51
|
Xu Y, Li J, Luo Y, Ma J, Huang P, Chen Y, He Z. Carvedilol exhibits anti-acute T lymphoblastic leukemia effect in vitro and in vivo via inhibiting β-ARs signaling pathway. Biochem Biophys Res Commun 2023; 639:150-160. [PMID: 36495764 DOI: 10.1016/j.bbrc.2022.11.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
An increasing number of studies have focus upon β-adrenergic receptor blockers and their anti-tumor effects. However, the use of Carvedilol (CVD), the third generation β-AR blocker, has not been explored for use against T-ALL. In this study, the level of β-ARs was explored in pediatric T-ALL patients. Moreover, the antitumor effects of CVD against T-ALL were assessed in vitro and in vivo, and the underlying mechanisms were investigated. The viability of T-ALL cells following CVD treatment was detected using a CCK-8 assay, and the apoptotic and cell cycle effects were measured using flow cytometry. The protein levels of β-ARs, cAMP, Epac, JAK2, STAT3, p-STAT3, PI3K, p-PI3K, AKT, p-AKT, mTOR, cyclin D1, PCNA, and cleaved caspase-3 were assessed by Western blotting. In vivo experiments were used to investigate the effect of CVD on T-ALL growth in mice. The results indicated that β-ARs were highly expressed in the newly diagnosed T-ALL cells when compared to those in the control group (P < 0.05). In vitro, CVD significantly inhibited T-ALL cell viability, promoted apoptosis and blocked the G0/G1 phase of cell cycle. After CVD treatment, the protein levels of β-ARs, cAMP, Epac, PI3K, p-PI3K, AKT, p-AKT, mTOR, JAK2, STAT3, p-STAT3, cyclin D1 and PCNA were significantly downregulated (P < 0.05); whereas cleaved caspase-3 was significantly upregulated (P < 0.05). In vivo, the volume and weight of the xenograft tumors were significantly decreased in the CVD group (P < 0.05). CVD promoted xenograft tumor apoptosis and reduced the proportion of CEM-C1 cells in murine peripheral blood and bone marrow (P < 0.05). Our results demonstrate that β-ARs are expressed in T-ALL. CVD has a strong antitumor effect against T-ALL and inhibits β-AR associated signaling pathways. Therefore, CVD may provide a potential therapy for T-ALL.
Collapse
Affiliation(s)
- Yanpeng Xu
- Suzhou Medical College of Soochow University, Suzhou, People's Republic of China; Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China; Department of Pediatrics, Guizhou Children's Hospital, Zun Yi, People's Republic of China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, People's Republic of China
| | - Jiahuan Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China
| | - Yan Luo
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China; Department of Pediatrics, Guizhou Children's Hospital, Zun Yi, People's Republic of China
| | - Jinhua Ma
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China; Department of Pediatrics, Guizhou Children's Hospital, Zun Yi, People's Republic of China
| | - Pei Huang
- Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China; Department of Pediatrics, Guizhou Children's Hospital, Zun Yi, People's Republic of China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, People's Republic of China
| | - Yan Chen
- Suzhou Medical College of Soochow University, Suzhou, People's Republic of China; Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China; Department of Pediatrics, Guizhou Children's Hospital, Zun Yi, People's Republic of China.
| | - Zhixu He
- Suzhou Medical College of Soochow University, Suzhou, People's Republic of China; Department of Pediatrics, Affiliated Hospital of Zunyi Medical University, Zun Yi, People's Republic of China; Department of Pediatrics, Guizhou Children's Hospital, Zun Yi, People's Republic of China; Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine, Zunyi Medical University, Zunyi, People's Republic of China.
| |
Collapse
|
52
|
López-Otín C, Pietrocola F, Roiz-Valle D, Galluzzi L, Kroemer G. Meta-hallmarks of aging and cancer. Cell Metab 2023; 35:12-35. [PMID: 36599298 DOI: 10.1016/j.cmet.2022.11.001] [Citation(s) in RCA: 214] [Impact Index Per Article: 107.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/11/2022] [Accepted: 11/07/2022] [Indexed: 01/05/2023]
Abstract
Both aging and cancer are characterized by a series of partially overlapping "hallmarks" that we subject here to a meta-analysis. Several hallmarks of aging (i.e., genomic instability, epigenetic alterations, chronic inflammation, and dysbiosis) are very similar to specific cancer hallmarks and hence constitute common "meta-hallmarks," while other features of aging (i.e., telomere attrition and stem cell exhaustion) act likely to suppress oncogenesis and hence can be viewed as preponderantly "antagonistic hallmarks." Disabled macroautophagy and cellular senescence are two hallmarks of aging that exert context-dependent oncosuppressive and pro-tumorigenic effects. Similarly, the equivalence or antagonism between aging-associated deregulated nutrient-sensing and cancer-relevant alterations of cellular metabolism is complex. The agonistic and antagonistic relationship between the processes that drive aging and cancer has bearings for the age-related increase and oldest age-related decrease of cancer morbidity and mortality, as well as for the therapeutic management of malignant disease in the elderly.
Collapse
Affiliation(s)
- Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - David Roiz-Valle
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy, Villejuif, France; Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
53
|
Abstract
Historically, cancer research and therapy have focused on malignant cells and their tumor microenvironment. However, the vascular, lymphatic and nervous systems establish long-range communication between the tumor and the host. This communication is mediated by metabolites generated by the host or the gut microbiota, as well by systemic neuroendocrine, pro-inflammatory and immune circuitries-all of which dictate the trajectory of malignant disease through molecularly defined biological mechanisms. Moreover, aging, co-morbidities and co-medications have a major impact on the development, progression and therapeutic response of patients with cancer. In this Perspective, we advocate for a whole-body 'ecological' exploration of malignant disease. We surmise that accumulating knowledge on the intricate relationship between the host and the tumor will shape rational strategies for systemic, bodywide interventions that will eventually improve tumor control, as well as quality of life, in patients with cancer.
Collapse
|
54
|
The conundrum of breast cancer and microbiome - A comprehensive review of the current evidence. Cancer Treat Rev 2022; 111:102470. [DOI: 10.1016/j.ctrv.2022.102470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/15/2022]
|
55
|
Shi J, Xu J, Li Y, Li B, Ming H, Nice EC, Huang C, Li Q, Wang C. Drug repurposing in cancer neuroscience: From the viewpoint of the autophagy-mediated innervated niche. Front Pharmacol 2022; 13:990665. [PMID: 36105204 PMCID: PMC9464986 DOI: 10.3389/fphar.2022.990665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Based on the bidirectional interactions between neurology and cancer science, the burgeoning field “cancer neuroscience” has been proposed. An important node in the communications between nerves and cancer is the innervated niche, which has physical contact with the cancer parenchyma or nerve located in the proximity of the tumor. In the innervated niche, autophagy has recently been reported to be a double-edged sword that plays a significant role in maintaining homeostasis. Therefore, regulating the innervated niche by targeting the autophagy pathway may represent a novel therapeutic strategy for cancer treatment. Drug repurposing has received considerable attention for its advantages in cost-effectiveness and safety. The utilization of existing drugs that potentially regulate the innervated niche via the autophagy pathway is therefore a promising pharmacological approach for clinical practice and treatment selection in cancer neuroscience. Herein, we present the cancer neuroscience landscape with an emphasis on the crosstalk between the innervated niche and autophagy, while also summarizing the underlying mechanisms of candidate drugs in modulating the autophagy pathway. This review provides a strong rationale for drug repurposing in cancer treatment from the viewpoint of the autophagy-mediated innervated niche.
Collapse
Affiliation(s)
- Jiayan Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jia Xu
- Department of Pharmacology, Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
| | - Yang Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bowen Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Hui Ming
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qifu Li
- Department of Neurology and Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, The First Affiliated Hospital, Hainan Medical University, Haikou, China
- *Correspondence: Qifu Li, ; Chuang Wang,
| | - Chuang Wang
- Department of Pharmacology, Provincial Key Laboratory of Pathophysiology, Ningbo University School of Medicine, Ningbo, China
- *Correspondence: Qifu Li, ; Chuang Wang,
| |
Collapse
|
56
|
Zhang C, Hu A, Li J, Zhang F, Zhong P, Li Y, Li Y. Combined Non-Invasive Prediction and New Biomarkers of Oral and Fecal Microbiota in Patients With Gastric and Colorectal Cancer. Front Cell Infect Microbiol 2022; 12:830684. [PMID: 35663463 PMCID: PMC9161364 DOI: 10.3389/fcimb.2022.830684] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background There is no information on the commonality and specificity of oral and fecal microbiota in patients with gastric cancer (GC) and colorectal cancer (CRC). Methods The high-throughput 16S rRNA gene V4 region sequencing was used to perform bioinformatics analysis of oral, fecal, and tissue microbiota in GC (76 subjects), CRC (53), and healthy controls (HC, 70). Furthermore, we determined the microbial characteristics of each part, constructed and verified three classifiers for GC and CRC, and evaluated curves of receiver operating characteristic and precision–recall with probability of disease. Results Compared to HC, the microbial richness and diversity of GC and CRC decreased in oral cavity and increased in stool; additionally, these indexes in GC tissue were higher than those in CRC tissue. In GC and CRC patients, Haemophilus, Neisseria, Faecalibacterium, and Romboutsia were significantly reduced compared to the relative abundance value of oral or fecal bacterial genera in the HC group, while the Streptococcus, Gemella, Escherichia-Shigella, and Fusobacterium were significantly increased. The oral and tissue microbiota have similar and abundant shared bacterial networks. The single and combined microbial detection have good AUC values based on POD indices for predicting GC, CRC, and gastrointestinal (GI) cancers (GC and CRC). Conclusion This study is the first to examine the characteristics of oral, fecal, and tumor microbiota in GC and CRC patients, and the similarities and differences in their microbial changes are reported. These oral or fecal bacteria (Haemophilus, Neisseria, Faecalibacterium, Romboutsia, Streptococcus, Gemella, Escherichia-Shigella, and Fusobacterium) may be involved in tumor evolution as potentially characteristic genera. In addition, both oral and fecal microbial detection may provide a solid theoretical foundation for the non-invasive prediction of these cancers.
Collapse
Affiliation(s)
- Chaoyang Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Asheng Hu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jingxing Li
- Department of Computer Science, Faculty of Science, University of Western Ontario, London, ON, Canada
| | - Fangfang Zhang
- Department of Anesthesiology, Hefei BOE Hospital, Hefei, China
| | - Pei Zhong
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yaxian Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
57
|
Targeting the gut and tumor microbiota in cancer. Nat Med 2022; 28:690-703. [PMID: 35440726 DOI: 10.1038/s41591-022-01779-2] [Citation(s) in RCA: 259] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023]
Abstract
Microorganisms within the gut and other niches may contribute to carcinogenesis, as well as shaping cancer immunosurveillance and response to immunotherapy. Our understanding of the complex relationship between different host-intrinsic microorganisms, as well as the multifaceted mechanisms by which they influence health and disease, has grown tremendously-hastening development of novel therapeutic strategies that target the microbiota to improve treatment outcomes in cancer. Accordingly, the evaluation of a patient's microbial composition and function and its subsequent targeted modulation represent key elements of future multidisciplinary and precision-medicine approaches. In this Review, we outline the current state of research toward harnessing the microbiome to better prevent and treat cancer.
Collapse
|
58
|
Late-Stage Glioma Is Associated with Deleterious Alteration of Gut Bacterial Metabolites in Mice. Metabolites 2022; 12:metabo12040290. [PMID: 35448477 PMCID: PMC9028041 DOI: 10.3390/metabo12040290] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Brain-gut axis refers to the bidirectional functional connection between the brain and the gut, which sustains vital functions for vertebrates. This connection also underlies the gastrointestinal (GI) comorbidities associated with brain disorders. Using a mouse model of glioma, based on the orthotopic injection of GL261 cell line in syngeneic C57BL6 mice, we show that late-stage glioma is associated with GI functional alteration and with a shift in the level of some bacterial metabolites in the cecum. By performing cecal content transfer experiments, we further show that cancer-associated alteration in cecal metabolites is involved in end-stage disease progression. Antibiotic treatment results in a slight but significant delay in mice death and a shift in the proportion of myeloid cells in the brain tumor environment. This work rationally considers microbiota modulating strategies in the clinical management of patients with late-stage glioma.
Collapse
|
59
|
Terrisse S, Goubet AG, Ueda K, Thomas AM, Quiniou V, Thelemaque C, Dunsmore G, Clave E, Gamat-Huber M, Yonekura S, Ferrere G, Rauber C, Pham HP, Fahrner JE, Pizzato E, Ly P, Fidelle M, Mazzenga M, Costa Silva CA, Armanini F, Pinto F, Asnicar F, Daillère R, Derosa L, Richard C, Blanchard P, Routy B, Culine S, Opolon P, Silvin A, Ginhoux F, Toubert A, Segata N, McNeel DG, Fizazi K, Kroemer G, Zitvogel L. Immune system and intestinal microbiota determine efficacy of androgen deprivation therapy against prostate cancer. J Immunother Cancer 2022; 10:jitc-2021-004191. [PMID: 35296557 PMCID: PMC8928383 DOI: 10.1136/jitc-2021-004191] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2022] [Indexed: 12/12/2022] Open
Abstract
Background Prostate cancer (PC) responds to androgen deprivation therapy (ADT) usually in a transient fashion, progressing from hormone-sensitive PC (HSPC) to castration-resistant PC (CRPC). We investigated a mouse model of PC as well as specimens from PC patients to unravel an unsuspected contribution of thymus-derived T lymphocytes and the intestinal microbiota in the efficacy of ADT. Methods Preclinical experiments were performed in PC-bearing mice, immunocompetent or immunodeficient. In parallel, we prospectively included 65 HSPC and CRPC patients (Oncobiotic trial) to analyze their feces and blood specimens. Results In PC-bearing mice, ADT increased thymic cellularity and output. PC implanted in T lymphocyte-depleted or athymic mice responded less efficiently to ADT than in immunocompetent mice. Moreover, depletion of the intestinal microbiota by oral antibiotics reduced the efficacy of ADT. PC reduced the relative abundance of Akkermansia muciniphila in the gut, and this effect was reversed by ADT. Moreover, cohousing of PC-bearing mice with tumor-free mice or oral gavage with Akkermansia improved the efficacy of ADT. This appears to be applicable to PC patients because long-term ADT resulted in an increase of thymic output, as demonstrated by an increase in circulating recent thymic emigrant cells (sjTRECs). Moreover, as compared with HSPC controls, CRPC patients demonstrated a shift in their intestinal microbiota that significantly correlated with sjTRECs. While feces from healthy volunteers restored ADT efficacy, feces from PC patients failed to do so. Conclusions These findings suggest the potential clinical utility of reversing intestinal dysbiosis and repairing acquired immune defects in PC patients.
Collapse
Affiliation(s)
- Safae Terrisse
- INSERM U1015, Gustave Roussy, Villejuif, France.,Medical Oncology, Hôpital Saint-Louis, Paris, France
| | | | - Kousuke Ueda
- Department of Urology, Kurume University School of Medicine, Kurume, Japan
| | | | | | | | | | - Emmanuel Clave
- Institut de Recherche de Paris, INSERM UMRS-1160, Université de Paris, Paris, France
| | | | | | | | | | | | - Jean-Eudes Fahrner
- INSERM U1015, Gustave Roussy, Villejuif, France.,Université Paris-Saclay, Saint-Aubin, France
| | | | - Pierre Ly
- INSERM U1015, Gustave Roussy, Villejuif, France
| | | | | | | | | | | | | | - Romain Daillère
- Gustave Roussy, Villejuif, France.,EverImmune Gustave Roussy Cancer Center, Villejuif, France
| | - Lisa Derosa
- INSERM U1015, Gustave Roussy, Villejuif, France.,Center of Clinical Investistigations in Biotherapies of Cancer (CICBT), Villejuif, France
| | | | - Pierre Blanchard
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Bertrand Routy
- Département de Médicine, CHUM, Montreal, Québec, Canada.,CRCHUM, Montreal, Québec, Canada
| | - Stéphane Culine
- Medical Oncology, Hôpital Saint-Louis, Paris, France.,Université de Paris, Paris, France
| | - Paule Opolon
- Department of Biology and Medical Pathology, Gustave Roussy, Villejuif, France
| | | | | | - Antoine Toubert
- Institut de Recherche Saint Louis, INSERM U1160, Université de Paris, Paris, France.,Laboratoire d'immunologie et d'histocompatibilité, Hôpital Saint-Louis, Paris, France
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
| | - Douglas G McNeel
- Medicine, University of Wisconsin Madison, Madison, Wisconsin, USA
| | - Karim Fizazi
- Université Paris-Saclay, Saint-Aubin, France.,Department of Medical Oncology, Gustave Roussy, Villejuif, France
| | - Guido Kroemer
- Gustave Roussy, Villejuif, France .,Sorbonne Université INSERM U1138, Université de Paris, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France .,Université Paris-Saclay Faculté de Médecine, Le Kremlin-Bicetre, France
| |
Collapse
|
60
|
Abstract
The human gut microbiota has a major impact on cancer immunosurveillance. In a recent Science paper, Spencer et al. reported the interesting observation that low dietary fiber intake or ingestion of commercially available probiotics both affect the anticancer effects mediated by immunotherapy in mice and patients with advanced melanoma.
Collapse
|