last few years have seen an increasing number of discoveries which collectively demonstrate that histone and DNA modifying enzyme modulate different stages of metastasis. Moreover, epigenomic alterations can now be measured at multiple scales of analysis and are detectable in human tumors or liquid biopsies. Malignant cell clones with a proclivity for relapse in certain organs may arise in the primary tumor as a consequence of epigenomic alterations which cause a loss in lineage integrity. These alterations may occur due to genetic aberrations acquired during tumor progression or concomitant to therapeutic response. Moreover, evolution of the stroma can also alter the epigenome of cancer cells. In this review, we highlight current knowledge with a particular emphasis on leveraging chromatin and DNA modifying mechanisms as biomarkers of disseminated disease and as therapeutic targets to treat metastatic cancers.
Collapse
Affiliation(s)
- Carolyn J Kravitz
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Center for Immuno-Oncology, Yale School of Medicine, New Haven, CT, 06520, USA.
| | - Don X Nguyen
- Department of Pathology, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Cancer Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, 06520, USA.
- Department of Internal Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
83
|
Zhao B, Lv Y. Suspension state and shear stress enhance breast tumor cells EMT through YAP by microRNA-29b. Cell Biol Toxicol 2023; 39:1037-1052. [PMID: 34618275 DOI: 10.1007/s10565-021-09661-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/24/2021] [Indexed: 12/11/2022]
Abstract
Except for biochemical effects, suspension state (Sus) is proved to induce epithelial-mesenchymal transition (EMT) of circulating tumor cells (CTCs) mechanically. However, the difference between the effects of the mechanical microenvironment in capillaries (simplified as shear stress (SS) and Sus) and single Sus on EMT is unclear, nor the underlying mechanism. Here, breast tumor cells (BTCs) were loaded with Sus and SS to mimic the situation of CTCs stimulated by these two kinds of mechanics. It was demonstrated that the EMT of BTCs was enhanced by Sus and SS and the mechanotransductor yes-associated protein (YAP) was partially cytoplasmic stored with microRNA (miR)-29b decreased, which was detected by miR sequencing. Though it couldn't possess a feedback regulation, YAP promoted miR-29b expression and posttranscriptionally regulated BTCs EMT through miR-29b, where transforming growth factor β involved. Analysis of clinical database showed that high miR-29b expression was beneficial to high survival rate stabilizing its role of tumor suppressor. This study discovers the mechanism that Sus and SS promote BTCs EMT by YAP through miR-29b posttranscriptionally and highlight the potential of YAP and miR-29b in tumor therapy. The combination of suspension state and shear stress promotes transforming growth factor β involved epithelial-mesenchymal transition by yes-associated protein through microRNA-29b.
Collapse
Affiliation(s)
- Boyuan Zhao
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yonggang Lv
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
84
|
Gao T, Li W, Ma J, Chen Y, Wang Z, Sun N, Pei R. Selection of DNA aptamer recognizing CD44 for high-efficiency capture of circulating tumor cells. Talanta 2023; 262:124728. [PMID: 37247446 DOI: 10.1016/j.talanta.2023.124728] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Cancer stem cells play critical roles in cancer progression, cancer invasion and metastasis, and cancer recurrence. CD44 is known as a specific surface marker of cancer stem cells, which has been well-studied in cancer invasion and metastasis. Herein, we successfully selected the DNA aptamers for recognizing CD44+ cells using Cell-SELEX strategy, in which the engineered CD44 overexpression cells were used as target cells for selection. The optimized aptamer candidate C24S showed high binding affinity with the Kd value of 14.54 nM and good specificity. Then, the aptamer C24S was employed to prepare the functional aptamer-magnetic nanoparticles (C24S-MNPs) for CTC capture. To investigate the capture efficiency and sensitivity of C24S-MNPs, series of cell capture tests were performed using artificial samples with 10-200 of HeLa cells spiked into 1 mL PBS or PBMCs isolated from 1 mL peripheral blood, obtaining an efficiency of 95% and 90%, respectively. More importantly, we finally explored the facility of C24S-MNPs for CTC detection in blood samples from clinical cancer patients, indicating a potential and feasible strategy for cancer diagnostic technology in clinical applications.
Collapse
Affiliation(s)
- Tian Gao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Wenjing Li
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Jialing Ma
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Ying Chen
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Zhili Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Na Sun
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
85
|
Almagro J, Messal HA. Volume imaging to interrogate cancer cell-tumor microenvironment interactions in space and time. Front Immunol 2023; 14:1176594. [PMID: 37261345 PMCID: PMC10228654 DOI: 10.3389/fimmu.2023.1176594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/26/2023] [Indexed: 06/02/2023] Open
Abstract
Volume imaging visualizes the three-dimensional (3D) complexity of tumors to unravel the dynamic crosstalk between cancer cells and the heterogeneous landscape of the tumor microenvironment (TME). Tissue clearing and intravital microscopy (IVM) constitute rapidly progressing technologies to study the architectural context of such interactions. Tissue clearing enables high-resolution imaging of large samples, allowing for the characterization of entire tumors and even organs and organisms with tumors. With IVM, the dynamic engagement between cancer cells and the TME can be visualized in 3D over time, allowing for acquisition of 4D data. Together, tissue clearing and IVM have been critical in the examination of cancer-TME interactions and have drastically advanced our knowledge in fundamental cancer research and clinical oncology. This review provides an overview of the current technical repertoire of fluorescence volume imaging technologies to study cancer and the TME, and discusses how their recent applications have been utilized to advance our fundamental understanding of tumor architecture, stromal and immune infiltration, vascularization and innervation, and to explore avenues for immunotherapy and optimized chemotherapy delivery.
Collapse
Affiliation(s)
- Jorge Almagro
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, United States
| | - Hendrik A. Messal
- Division of Molecular Pathology, Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan, Amsterdam, Netherlands
| |
Collapse
|
86
|
Li D, Hemati H, Park Y, Taftaf R, Zhang Y, Liu J, Cristofanilli M, Liu X. ICAM-1-suPAR-CD11b Axis Is a Novel Therapeutic Target for Metastatic Triple-Negative Breast Cancer. Cancers (Basel) 2023; 15:2734. [PMID: 37345070 PMCID: PMC10216673 DOI: 10.3390/cancers15102734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Accumulating evidence demonstrates that circulating tumor cell (CTC) clusters have higher metastatic ability than single CTCs and negatively correlate with cancer patient outcomes. Along with homotypic CTC clusters, heterotypic CTC clusters (such as neutrophil-CTC clusters), which have been identified in both cancer mouse models and cancer patients, lead to more efficient metastasis formation and worse patient outcomes. However, the mechanism by which neutrophils bind to CTCs remains elusive. In this study, we found that intercellular adhesion molecule-1 (ICAM-1) on triple-negative breast cancer (TNBC) cells and CD11b on neutrophils mediate tumor cell-neutrophil binding. Consequently, CD11b deficiency inhibited tumor cell-neutrophil binding and TNBC metastasis. Furthermore, CD11b mediated hydrogen peroxide (H2O2) production from neutrophils. Moreover, we found that ICAM-1 in TNBC cells promotes tumor cells to secrete suPAR, which functions as a chemoattractant for neutrophils. Knockdown of uPAR in ICAM-1+ TNBC cells reduced lung-infiltrating neutrophils and lung metastasis. Bioinformatics analysis confirmed that uPAR is highly expressed in TNBCs, which positively correlates with higher neutrophil infiltration and negatively correlates with breast cancer patient survival. Collectively, our findings provide new insight into how neutrophils bind to CTC to facilitate metastasis and discover a novel potential therapeutic strategy by blocking the ICAM-1-suPAR-CD11b axis to inhibit TNBC metastasis.
Collapse
Affiliation(s)
- Dong Li
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (D.L.)
| | - Hami Hemati
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (D.L.)
| | - Younhee Park
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (D.L.)
| | - Rokana Taftaf
- Department of Medicine, Hematology/Oncology Division, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Youbin Zhang
- Department of Medicine, Hematology/Oncology Division, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Massimo Cristofanilli
- Department of Medicine, Hematology/Oncology Division, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 606011, USA
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York City, NY 10065, USA
| | - Xia Liu
- Department of Toxicology and Cancer Biology, College of Medicine, University of Kentucky, Lexington, KY 40536, USA; (D.L.)
- Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
87
|
Rios AC, van Rheenen J, Scheele CLGJ. Multidimensional Imaging of Breast Cancer. Cold Spring Harb Perspect Med 2023; 13:a041330. [PMID: 36167726 PMCID: PMC10153799 DOI: 10.1101/cshperspect.a041330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Breast cancer is a pathological condition characterized by high morphological and molecular heterogeneity. Not only the breast cancer cells, but also their tumor micro-environment consists of a multitude of cell types and states, which continuously evolve throughout progression of the disease. To understand breast cancer evolution within this complex environment, in situ analysis of breast cancer and their co-evolving cells and structures in space and time are essential. In this review, recent technical advances in three-dimensional (3D) and intravital imaging of breast cancer are discussed. Moreover, we highlight the resulting new knowledge on breast cancer biology obtained through these innovative imaging technologies. Finally, we discuss how multidimensional imaging technologies can be integrated with molecular profiling to understand the full complexity of breast cancer and the tumor micro-environment during tumor progression and treatment response.
Collapse
Affiliation(s)
- Anne C Rios
- Princess Máxima Center for Pediatric Oncology, 3584 CS Utrecht, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Jacco van Rheenen
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Department of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Colinda L G J Scheele
- Laboratory for Intravital Imaging and Dynamics of Tumor Progression, VIB Center for Cancer Biology, KU Leuven, 3000 Leuven, Belgium
- Department of Oncology, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
88
|
Tawara M, Suzuki H, Goto N, Tanaka T, Kaneko MK, Kato Y. A Novel Anti-CD44 Variant 9 Monoclonal Antibody C 44Mab-1 Was Developed for Immunohistochemical Analyses against Colorectal Cancers. Curr Issues Mol Biol 2023; 45:3658-3673. [PMID: 37185762 PMCID: PMC10137259 DOI: 10.3390/cimb45040238] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Cluster of differentiation 44 (CD44) is a type I transmembrane glycoprotein and has been shown to be a cell surface marker of cancer stem-like cells in various cancers. In particular, the splicing variants of CD44 (CD44v) are overexpressed in cancers and play critical roles in cancer stemness, invasiveness, and resistance to chemotherapy and radiotherapy. Therefore, the understanding of the function of each CD44v is indispensable for CD44-targeting therapy. CD44v9 contains the variant 9-encoded region, and its expression predicts poor prognosis in patients with various cancers. CD44v9 plays critical roles in the malignant progression of tumors. Therefore, CD44v9 is a promising target for cancer diagnosis and therapy. Here, we developed sensitive and specific monoclonal antibodies (mAbs) against CD44 by immunizing mice with CD44v3-10-overexpressed Chinese hamster ovary-K1 (CHO/CD44v3-10) cells. We first determined their critical epitopes using enzyme-linked immunosorbent assay and characterized their applications as flow cytometry, western blotting, and immunohistochemistry. One of the established clones, C44Mab-1 (IgG1, kappa), reacted with a peptide of the variant 9-encoded region, indicating that C44Mab-1 recognizes CD44v9. C44Mab-1 could recognize CHO/CD44v3-10 cells or colorectal cancer cell lines (COLO201 and COLO205) in flow cytometric analysis. The apparent dissociation constant (KD) of C44Mab-1 for CHO/CD44v3-10, COLO201, and COLO205 was 2.5 × 10-8 M, 3.3 × 10-8 M, and 6.5 × 10-8 M, respectively. Furthermore, C44Mab-1 was able to detect the CD44v3-10 in western blotting and the endogenous CD44v9 in immunohistochemistry using colorectal cancer tissues. These results indicated that C44Mab-1 is useful for detecting CD44v9 not only in flow cytometry or western blotting but also in immunohistochemistry against colorectal cancers.
Collapse
Affiliation(s)
- Mayuki Tawara
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.T.); (N.G.); (T.T.); (M.K.K.)
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.T.); (N.G.); (T.T.); (M.K.K.)
| | - Nohara Goto
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.T.); (N.G.); (T.T.); (M.K.K.)
| | - Tomohiro Tanaka
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.T.); (N.G.); (T.T.); (M.K.K.)
| | - Mika K. Kaneko
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.T.); (N.G.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan; (M.T.); (N.G.); (T.T.); (M.K.K.)
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| |
Collapse
|
89
|
Schuster E, Dashzeveg N, Jia Y, Golam K, Zhang T, Hoffman A, Zhang Y, Zheng C, Ramos E, Taftaf R, Shennawy LE, Scholten D, Kitata RB, Adorno-Cruz V, Reduzzi C, Spahija S, Xu R, Siziopikou KP, Platanias LC, Shah A, Gradishar WJ, Cristofanilli M, Tsai CF, Shi T, Liu H. Computational ranking-assisted identification of Plexin-B2 in homotypic and heterotypic clustering of circulating tumor cells in breast cancer metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536233. [PMID: 37090580 PMCID: PMC10120645 DOI: 10.1101/2023.04.10.536233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Metastasis is the cause of over 90% of all deaths associated with breast cancer, yet the strategies to predict cancer spreading based on primary tumor profiles and therefore prevent metastasis are egregiously limited. As rare precursor cells to metastasis, circulating tumor cells (CTCs) in multicellular clusters in the blood are 20-50 times more likely to produce viable metastasis than single CTCs. However, the molecular mechanisms underlying various CTC clusters, such as homotypic tumor cell clusters and heterotypic tumor-immune cell clusters, are yet to be fully elucidated. Combining machine learning-assisted computational ranking with experimental demonstration to assess cell adhesion candidates, we identified a transmembrane protein Plexin- B2 (PB2) as a new therapeutic target that drives the formation of both homotypic and heterotypic CTC clusters. High PB2 expression in human primary tumors predicts an unfavorable distant metastasis-free survival and is enriched in CTC clusters compared to single CTCs in advanced breast cancers. Loss of PB2 reduces formation of homotypic tumor cell clusters as well as heterotypic tumor-myeloid cell clusters in triple-negative breast cancer. Interactions between PB2 and its ligand Sema4C on tumor cells promote homotypic cluster formation, and PB2 binding with Sema4A on myeloid cells (monocytes) drives heterotypic CTC cluster formation, suggesting that metastasizing tumor cells hijack the PB2/Sema family axis to promote lung metastasis in breast cancer. Additionally, using a global proteomic analysis, we identified novel downstream effectors of the PB2 pathway associated with cancer stemness, cell cycling, and tumor cell clustering in breast cancer. Thus, PB2 is a novel therapeutic target for preventing new metastasis.
Collapse
|
90
|
Zhu Z, Hu E, Shen H, Tan J, Zeng S. The functional and clinical roles of liquid biopsy in patient-derived models. J Hematol Oncol 2023; 16:36. [PMID: 37031172 PMCID: PMC10082989 DOI: 10.1186/s13045-023-01433-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023] Open
Abstract
The liquid biopsy includes the detection of circulating tumor cells (CTCs) and CTC clusters in blood, as well as the detection of, cell-free DNA (cfDNA)/circulating tumor DNA (ctDNA) and extracellular vesicles (EVs) in the patient's body fluid. Liquid biopsy has important roles in translational research. But its clinical utility is still under investigation. Newly emerged patient-derived xenograft (PDX) and CTC-derived xenograft (CDX) faithfully recapitulate the genetic and morphological features of the donor patients' tumor and patient-derived organoid (PDO) can mostly mimic tumor growth, tumor microenvironment and its response to drugs. In this review, we describe how the development of these patient-derived models has assisted the studies of CTCs and CTC clusters in terms of tumor biological behavior exploration, genomic analysis, and drug testing, with the help of the latest technology. We then summarize the studies of EVs and cfDNA/ctDNA in PDX and PDO models in early cancer diagnosis, tumor burden monitoring, drug test and response monitoring, and molecular profiling. The challenges faced and future perspectives of research related to liquid biopsy using patient-derived models are also discussed.
Collapse
Affiliation(s)
- Ziqing Zhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Erya Hu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Hong Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jun Tan
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
91
|
Di Sario G, Rossella V, Famulari ES, Maurizio A, Lazarevic D, Giannese F, Felici C. Enhancing clinical potential of liquid biopsy through a multi-omic approach: A systematic review. Front Genet 2023; 14:1152470. [PMID: 37077538 PMCID: PMC10109350 DOI: 10.3389/fgene.2023.1152470] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
In the last years, liquid biopsy gained increasing clinical relevance for detecting and monitoring several cancer types, being minimally invasive, highly informative and replicable over time. This revolutionary approach can be complementary and may, in the future, replace tissue biopsy, which is still considered the gold standard for cancer diagnosis. "Classical" tissue biopsy is invasive, often cannot provide sufficient bioptic material for advanced screening, and can provide isolated information about disease evolution and heterogeneity. Recent literature highlighted how liquid biopsy is informative of proteomic, genomic, epigenetic, and metabolic alterations. These biomarkers can be detected and investigated using single-omic and, recently, in combination through multi-omic approaches. This review will provide an overview of the most suitable techniques to thoroughly characterize tumor biomarkers and their potential clinical applications, highlighting the importance of an integrated multi-omic, multi-analyte approach. Personalized medical investigations will soon allow patients to receive predictable prognostic evaluations, early disease diagnosis, and subsequent ad hoc treatments.
Collapse
|
92
|
Huh HD, Sub Y, Oh J, Kim YE, Lee JY, Kim HR, Lee S, Lee H, Pak S, Amos SE, Vahala D, Park JH, Shin JE, Park SY, Kim HS, Roh YH, Lee HW, Guan KL, Choi YS, Jeong J, Choi J, Roe JS, Gee HY, Park HW. Reprogramming anchorage dependency by adherent-to-suspension transition promotes metastatic dissemination. Mol Cancer 2023; 22:63. [PMID: 36991428 PMCID: PMC10061822 DOI: 10.1186/s12943-023-01753-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/01/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Although metastasis is the foremost cause of cancer-related death, a specialized mechanism that reprograms anchorage dependency of solid tumor cells into circulating tumor cells (CTCs) during metastatic dissemination remains a critical area of challenge. METHODS We analyzed blood cell-specific transcripts and selected key Adherent-to-Suspension Transition (AST) factors that are competent to reprogram anchorage dependency of adherent cells into suspension cells in an inducible and reversible manner. The mechanisms of AST were evaluated by a series of in vitro and in vivo assays. Paired samples of primary tumors, CTCs, and metastatic tumors were collected from breast cancer and melanoma mouse xenograft models and patients with de novo metastasis. Analyses of single-cell RNA sequencing (scRNA-seq) and tissue staining were performed to validate the role of AST factors in CTCs. Loss-of-function experiments were performed by shRNA knockdown, gene editing, and pharmacological inhibition to block metastasis and prolong survival. RESULTS We discovered a biological phenomenon referred to as AST that reprograms adherent cells into suspension cells via defined hematopoietic transcriptional regulators, which are hijacked by solid tumor cells to disseminate into CTCs. Induction of AST in adherent cells 1) suppress global integrin/ECM gene expression via Hippo-YAP/TEAD inhibition to evoke spontaneous cell-matrix dissociation and 2) upregulate globin genes that prevent oxidative stress to acquire anoikis resistance, in the absence of lineage differentiation. During dissemination, we uncover the critical roles of AST factors in CTCs derived from patients with de novo metastasis and mouse models. Pharmacological blockade of AST factors via thalidomide derivatives in breast cancer and melanoma cells abrogated CTC formation and suppressed lung metastases without affecting the primary tumor growth. CONCLUSION We demonstrate that suspension cells can directly arise from adherent cells by the addition of defined hematopoietic factors that confer metastatic traits. Furthermore, our findings expand the prevailing cancer treatment paradigm toward direct intervention within the metastatic spread of cancer.
Collapse
Affiliation(s)
- Hyunbin D Huh
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yujin Sub
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jongwook Oh
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ye Eun Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ju Young Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hwa-Ryeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul, 03722, Republic of Korea
| | - Soyeon Lee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Hannah Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul, 03722, Republic of Korea
| | | | - Sebastian E Amos
- School of Human Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Danielle Vahala
- School of Human Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Jae Hyung Park
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ji Eun Shin
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul, 03722, Republic of Korea
| | - So Yeon Park
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul, 03722, Republic of Korea
| | - Han Sang Kim
- Yonsei Cancer Center, Division of Medical Oncology, Department of Internal Medicine, Brain Korea 21 Plus Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Young Hoon Roh
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yu Suk Choi
- School of Human Sciences, University of Western Australia, Crawley, WA, 6009, Australia
| | - Joon Jeong
- Departments of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06273, Republic of Korea
| | - Junjeong Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Jae-Seok Roe
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
93
|
Twomey JD, Zhang B. Exploring the Role of Hypoxia-Inducible Carbonic Anhydrase IX (CAIX) in Circulating Tumor Cells (CTCs) of Breast Cancer. Biomedicines 2023; 11:biomedicines11030934. [PMID: 36979915 PMCID: PMC10046014 DOI: 10.3390/biomedicines11030934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Circulating tumor cells (CTCs) in the peripheral blood are believed to be the source of metastasis and can be used as a liquid biopsy to monitor cancer progression and therapeutic response. However, it has been challenging to accurately detect CTCs because of their low frequency and the heterogeneity of the population. In this study, we have developed an in vitro model of CTCs by using non-adherent suspension culture. We used this model to study a group of breast cancer cell lines with distinct molecular subtypes (TNBC, HER2+, and ER+/PR+). We found that, when these breast cancer cell lines lost their attachment to the extracellular matrix, they accumulated a subtype of cancer stem cells (CSC) that expressed the surface markers of stem cells (e.g., CD44+CD24-). These stem-like CTCs also showed high expressions of hypoxia-inducible gene products, particularly the hypoxia-inducible carbonic anhydrase IX (CAIX). Inhibition of CAIX activity was found to reduce CAIX expression and stem cell phenotypes in the targeted CTCs. Further studies are needed, using CTC samples from breast cancer patients, to determine the role of CAIX in CTC survival, CSC transition, and metastasis. CAIX may be a useful surface marker for the detection of CSCs in the blood, and a potential target for treating metastatic breast cancers.
Collapse
Affiliation(s)
- Julianne D Twomey
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Baolin Zhang
- Office of Biotechnology Products, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
94
|
Yamamoto A, Huang Y, Krajina BA, McBirney M, Doak AE, Qu S, Wang CL, Haffner MC, Cheung KJ. Metastasis from the tumor interior and necrotic core formation are regulated by breast cancer-derived angiopoietin-like 7. Proc Natl Acad Sci U S A 2023; 120:e2214888120. [PMID: 36853945 PMCID: PMC10013750 DOI: 10.1073/pnas.2214888120] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 01/06/2023] [Indexed: 03/01/2023] Open
Abstract
Necrosis in the tumor interior is a common feature of aggressive cancers that is associated with poor clinical prognosis and the development of metastasis. How the necrotic core promotes metastasis remains unclear. Here, we report that emergence of necrosis inside the tumor is correlated temporally with increased tumor dissemination in a rat breast cancer model and in human breast cancer patients. By performing spatially focused transcriptional profiling, we identified angiopoietin-like 7 (Angptl7) as a tumor-specific factor localized to the perinecrotic zone. Functional studies showed that Angptl7 loss normalizes central necrosis, perinecrotic dilated vessels, metastasis, and reduces circulating tumor cell counts to nearly zero. Mechanistically, Angptl7 promotes vascular permeability and supports vascular remodeling in the perinecrotic zone. Taken together, these findings show that breast tumors actively produce factors controlling central necrosis formation and metastatic dissemination from the tumor core.
Collapse
Affiliation(s)
- Ami Yamamoto
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA98195
| | - Yin Huang
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Brad A. Krajina
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Margaux McBirney
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Andrea E. Doak
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA98195
| | - Sixuan Qu
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Carolyn L. Wang
- Department of Radiology, University of Washington School of Medicine, Seattle, WA98195
| | - Michael C. Haffner
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA98109
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Kevin J. Cheung
- Translational Research Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| |
Collapse
|
95
|
Bates M, Mohamed BM, Ward MP, Kelly TE, O'Connor R, Malone V, Brooks R, Brooks D, Selemidis S, Martin C, O'Toole S, O'Leary JJ. Circulating tumour cells: The Good, the Bad and the Ugly. Biochim Biophys Acta Rev Cancer 2023; 1878:188863. [PMID: 36796527 DOI: 10.1016/j.bbcan.2023.188863] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 01/06/2023] [Accepted: 01/21/2023] [Indexed: 02/17/2023]
Abstract
This review is an overview of the current knowledge regarding circulating tumour cells (CTCs), which are potentially the most lethal type of cancer cell, and may be a key component of the metastatic cascade. The clinical utility of CTCs (the "Good"), includes their diagnostic, prognostic, and therapeutic potential. Conversely, their complex biology (the "Bad"), including the existence of CD45+/EpCAM+ CTCs, adds insult to injury regarding their isolation and identification, which in turn hampers their clinical translation. CTCs are capable of forming microemboli composed of both non-discrete phenotypic populations such as mesenchymal CTCs and homotypic and heterotypic clusters which are poised to interact with other cells in the circulation, including immune cells and platelets, which may increase their malignant potential. These microemboli (the "Ugly") represent a prognostically important CTC subset, however, phenotypic EMT/MET gradients bring additional complexities to an already challenging situation.
Collapse
Affiliation(s)
- Mark Bates
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland.
| | - Bashir M Mohamed
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland
| | - Mark P Ward
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland
| | - Tanya E Kelly
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland
| | - Roisin O'Connor
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin 8, Ireland
| | - Victoria Malone
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin 8, Ireland
| | - Robert Brooks
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Doug Brooks
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Stavros Selemidis
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology, Bundoora, VIC 3083, Australia
| | - Cara Martin
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin 8, Ireland
| | - Sharon O'Toole
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Obstetrics and Gynaecology, Trinity College Dublin, Dublin 2, Ireland
| | - John J O'Leary
- Department of Histopathology, Trinity College Dublin, Dublin 2, Ireland; Emer Casey Molecular Pathology Research Laboratory, Coombe Women & Infants University Hospital, Dublin 8, Ireland; Trinity St James's Cancer Institute, Dublin 8, Ireland; Department of Pathology, Coombe Women & Infants University Hospital, Dublin 8, Ireland
| |
Collapse
|
96
|
Li D, Park Y, Hemati H, Liu X. Cell aggregation prevents anoikis and induces CD44 cleavage by maintaining lipid raft integrity to promote triple negative breast cancer metastasis. RESEARCH SQUARE 2023:rs.3.rs-2535728. [PMID: 36824757 PMCID: PMC9949249 DOI: 10.21203/rs.3.rs-2535728/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, and metastasis is the major cause of cancer morbidity and mortality. Therefore, it is urgent to discover novel therapeutic targets and develop effective treatments for this lethal disease. Circulating tumor cells (CTCs) are considered "seeds of metastasis". Compared to single CTCs, our previous studies have demonstrated that CD44 homophilic interaction mediates CTC aggregation to enhance the stemness, survival and metastatic ability of aggregated cells. Importantly, the presence of CD44+ CTC clusters correlates with a poor prognosis in breast cancer patients. Here, we further investigated the underlying mechanism of how CD44-mediated cell aggregation promotes TNBC metastasis. We found that cell detachment, which mimics the condition when tumor cells detach from the extracellular matrix (ECM) to metastasize, induces lipid raft disruption in single cells, but lipid rafts integrity is maintained in aggregated cells. We further found that lipid rafts integrity in aggregated cells is required for Rac1 activation to prevent anoikis. In addition, CD44 and γ-secretase coexisted at lipid rafts in aggregated cells, which promotes CD44 cleavage and generates CD44 intracellular domain (CD44 ICD) to enhance stemness. Consequently, lipid rafts disruption inhibited Rac1 activation, CD44 ICD generation and metastasis. These data reveal a new mechanism of cell aggregation-mediated TNBC metastasis via maintaining lipid raft integrity after cell detachment. The finding provides a potential therapeutic strategy to prevent CTC cluster-initiated metastasis by disrupting lipid raft integrity and its-mediated downstream pathways.
Collapse
|
97
|
From the Catastrophic Objective Irreproducibility of Cancer Research and Unavoidable Failures of Molecular Targeted Therapies to the Sparkling Hope of Supramolecular Targeted Strategies. Int J Mol Sci 2023; 24:ijms24032796. [PMID: 36769134 PMCID: PMC9917659 DOI: 10.3390/ijms24032796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
The unprecedented non-reproducibility of the results published in the field of cancer research has recently come under the spotlight. In this short review, we try to highlight some general principles in the organization and evolution of cancerous tumors, which objectively lead to their enormous variability and, consequently, the irreproducibility of the results of their investigation. This heterogeneity is also extremely unfavorable for the effective use of molecularly targeted medicine. Against the seemingly comprehensive background of this heterogeneity, we single out two supramolecular characteristics common to all tumors: the clustered nature of tumor interactions with their microenvironment and the formation of biomolecular condensates with tumor-specific distinctive features. We suggest that these features can form the basis of strategies for tumor-specific supramolecular targeted therapies.
Collapse
|
98
|
Ring A, Nguyen-Sträuli BD, Wicki A, Aceto N. Biology, vulnerabilities and clinical applications of circulating tumour cells. Nat Rev Cancer 2023; 23:95-111. [PMID: 36494603 PMCID: PMC9734934 DOI: 10.1038/s41568-022-00536-4] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/07/2022] [Indexed: 12/13/2022]
Abstract
In recent years, exceptional technological advances have enabled the identification and interrogation of rare circulating tumour cells (CTCs) from blood samples of patients, leading to new fields of research and fostering the promise for paradigm-changing, liquid biopsy-based clinical applications. Analysis of CTCs has revealed distinct biological phenotypes, including the presence of CTC clusters and the interaction between CTCs and immune or stromal cells, impacting metastasis formation and providing new insights into cancer vulnerabilities. Here we review the progress made in understanding biological features of CTCs and provide insight into exploiting these developments to design future clinical tools for improving the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Alexander Ring
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Bich Doan Nguyen-Sträuli
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
- Department of Gynecology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Andreas Wicki
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
99
|
Kumah E, Bibee K. Modelling cutaneous squamous cell carcinoma for laboratory research. Exp Dermatol 2023; 32:117-125. [PMID: 36373888 DOI: 10.1111/exd.14706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) leads to significant morbidity for patients with progression and metastases. However, the molecular underpinnings of these tumors are still poorly understood. Dissecting human cSCC pathogenesis amplifies the exigence for preclinical models that mimic invasion and nodal spread. This review discusses the currently available models, including two- and three-dimensional tissue cultures, syngeneic and transgenic mice, and cell line-derived and patient-derived xenografts. We further highlight studies that have utilized the different models, considering how they recapitulate specific hallmarks of cSCC. Finally, we discuss the advantages, limitations and future research directions.
Collapse
Affiliation(s)
- Edwin Kumah
- Department of Biochemistry and Molecular Biology, Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristin Bibee
- Transplant Dermatology, Micrographic Surgery and Dermatology Oncology, Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
100
|
Tissue factor-induced fibrinogenesis mediates cancer cell clustering and multiclonal peritoneal metastasis. Cancer Lett 2023; 553:215983. [PMID: 36404569 DOI: 10.1016/j.canlet.2022.215983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/02/2022]
Abstract
Peritoneal metastasis is one of the most frequent causes of death in several types of advanced cancers; however, the underlying molecular mechanisms remain largely unknown. In this study, we exploited multicolor fluorescent lineage tracking to investigate the clonality of peritoneal metastasis in mouse xenograft models. When peritoneal metastasis was induced by intraperitoneal or orthotopic injection of multicolored cancer cells, each peritoneally metastasized tumor displayed multicolor fluorescence regardless of metastasis sites, indicating that it consists of multiclonal cancer cell populations. Multicolored cancer cell clusters form within the peritoneal cavity and collectively attach to the peritoneum. In vitro, peritoneal lavage fluid or cleared ascitic fluid derived from cancer patients induces cancer cell clustering, which is inhibited by anticoagulants. Cancer cell clusters formed in vitro and in vivo are associated with fibrin formation. Furthermore, tissue factor knockout in cancer cells abrogates cell clustering, peritoneal attachment, and peritoneal metastasis. Thus, we propose that cancer cells activate the coagulation cascade via tissue factor to form fibrin-mediated cell clusters and promote peritoneal attachment; these factors lead to the development of multiclonal peritoneal metastasis and may be therapeutic targets.
Collapse
|